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ABSTRACT
Generalisation is one of the most important performance
measures for any learning algorithm, no exception to Ge-
netic Programming (GP). A number of works have been
devoted to improve the generalisation ability of GP for sym-
bolic regression. Methods based on a reliable estimation of
generalisation error of models during evolutionary process
are a sensible choice to enhance the generalisation of GP.
Structural risk minimisation (SRM), which is based on the
VC dimension in the learning theory, provides a powerful
framework for estimating the difference between the gen-
eralisation error and the empirical error. Despite its solid
theoretical foundation and reliability, SRM has seldom been
applied to GP. The most important reason is the difficulty
in measuring the VC dimension of GP models/programs.
This paper introduces SRM, which is based on an empirical
method to measure the VC dimension of models, into GP
to improve its generalisation performance for symbolic re-
gression. The results of a set of experiments confirm that
GP with SRM has a dramatical generalisation gain while
evolving more compact/less complex models than standard
GP. Further analysis also shows that in most cases, GP with
SRM has better generalisation performance than GP with
bias-variance decomposition, which is one of the state-of-
the-art methods to control overfitting.
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1. INTRODUCTION
In machine learning, the task of a learning algorithm is to

find a learnt machine that can minimise the expected predic-
tion/test error. Generalisation error is the expected predic-
tion error of a model over an unseen test set for a given train-
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ing set [11], where on both the training set and the test set,
the inputs X and the outputs Y are drawn randomly from
their joint distribution P (X,Y ) = P (Y |X)P (X). The ex-
pected test error needs to be taken with respect to P (X,Y ).
The problem is that, for real-world tasks, P (X,Y ) is gener-
ally unknown, thus a widely accepted way to minimise the
generalisation error is through the empirical risk minimisa-
tion principle [11]. The principle consists of computing the
errors of a set of candidate models over the training set and
selecting the one which has a minimum training error among
all the candidate models. However, the empirical risk is not
alway a good indicator of the expected risk/generalisation
error, such as when the number of training samples is small.
Genetic Programming (GP) [17] addresses the regression

problems by means of evolving toward an optimal model
structure along with the best fitted coefficients of the model.
The evolutionary process, which is guided by purchasing
models having lowest empirical error on the training set, can
prone to severe overfitting when the number of instances is
small or when the over-complex models are selected.
Structural risk minimisation (SRM) [27] is an approach

from the learning theory. It provides a powerful framework
to assess the generalisation ability of a learning machine by
predicting the distance between the training error and the
test error. SRM gives a definition of the upper bound of
the generalisation error based on the empirical risk and the
confidence interval, which measures the difference between
the empirical risk and the real expected risk. The confidence
interval of a set of models relies on two quantities — the size
of the training set and the Vapnik-Chervonenkis dimension
(VC-dimension) [26], which characterises the complexity of
the model. Given a fix size of training set, the generali-
sation bound is characterised purely by the VC-dimension,
thus this generalisation bound is also called VC generalisa-
tion bound or VC bound. The influence of the complexity
of a model on its generalisation ability has been investigated
and confirmed by a number of contributions [8, 25, 29]. A
common agreement among these contributions is that, for a
given number of training samples, models with higher com-
plexity generally have bigger difference between the training
error and the test error. Under SRM, the learning process
aims to select the optimal model that minimises the upper
bound on the generalisation error. The optimal model is
expected to achieve a good tradeoff between the empirical
risk and the model complexity.
Despite its accuracy in predicting the expected error and



the solid theoretical foundation, SRM is seldom considered
in GP for symbolic regression. One key problem is that
it is difficult to estimate the VC-dimension of the models,
since the theoretical estimation of the VC-dimension can be
obtained only for a set of linear models. In [25], Vapnik
et al. proposed an empirical approach to measure the VC-
dimension of a learning machine for classification, which can
be easily extended for regression.
Goals: This work aims to develop a new GP method to

enhance the generalisation of GP for symbolic regression.
This will be accomplished by introducing the SRM, which
uses an empirical measurement of the VC-dimension of the
candidate models, into GP. For the measurement of the VC-
dimension of the candidate models in GP, we extend the
approach in [25]. Specifically, this work has the research
objectives as follows:

• how SRM influences the learning ability of GP in terms
of the training performance,
• whether GP with SRM can have a dramatic generali-
sation gain for GP, and
• how GP with SRM influences the complexity of the
model evolved by GP.

