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Abstract. This paper introduces an approach to feature subset selec-
tion which is able to characterise the attributes of a supervised machine
learning problem into two categories: essential and important features.
Additionally, the fusion of both kinds of features yields to an overcoming
in the prediction task, where some measures such as accuracy and Re-
ceiver Operating Characteristic curve (ROC) have been reported. The
test-bed is composed of eight binary and multi-class classification prob-
lems with up to five hundred of attributes. Several classification algo-
rithms such as Ridor, PART, C4.5 and NBTree have been tested to
assess the proposal.

1 Introduction

Supervised Machine Learning (SML) via classification requires that every object
has a label associated [6]. Essentially, classification partitions the whole feature
space (the space of all possible attribute value combinations) into different re-
gions, one for each class. The properties involved in a classification procedure
may not always be manageable, which is more prone to happen when their num-
ber is high. Removing some of them alleviates the load of the learning machine
induction and might lead a more accurate classification model. Lesser useful
attributes for classification are detected and discarded, which is the operation
performed by an attribute selection procedure.

The objective of this paper is to propose a new approach to feature selec-
tion, splitting it into two sequential stages: selection of essential attributes and
selection of important attributes from the set of non-essential ones. The merge
of these two sets is used to train the classifier. To evaluate the approach we use
it with four different classifiers, namely Ridor, PART, C4.5 and Naive Bayes
tree (NBTree). This allows to assess the influence of using trees, rules and/or
probabilistic approaches for the attribute subset selection model proposed.

The remaining of this article is arranged as follows. Section 2 provides a
brief overview of different concepts about feature selection. Section 3 details the



proposal. Section 4 describes the experimentation by means of the approach
setting, problems and classifiers used. Then, Section 5 depicts the empirical
results. Lastly, Section 6 draws some conclusions.

2 Feature selection

Attribute selection is a specially important process for mining big data. Doing
feature selection before a learning algorithm is applied has numerous benefits. By
eliminating a significant amount of attributes it becomes easier to train learning
machines. The computational time of the induction is reduced and the resulting
model will usually be simpler and easier to interpret. It is also frequently the
case that simpler models generalise better. Therefore, a model employing fewer
features is likely to perform better. This is a process to determine from the
instance set which attributes are more relevant to predict or explain the data,
and conversely which attributes are redundant or provide little information [11].
Finally, the identification of the most relevant attributes can be useful in its own
right providing valuable information about the problem in hand.

Generally speaking, three types of approaches might be used for attribute
selection [9]: a) Filter methods, which select the best individual attributes usually
assuming they are independent given the class. In this case some statistical
measure is used to assess the quality of the attributes; b) Wrapper methods that
use a machine learning algorithm to select a sub-set of the attributes. Usually
this involves selection and evaluation of different sub-sets under some accuracy
measure; ¢) Embedded methods combine the model creation problem with the
attribute selection. These methods include in the induction model some bias
towards fewer attributes.

By its part, the filter approaches may be divided into feature ranking and
feature subset selection methods depending on the output which may be an
ordered list of the attributes or a subset of attributes. This article focuses on filter
method to obtain feature subsets. The main contribution of the current work
is the ability to characterise groups of attributes into two types of categories,
namely essential and important feature subsets.

3 Proposal

This paper proposes a way to categorise the features in supervised machine
learning problems. According to our approach, there are two kinds of features:
i) Essential features which represent the core properties to be collected from
the new instances belonging to the problem; ii) Important features which con-
stitute additional information that may be interesting to be reported on unseen
instances. The procedure is as follows: a) first, the data set is divided into two
sets: training and test sets, b) the feature selection method is applied to the
training set and as an outcome we have the essential features which are those
that have been picked up by the data preparation method and, on other bag, we
have the non-selected properties that may not be thought to be very relevant
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Fig. 1. Proposal: Characterisation of Features through Feature Subset Selection
(ChaF2S2).

in terms of aid to the predictive data mining method, c) feature selection is
performed on the non-selected attributes to extract the best from the not very
promising features, d) the attributes from steps b) and c) are merged which
will be the next characteristic space for classifier, e) the list of attributes is pro-
jected into the test set as it was originally and f) the usual assessment in data
mining is conducted: we start training the classifier with the reduced training
set and the evaluation takes place on the reduced test set. Figure 1 depicts the
approach which has been named Characterisation of Features through Feature
Subset Selection (ChaF2S2).