2. BACKGROUND
This section gives a brief introduction on the background

of GP for symbolic regression and reviews some state-of-the-
art development in the area of improving the generalisation
on GP for symbolic regression. A brief introduction of the
key concept used in this work — VC-dimension and struc-
tural risk minimisation from learning theory will also be
given.

2.1 GP for Symbolic Regression
Symbolic regression is a kind of regression analysis. The

task of it is to discover the relationship between the input
variables and the output variables for a given dataset and
express this relationship in a mathematical model.
When tackling symbolic regression problems, GP gener-

ally starts from a population of randomly generated models.
This population is progressively evolved over generations in
an iterative mechanism through evaluation, selection and
mating until a predefined termination criterion has been
met. GP’s ability to address the problems automatically
without any prior assumption of the form and the size of
the solutions makes it a good approach to symbolic regres-
sion. It has been used to solving many symbolic regression
problems [4, 16, 22].

2.2 Generalisation in GP for Symbolic Regres-
sion

Generalisation is one of the most important performance
criteria for learning algorithms. In many areas in machine
learning, generalisation has been treated as the most impor-
tant issue for a long time [3, 10].
Despite the importance of generalisation in many other

fields, it did not receive enough attention it deserves in GP
for symbolic regression in the past for quite a long time.
During those years, symbolic regression was treated as an
optimisation problem, not much attention was payed to the
regression performance of the models on unseen data. Until
recent years (late 2000s), a plethora of approaches to im-

prove the generalisation of GP for symbolic regression have
been investigated in a number of works [5, 12, 13, 20, 23].
Many approaches control the complexity of models, thus

to reduce overfitting and improve the generalisation perfor-
mance of GP. In [13], a variance-based layered learning GP
had been proposed. In the layered learning GP, models are
trained from lower layers, which contain less complex train-
ing data, to higher layers that consist of more complex train-
ing data. These different training sets are all drawn from the
original dataset using the variance of the target output as a
complexity measure. During the evolutionary process, the
model complexity of the population are controlled by means
of discarding offspring which have greater complexity value
than a fixed threshold in each layer. The variance of the
output of the model on a set of validation is used as a mea-
sure of model complexity. Mousavi et al. [20] implemented
a multiobjective GP to enhance the generalisation ability of
GP. In their multiobjective GP, the first order derivative of
the GP models is treated as a measure of model complex-
ity. The RMSE of the first order derivative of the models is
considered as anther objective in addition to the accuracy
of the models. The results showed that their method can
have better generalisation performance than standard GP
on four symbolic regression problems. [29] introduced a new
complexity measure named order of nonlinearity for GP to
generate more smoother model, thus can have good general-
isation gain. Order of nonlinearity is based on the degree of
the Chebyshev polynominals approximation [18] of a certain
accuracy. A Pareto GP is implemented by taking the control
of the order of nonlinearity of models as a second objective.
They claimed that their Pareto GP has extra generalisation
capability. In [21, 24], an equalization operator was intro-
duced to control the distribution of model length, thus as
a method for controlling bloat and reduce overfitting. It is
shown to be effective to promote the generalisation of GP.

2.3 Vapnik-Chervonenkis (VC) Dimension and
Structural Risk Minimisation

The learning theory presents a general measure for the ca-
pacity/complexity of a learning machine, which is Vapnik-
Chervonenkis dimension (VC-dimension) [26]. The original
definition of the VC-dimension is for a set of indicator func-
tions {I(X,α)}, where X are the input vectors and α is a
parameter vector. The VC-dimension h of a set of indica-
tor functions {I(X,α)} is defined as the maximum number
of vectors X1, X2, · · · , Xh that can be seperated into two
classes in all 2h possible ways by the set of functions [28].
This definition is then extended to a set of real-value func-
tions {R(X,α)}. It is defined to be the VC-dimension of the
indicator function {I(R(X,α)−β > 0)} [27], where β is the
value of the range of R.
Using the VC-dimension, various estimations on the ex-

pected risk are constructed. Structural risk minimisation
(SRM) is one of these approaches. In [9, 27], a practical
form of the VC generalisation bound for regression prob-
lems is given. It is a derivative from the general analytical
VC bound with appropriately selected values of theoretical
parameters. For a regression model, the practical form of
VC generalisation bound is defined as:

Rexp(h)≤Remp(h)
(

1−
√

p−p ln p+ ln n
2n

)−1

+
(1)

where the bound of the expected risk/error Rexp(h) is char-



acterised by two values: Remp(h) which is the empirical risk
with respect to the training error of the model, and the
term

(
1−
√

p−p ln p+ ln n
2n

)−1

+
, which is interpreted as a confi-

dence interval measuring the difference between the empiri-
cal risk and the real expected risk (“+" denotes the positive
part of the term). In this term, p = h/n, h is the VC-
dimension of the model, and n is the size of the training
set. With a fix number of training samples, the confidence
interval is characterised purely by the VC-dimension of the
model. The higher h indicates the smaller value of the term(

1−
√

p−p ln p+ ln n
2n

)−1

+
. Thus, given the same/similar values

of Rexp(h), the higher h means the larger generalisation
bound. For detail derivation of Equation (1), readers are
referred to [9, 27].
Under this definition, SRM aims to choose the model with

optimal VC-dimension thus minimising the upper generali-
sation bound. This is accomplished by fitting the candidate
models to a nested sequence that has increasing estimated
expected risk Rexp1<Rexp2<··· and choosing the model hav-
ing the smallest value of the generalisation bound. The only
problem of the SRM is the difficulty in estimating the VC-
dimension of the models.

2.4 SRM in GP
Despite the solid theoretical foundation and reliability of

SRM and VC-dimension, their application to GP has sel-
dom been seen. The only works that can be found is in
[7, 19], which introduced SRM as a new fitness function to
GP. In comparison with GP using two classical statistical
model selection methods Akaike Information Criterion [2]
and Bayesian Information Criterion [6] as fitness functions,
they demonstrated the advantage of SRM in promoting the
generalisation ability of GP. A new simplified estimation of
VC-dimension of the GP models are used in both works,
which is counting the number of non-scalar nodes in a GP
tree. The non-scalar nodes are nodes that not operated with
{+,−}. They argued that the number of non-scalar nodes
has exact relationship with the VC-dimension of the model.
However, it is still an approximation of the VC-dimension of
the models but not a direct measure that seems to be more
reliable. This is a major difference between these two works
and the work to be presented in this paper.

3. THE PROPOSED METHOD
This work aims to introduce the SRM into GP for sym-

bolic regression. The proposed method is named genetic
programming with structural risk minimisation (GPSRM).
The major difference between GPSRM and standard GP is
the evaluation method, i.e. fitness function.

3.1 Introducing SRM into GP
In GPSRM, the evaluation method is changed from the

empirical risk, which is generally used in standard GP, to the
SRM framework. The underlying assumption of GPSRM is
straightforward. The VC generalisation bound defined by
SRM provides an estimation of the test errors of the candi-
date models during the evolutionary process. SRM, as a new
kind of evaluation criterion, is expected to guide the evolu-
tionary process toward models which can achieve a good
balance between the empirical risk and model complexity
in terms of the VC-dimension. These models are expected

to have smaller difference between the test error and the
training error, thus can have better generalisation gain.
The empirical risk of standard GP for symbolic regression

can take the form of various error between the target outputs
and the outputs given by the candidate models, such as, sum
of absolute error (SAE), mean absolute error (MAE), mean
square error (MSE), root mean square error (RMSE). In
this work, the RMSE is used to measure the empirical risk
of models. The definition of VC generalisation bound of
SRM is describe in Equation (1). According to the bound
and the assumption that the bound is tight, the new fitness
function in GPSRM is designed as Equation (2):

Rexp= RMSE(
1−
√

p−p ln p+ ln n
2n

)
+

(2)

where RMSE is the empirical error over the training set,
p = h/n, h is the VC-dimension of the model and n is the
number of training samples. A key underlying component
in the new fitness function of GPSRM is the method to
estimate the VC-dimension of the models.

3.2 Measuring the VC-dimension of Models
The exact theoretical value of the VC-dimension can be

obtained only for a set of linear models (there exists many
theoretical definitions of the bound of VC-dimension, which
are often very loose). However, during the evolutionary pro-
cess of GP, a bunch of models consisting of linear and non-
linear ones are generated. Thus, it is difficult to have a
theoretical estimation of the VC-dimension of GP models.
An empirical method to measure the VC-dimension of

models was proposed in [25]. The key component of the
method is to observe the empirical maximum derivation ε(n)
of a model on two independent datasets with n instances,
which is defined as:

ε(n)= 1
n

(∑n

j=1

∣∣YD1j
−f(XD1j

,α)
∣∣−∑n

i=1|YD2i
−f(XD2i

,α)|
)

(3)

where 1
n

∑n

j=1
|Y−f(X,α)| denotes the frequency of error of the

model on one dataset, D1 and D2 are two datasets having
n instances.
According to the theoretical derivation of Vapnik et al.

[25], ε(n) has an upper bound Φ(n
h

). The formula descrip-
tion of Φ(n

h
) is given as:

Φ( n
h

)=


1 if ( n

h
<0.5)

a
ln(2 n

h
)+1

n
h
−k

(√
1+

b( n
h
−k)

ln(2 n
h

)+1 +1

)
otherwise.

(4)

Φ(n
h

) is characterised by the number of training samples n
and the VC-dimension of the model h. According to [25],
the bound is tight. Thus, ε(n) ≈ Φ(n

h
) holds. As the VC-

dimension h is the only unknown variable in the approximate
equation, it can be measured by best fitting the empirical
measure ε and theoretical value Φ on a group of two datasets
having various n. The flowchart for describing the method
is shown in Figure 1. The detail derivation of the definition
of Φ and its parameters will not be presented in this work
due to page limit. In short, the values of parameters a, b
in Φ have been determined by fitting Φ to the empirically
obtained maximum deviation of a linear model with known
VC-dimension. The values are : a = 0.16 and b = 1.2.
The value of k is determined from the continuity of Φ at
the point n/h = 0.5, i.e. Φ(0.5) = 1, thus the parameter
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Figure 1: Flowchart of method to measure VC-
dimension.

k = 0.14928. We have confirmed the validity of Φ with
a number of linear models having known VC-dimensions.
Here, a brief description of the procedure for measuring the
VC-dimension of a model is given as follows (the model is
denoted as f(X,α), where X are the input vectors and α is
the parameter vector):

1. Generate two random datasets D1, D2 each having n
instances. The input vectors, which have the same
number of components as input variables in the model
f(X,α), are drawn randomly within a uniform distri-
bution over the interval [−1, 1]. The labels are gener-
ated according to the conditional probability distribu-
tions as P (Y |X)=0.5, Y=0 and P (Y |X)=0.5, Y=1.

2. To get the maximum deviation of the two datasets,
merge the two datasets into a new dataset D3 by re-
versing the labels of the first dataset D1. The dataset
D3 will have 2n instances.

3. Training the model f(X,α) on dataset D3 to get a
minimum mean square error.

4. Calculate the ε(n) between the two datasets D1 and
D2 according to Equation (3).

5. Repeat Steps 1-4 m times (m is set to 20, the same
as that in [25]) independently, average the m differ-
ent ε(nm) to get an approximation of ε(n) which is
the maximum derivation of the model f(X,α) on two
random dataset of the size n.

This procedure is shown in the internal loop in Figure 1.
In Step 3, mini-batch gradient descent is used to train the
model to minimise the mean square error on D3. The re-
lationship between minimising the error on D3 and getting
the maximum derivation ε on D1 and D2 has been proved
in Appendix 3 in [25]. The deviation is largely independent
of the distribution P (Y |X), thus it can be any other values.
This is also proved in [25].
Then the whole procedure will repeat for q times on var-

ious training samples n within the range 0.5 ≤ n
h′ ≤ 32 (it

is the setting from [25], where 0.5 is the start point of the
definition of Φ and 32 is set to make sure that the range of
n
h′ is big enough for various n), where h′ is an initial guess of
the VC-dimension of the model, generally it is the number
of free parameters in the model. This process is shown in
the outside loop in Figure 1.
After getting all the empirical values of maximum devia-

tion on various training samples, ε(n1), . . . , ε(nq), the VC-
dimension of the model can then be approximated by choos-
ing the optimal value to parameter h, thus the best fit be-
tween the set of ε(nj) and the function Φ( n

h
) can be obtained:

h=arg min
∑q

j=1[ε(nj)−Φ(nj/h)]2.