It is important to remark that some connections may be found with a previous
work [21] due to the use of the merge operation. It is straightforward that in this
paper no kind of overlapping [19] may occur, which may do the new approach
more applicable and even more oriented to the goal that we have marked for the
current contribution.



4 Experimentation

4.1 Approach setting

It is true that the amount of literature coping with many different measures
is very extensive. We opt for correlation measures since the behaviour is very
good and also has been one of the most commonly used by the data mining
community. Moreover, our previous experience showed that the correlation is
very convenient for supervised machine learning tasks [16]. Table 1 describes
the methods to evaluate the current proposal which are founded on Correlation-
based Feature Selection (CFS) [5] and Fast Correlation-Based Filter (FCBF)
[25]. The reason of this chosen is motivated by the good performance of these
feature subset selectors.

Specifically, we use the implementations provided by Weka tool [1] which
are called CfsSubsetEval and FCBFSearch working with SymmetricalUncert At-
tributeSetEval, respectively for CFS and FCBF. CFS procedure has been used
for FSS1 and FSS2 methods whereas FCBF has been utilised for FSS3 and FSS4
selectors. FSS1 and FSS3 capture the subset of essential features and FSS2 and
FFS4 incorporate an extra subset of attributes, which we have called important
features, to the solutions got by FSS1 and FSS3, respectively. FSS2 and FSS4 are
the more complete options within their category and are the base of the current
contribution. As an additional breakthrough, the distinction between essential
and important features has been outlined. Table 2 reports on the parameters and
properties to set up the method and also to ease the reproducibility of the ex-
periments. It is important to remark that the experiments have been conducted
with the default values parameters because the own authors have recommended
them. Moreover, we also tested for CFS three deeper levels for the number of
expanded nodes such as 6, 7 and 8; since there are not differences in the reached
solutions we keep the number of expanded nodes to 5.

Table 1. Feature subset selectors for the experimentation

Abbreviation Method Essential features Important features

FSS1 CFS Yes No
FS5S52 CFS Yes Yes
FSS53 FCBF Yes No
FSS4 FCBF Yes Yes

4.2 Problems

A good range of problems have been tested to evaluate the performance of the
new proposal. Table 3 summarises the test-bed. Their source is varied since some
of them are available in the very well-known repository from the University of
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Table 2. Parameter values and description of CFS and FCBF feature subset selectors

Method Parameter/Property Value
CFS  Attribute evaluation measure Correlation
Search method Best First
Consecutive expanded nodes without improving 5
Search direction Forward
FCBEF Attribute evaluation measure Correlation
Attribute evaluator Symmetrical Uncertainty
Search method FCBF Search

California (UC) at Irvine [22], MADELON has been proposed in NIPS 2003 chal-
lenge [4] and STAD is a Bioinformatics problem [23] that stands for STomach
ADenocarcinoma. There are five multi-class problems and the remaining are bi-
nary, throwing there an average close to 4. The dimensionality goes from around
10 to 500 with an average over 82 whereas the data size fluctuates from one
hundred to nineteen hundred. Nowadays, the number of attributes that we may
have in problems at hand is very high and it is not strange to have thousands of
features [18].

The data partition in some problems such as Led24 and SPECTF [8] follows
the original pre-arrangement [14] and in most of the cases has been obtained with
a stratified hold-out keeping the original data distribution in both sets, namely
training and testing sets. Regarding the data imputation, a single imputation
method called mean or mode imputation [13] has been applied which imputes a
missing value with the mean or the mode within the class. We have adopted this
strategy since the amount of missing values is very small. The data preparation
method at the feature level has been only conducted to the training set and
hence to get the reduced test only the projection operator is applied.

Table 3. Supervised machine learning problems

Problem Classes Instances Features
Total Tra. Tes. Ori. CFS FCBF
Ess. Imp. Ess.  Imp.

B. tissue 6 106 81 25 9 6 2 4 2
CcTG 3 2126 1594 532 22 7 1 8 3
Led24 10 3200 200 3000 24 6 1 6 1
MADELON 2 2000 1500 500 500 12 4 7 2
Magic 2 19020 14265 4755 10 4 2 2 1
SPECTF 2 267 80 187 44 12 8 6 5
STAD 3 100 75 25 14 4 1 4 1
Waveform 3 5000 3750 1250 40 14 4 5 2
Average 3.9 3977.4 2693.1 1284.3 82.9 81 4.1 5.3 2.1

Tra. =Training Tes. = Testing Ori. = Original Ess. = Essential Imp. = Important




4.3 Classification algorithms

Different classifiers based on rules and trees have been used in this work, namely,
Ridor and PART, from the former category, and C4.5 and NBTree, from the
latter type, to assess how the new approach to feature subset selection performs
in various conditions. We briefly review their characteristics. The proposal has
been tested in two classic classifiers such as C4.5 and PART due to their good
mixture with feature selection based on correlation as a previous contribution
[20] to HAIS 2016 [10] reported. Ridor is an effective classification algorithm.
Finally, NBTree is a very powerful classifier according to a very recent study in
medium and high-dimensionality problems [15].