4. EXPERIMENTAL SETUP
To demonstrates GP with SRM as a mechanism for en-

hancing the generalisation ability of GP, a set of experiments
are performed. Standard GP is used as a baseline for com-
parison. We also compare the performance of GPSRM with
GP with bias-variance decomposition (BVGP) [1, 15], which
is one of the state-of-the-art approaches to control overfit-
ting in GP. BVGP is based on introducing a statistical con-
cept of bias/variance error decomposition to GP. Under this
concept, the generalisation error is estimated by adding the
square of bias error to the variance error. BVGP intends to
obtain a model that can achieve a tradeoff between a good fit
to the training data and less complexity. Since BVGP also
aims to estimate the generalisation error during the evolu-
tionary process, which is the same as GPSRM, this work
will also compare the generalisation performance difference
between BVGP and GPSRM.

4.1 Test Problems
There is no established suit of benchmarks, which is spe-

cially designed for testing the overfitting problem in GP. In
this work, we will tackle a set of synthetic symbolic regres-
sion problems, which are the same as those in [1]. The eight
target problems are defined as follows:

f1(x)=e−xx3cosxsinx(cosxsin2x−1) (5)

f2(x1,x2,x3)=30 (x1−1)(x3−1)
x2

2(x1−10)
(6)

f3(x1,x2)=6sinx1cosx2 (7)

f4(x1,x2)= (x1−3)4+(x2−3)3−(x2−3)
(x2−2)4+10

(8)

f5(x1,x2)=x1x2+sin((x1−1)(x2−1)) (9)

f6(x1,x2)=x4
1−x

3
1+x2

2/2−x2 (10)

f7(x1,x2)= 8
2+x2

1+x2
2

(11)

f8(x1,x2)=x3
1/5+x3

2/2−x2−x1 (12)



Table 1: Sampling strategy for the training and the
test data.
The notation rnd[a,b] denotes the variable is randomly sampled
from the interval [a,b], while the notation mesh([start:step:stop])

defines the set is sampled using regular intervals.
Benchmark Training Test

f1
50 points
x=rnd[0.05,10]

221 points
x=mesh([-0.5:0.05:10.5])

f2

50 points
x1, x3=rnd[0.05,2]
x2=rnd[1,2]

2701 points
x1, x3=
mesh([-0.05:0.15:2.1])
x2=mesh([0.95:0.1:2.05])

f3
50 points
x1, x2=rnd[0.1,5.9]

961 points
x1, x2=
mesh([0.05:0.02:6.05])

f4
50 points
x1, x2=rnd[0.05,6.05]

1157 points
x1, x2=
mesh([-0.25:0.2:6.35])

f5, f6,
f7, f8

20 points
x1, x2=rnd[-3,3]

361,201 points
x1, x2=mesh([-3:0.01:3])

Table 2: Parameters for GP, BVGP and GPSRM
parameter Values
Population Size 500
Generations 50
Crossover Rate 0.9
Mutation Rate 0.1
Elitism Rate 0.01
Maximum Tree Depth 10
Initialisation Ramped-Half&Half
Minimum Initialisation Depth 2
Maximum Initialisation Depth 6
Basic Function Set +, −, ∗, %protected,

Square, Sqrt, Negative
f1 ex, e−x, sinx, cosx
f3 ex, e−x

Percentage of Top Individuals — γ 20%

The detail of the sampling strategy of the training data
and the test data can be found in Table 1. The first four
benchmarks are selected from [29], as they seem to be dif-
ficult problems to GP. The rest four problems are chosen
from [14]. The number of training points are deliberately
designed to be a small value for all these eight problems,
which is to simulate the real-world situation where the meth-
ods are more likely to prone to overfitting. The number of
training points is 50 points for the first four problems and
20 points for the other four problems. These values are set
to be smaller or the same as in [14, 29].

4.2 Parameter Settings
The parameter settings for standard GP (SGP), BVGP

and GPSRM can be found in Table 2. Following the setting
in [14, 29], for different benchmarks, the function set is dif-
ferent. For the same benchmark, all the three methods have
the same setting.
For GPSRM, it does not necessary to measure the VC-

dimension of the whole population, since the empirical risk
(i.e. RMSE) difference between the top individuals and their
worse counterparts are generally very big, the difference be-
tween the confidence interval, which ranges within the inter-
val [0, 1], is too small to work well. At the same time, during
the whole evolutionary process, these worse individuals have
very low probability to select to breed the new generation.
Since the method to measure the VC-dimension of the mod-
els is very time consuming and due to the reasons mentioned
before, to make GPSRM more efficient, we set a parameter
γ to GPSRM. It denotes that GPSRM only measures the
top γ percentage of individuals in the candidate population
according to their empirical risk values. For the rest 1 − γ
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Figure 2: Distribution of RMSE of the 100 best-of-
the-run individuals.

percentage of individuals, a random big value is given to
the VC-dimension of these individuals, i.e. 100 in this work,
since it is big enough to make the evolutionary process fo-
cusing on the comparison of estimated generalisation error
between the top γ percentage of individuals.
The experiments of each method have been conducted for

100 independent runs for each problem. Therefore, 2400 (i.e.
3*8*100) experiments have been run for the three methods
on eight datasets and 4800 (i.e. 2400*2) training and test
results are used here to discuss the learning ability and gen-
eralisation performance of the three methods.