Ridor [3] is a ripple-down rule learner. It creates a default rule first and then
the exceptions for the default rule with the least (weighted) error rate. Then
it builds the best exceptions for each exception and iterates until pure. Thus it
performs a tree-like expansion of exceptions. The exceptions are a set of rules
that predict classes other than the default. PART [2] is a learning algorithm
that generates a rule classifier using tree generation in the process. To generate
a rule, a pruned decision tree is constructed for the current set of instances, then
a rule is generated representing the leaf with the largest coverage, and the tree
is discarded. The instances covered by the rule are removed and the process is
repeated. The main advantage of PART is simplicity which allows it to scale with
a high performance. C4.5 [12] builds a decision tree choosing for each node the
attribute with the highest entropy. It can handle both discrete and continuous
attributes. The implementation used also includes a pruning phase to reduce the
tree structure and to improve the generalisation performance. The robustness
and good interpretable results of this algorithm made it a popular choice in a
variety of machine learning problems, and therefore we also chose it for this study.
A NBTree classifier [7] generates a tree with Naive Bayes (NB) classifiers at the
leaves. To define each new node a univariate split is tested and the attribute with
the highest utility is selected for that node. There is an exception when the utility
is not significantly better than the utility of the current node, in which case a NB
classifier is created for the current node. This model is as interpretable as trees
and NB models while often showing better performance in large problems. It
uses NB that is proven to be an optimal classifier under some circumstances [26]
and it is usually taken as a reference classifier. This is the main reason for having
chosen NBTree for testing our attribute selection model.

5 Results

This section compares every couple of related feature subset selection methods.
Concretely, on the one hand, FSS1 and FSS2 are compared and, on the other
hand, FSS3 faces FSS4. For the aforementioned classifiers, we report on the
accuracy and Receiver Operating Characteristic curve (ROC) measure on the
test set for each problem of the test-bed under all the scenarios described in 4.1.



5.1 Application of the proposal on Correlation-based Feature
Selection (CFS)

Table 4 shows the test results of the proposal on CFS with Ridor classifier. The
number of wins is higher than the losses. There are also some scenarios with ties.
The proposal helps to enhance one or both assessment measures in most cases.

Table 5 depicts the performance of supervised machine learner PART. The
scenario has completely changed from the previous classifier. Improvements have
been reached in five out of the problems. Besides, the effect of the No-free lunch
theorem is drawn around because only one measure is overcame in the half of the
test-bed [24]; in particular, it happens improvement for B. tissue, CTG, Led24
and STAD in accuracy or ROC metric, exclusively.

Table 6 reports on the test results for classifier C4.5. In most of the data sets,
it takes place improvement not only in accuracy but also in ROC. Moreover, there
are two problems that may hint to be very difficult because it happen a worsening
with both measures. STAD is a complex data set because: i) there are only 25
instances in the test set which means that every error in the prediction scores a
negative 4%, ii) there are 3 classes and iii) is a Bio-informatics problem whose
data have been collected very recently and the number of available measures is
very low which makes the study a very challenging task. The results for STAD
suggest that C4.5 is not a good option for this data set probably due to the cut-
off values to create a decision node. SPECTF is a particular case because the
important features may be discarded safely with no difference in performance;
in addition, if we test with the data set without any kind of pre-processing the
results are a bit better what suggests that feature selection may not be a good
approach to deal with this problem [17].

Table 7 represents the behaviour of NBTree approach. The accuracy is en-
hanced in most cases, more concretely if the single tie is excluded, in five out of
seven problems there is an overcoming. On the other way round, the ROC mea-
sure is often decreased what in any sense suggests to explore new ways or even
to think about the option of only incorporating some of the important features.
The good news here is that in two out of the top-3 problems in terms of features
such as MADELON and Waveform a very noticeable progress has taken place.

5.2 Application of the proposal on Fast Correlation-Based Filter
(FCBF)

Table 8 exhibits the performance via Ridor. Accuracy has been improved six
times whereas ROC has been overcame four times. For those cases with neg-
ative outcomes the differences are very small which makes the approach very
convenient and handy for the majority of the test-bed.

Table 9 shows the results with unseen data for the classification algorithm
PART which is based on rules. There are many wins and only one or two losses
for accuracy and ROC, respectively. In five out of the problems both measures
are enhanced simultaneously which is very noticeable.



Table 4. Test results for the approach on CFS with Ridor

Problem  Accuracy ROC
FSS1 FSS2 Diff. FSS1 FSS2 Diff.

B.Tissue 60.00 56.00 —4.00 0.9000 0.9000 0.0000

cTa 78.20  80.64 244  0.7792 0.8560 0.0769
Led24 67.40  66.50 —0.90 0.8857 0.8275 —0.0582
MADELON 6820  73.00 4.80  0.6820 0.7300 0.0480
magic 79.89  81.30 1.41  0.7782 0.7450 —0.0332
SPECTF  63.64 6524 160 0.6806 0.6893 0.0087
STAD 64.00  64.00 0.00  0.6654 0.6654 0.0000
Waveform 7688  76.72 —0.16 0.7552 0.7728 0.0176
W/T/L 1/1/3 1/2]2

Table 5. Test results for the approach on CFS with PART

Problem  Accuracy ROC
FSS1 FSS2 Diff. FSS1 FSS2 Diff.

B. tissue 56.00 48.00 —8.00 0.9250 0.9300 0.0050

CTG 81.20  81.95 0.75  0.9190 0.8674 —0.0516
Led24 68.50  68.53 0.03  0.9227 0.9094 —0.0132
MADELON 60.80  62.60 1.80 0.7104 0.7295 0.0191
Magic 81.91  83.32 141  0.8712 0.8797 0.0086
SPECTF 7005 7219 214  0.6459 0.7000 0.0541
STAD 5200  36.00 —16.00 0.5331 0.6581 0.1250
Waveform 77.04  76.80 —0.24 0.8432 0.8426 —0.0007
W/T/L 5/0/3 5/0/3

Table 6. Test results for the approach on CFS with C4.5

Problem  Accuracy ROC
FSS1 FSS2 Diff. FSS1 FSS2 Diff.

B. tissue 68.00 56.00 —12.00 0.9250 0.8350 —0.0900

CTG 78.38 83.65 5.26 0.8967 0.9145 0.0177
Led24 68.10 68.80 0.70 0.8905 0.9079 0.0174
MADELON 70.60 73.60 3.00 0.7414 0.7826 0.0412
Magic 82.42 83.79 1.37 0.8653 0.8646 —0.0007
SPECTF  66.84 66.84 0.00 0.5519 0.5519 0.0000
STAD 72.00 52.00 —20.00 0.7574 0.6838 —0.0735

Waveform 74.40 76.16 1.76 0.7884 0.7879 —0.0005

W/T/L 5/1/2 3/1/4




Table 7. Test results for the approach on CFS with NBTree

Problem  Accuracy ROC
FSS1 FSS2 Diff. FSS1 FSS2 Diff.
B. tissue 52.00 64.00 12.00 0.9250 0.9000 —0.0250

CTG 76.50  76.69 0.19  0.8413 0.7505 —0.0908
Led24 70.73  70.73 0.00  0.9685 0.9685 0.0000
MADELON 7120  75.80 4.60  0.7693 0.8106 0.0413
Magic 81.93 8311 1.18  0.8647 0.8747 0.0101
SPECTF 7219 6791 —4.28 0.7649 0.7103 —0.0547
STAD 64.00  56.00 —8.00 0.7096 0.6912 —0.0184
Waveform 7688  81.36 4.48  0.8696 0.8916 0.0220
W/T/L 5/1/2 3/1/4

Table 10 displays the behaviour of classifier C4.5. There are from 4 up to
5 wins according to the concrete metric and there is one tie. The situation for
STAD problem has not been changed compared to the approach based on CFS;
it seems that STAD may not be combined with a split criterion founded on
entropy as C4.5 has.

Table 11 reports the test results for NBTree which is a tree-based approach
built via the Bayes theorem. The outcome is very similar to the previous scenario
although the differences for negative cases are smaller which leads to think that

a probabilistic model is more suitable than traditional C4.5 algorithm, especially
for STAD problem.

Table 8. Test results for the approach on FCBF with Ridor

Problem  Accuracy ROC
FSS3 FSS4 Diff. FSS3 FSS4 Diff.
B.Tissue 60.00 56.00 —4.00 0.9000 0.9000 0.0000

CTG 78.38 79.32 0.94  0.7804 0.7895 0.0091
Led24 67.37 68.37 1.00 0.8857 0.8569 —0.0289
MADELON 55.20 57.40 2.20 0.5520 0.5740 0.0220
Magic 77.60 81.47 3.87  0.6970 0.7558 0.0589
SPECTF  59.89 68.45 8.56 0.6907 0.6764 —0.0143
STAD 64.00 64.00 0.00 0.6654 0.6654 0.0000
Waveform 74.16 75.44 1.28 0.7489 0.7515 0.0026
W/T/L 6/1/1 1/2/2

Once the results under two different scenarios have been depicted for the
proposal, we must remark that CFS and FCBF are very good candidates to be
used in future works although the performance of FCBF is stronger than CFS
what may make the new approach an interesting option for data sets with a huge
number of features.
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Table 9. Test results for the approach on FCBF with PART

Problem  Accuracy ROC

FSS3 FSS4 Diff. FSS3 FSS4 Diff.
B.Tissue 48.00 48.00 0.00 0.9150 0.9300 0.0150
CTG 77.26 79.51  2.26 0.8909 0.9388 0.0479
Led24 68.50 68.90 0.40 0.9227 0.9373 0.0146
MADELON 60.40 60.40 0.00 0.6307 0.6227 —0.0080
Magic 79.26 82.54 3.28 0.8385 0.8648 0.0264
SPECTF  64.71 72.73  8.02 0.6983 0.6151 —0.0831
STAD 52.00 36.00 —16.00 0.5331 0.6581 0.1250
Waveform 74.00 7424 0.24 0.8494 0.8561 0.0067
W/T/L 5/2/1 6/0/2

Table 10. Test results for the approach on FCBF with C4.5

Problem  Accuracy ROC

FSS3 FSS4 Diff. FSS3 FSS4 Diff.
B.Tissue 48.00 56.00 8.00  0.8000 0.8350 0.0350
CTG 77.82 79.89 2.07 0.8546 0.9215 0.0668
Led24 68.10 68.10 0.00  0.8905 0.8905 0.0000
MADELON 58.60 59.20 0.60  0.6041 0.6097 0.0056
Magic 79.71 82.42 2.71 0.8174 0.8594 0.0420
SPECTF 6791 66.84 —1.07 0.7116 0.6717 —0.0399
STAD 72.00 52.00 —20.00 0.7574 0.6838 —0.0735
Waveform 74.72 75.68 0.96 0.8636 0.8482 —0.0154
W/T/L 5/1/2 17173

Table 11. Test results for the approach on FCBF with NBTree

Problem  Accuracy ROC

FSS3 FSS4 Diff. FSS3 FSS4 Diff.
B.Tissue 48.00 52.00 4.00  0.9000 0.9350 0.0350
CTG 78.76 80.64 1.88 0.8384 0.8631 0.0247
Led24 70.73 70.73 0.00  0.9685 0.9685 0.0000
MADELON 61.20 61.00 —0.20 0.6393 0.6400 0.0007
Magic 80.13 82.73 2.61 0.8487 0.8731 0.0243
SPECTF 71.12 70.59 —0.53 0.7579 0.7083 —0.0496
STAD 64.00 56.00 —8.00 0.7096 0.6912 —0.0184
Waveform 75.60 79.20 3.60 0.8760 0.8912 0.0152
W/T/L 17173 5/1/2
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6 Conclusions

This paper introduced a new approach to feature subset selection that is able
to distinguish between essential and important attributes. Moreover, the com-
bination of both types of features on CFS and FCBF feature subset selectors
yielded to an enhanced performance of classifiers such as PART, Ridor -in an
outstanding way-, C4.5 and NBTree compared to the selection of only essential
attributes. The main idea achieved by this research is that there are some at-
tributes which are crucial to have a good generalisation capacity; at the same
time those attributes that seems not to be very promising are handy to be lead
through a feature subset selection procedure in order to keep the best of the
not so good potential attributes that may be called important features, which
is the second best kind of attribute according our new approach. The empirical
study was conducted on eight binary and multi-class problems from different
areas and sources. The results revealed that some progress took place in terms
of performance at the price of increasing a bit the characteristic space. Lastly,
it must be mentioned that FCBF takes a greater advantage than CFS with the
proposal. Nonetheless, the approach is also very convenient for CFS.
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