5. RESULTS AND DISCUSSION
The experimental results of GPSRM, SGP and BVGP are

presented and discussed in this section. The major compar-
ison is presented between SGP and GPSRM. The results
will be presented in terms of comparisons of RMSEs on the
training sets (the fitness value of models in GPSRM is cal-
culated using VC-bound, however for the comparison with
SGP, the RMSE of models are also recored) and the test
sets, the size of the 100 best-of-the-run models. We also
compare the effect of GPSRM on promoting the generalisa-
tion performance of GP with the effect of BVGP. Wilcoxon
test is used to evaluate the statistical significance of the dif-
ference on the RMSEs on both the training sets and the test
sets. The significant level is set to be 0.05.

5.1 Overall Results
The results of the eight benchmarks are shown in Figure

2 (scales are different for the training and test RMSEs to
save space), which display the distribution of RMSE of the
100 best-of-the-run individuals on the training sets and the



Table 3: Program size of 100 best-of-run models
Problem SGP GPSRM

mean min mean min
f1 29.45 13 27.88 10
f2 44.05 14 16.28 4
f3 35.07 3 23.45 3
f4 39.39 11 16.35 3
f5 27.99 3 7.33 3
f6 38.03 16 27.7 9
f7 24.95 11 16.68 7
f8 32.51 12 18.25 7

test sets. As it shows, for six of the eight benchmarks SGP
has better training performance than GPSRM (except for f1
and f6). The RMSE difference between SGP and GPSRM
are statistical significant on these six benchmarks. On the
other two benchmarks — f1 and f6, GPSRM outperforms
SGP on the training data, which are also both statistically
significant. In fact, the results on the training sets is not out
of the expectation. On the training sets, SGP is expected to
achieve better performance than GPSRM, since in GPSRM,
the evolutionary process is guided by an additional objective
implicitly, which is the lower VC-dimension of the models.
This objective which measures the complexity of the models
can sometimes conflict with the reduction of the training
error, especially when the models overfit the training data.
Comparing to the training performance, GPSRM is rather

expected to achieve better generalisation performance on the
test sets. Figure 2 shows that GPSRM has a much smaller
RMSE than standard GP on all the test sets of the bench-
marks. The statistical significant results show that GPSRM
has significant smaller RMSE than SGP on all the test sets.
At the same time, the standard deviation of RMSE over the
100 runs in GPSRM is also much smaller than standard GP
on the test sets, which means the generalisation of GPSRM
outperforms standard GP on the test benchmarks in a very
stable way. A further evidence of the better generalisation
ability of GPSRM is provided by the difference between the
training errors and the test errors. While GPSRM has a
very similar RMSE value on the training data and the test
data, the error values on the test set are much larger than
on the training set for standard GP.
The program size of the 100 best-of-the-run models in

terms of number of nodes are also examined. We assume
that, although program/model size is not the same as model
complexity, the comparison of the size of two groups of
model can reflect the trend of model complexity to some ex-
tent. The mean and the minimum size of the evolved models
can be found on Table 3. It can be observed that GPSRM
produces much more compact individuals than standard GP
on most of the problems, except for the problem f1, where
GPSRM has slightly smaller mean model size. GPSRM is
expected to guide the evolutionary process toward models
having a good tradeoff between the empirical error and the
model complexity. When overfitting occurs in GP, SRM
should have the ability to discard higher complexity models,
while it should not preconverge to some over simple mod-
els when no overfitting occurs. This might be a reason why
GPSRM has a comparative less reduction of the model size
on problem f1 than standard GP.

5.2 Evolution of the Test Errors
In Figure 3, the evolutionary plots on the test sets are re-

ported per generation on both methods, which is based on
the mean RMSE of the 100 best-of-the-generation models
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Figure 3: The evolution plots of the mean RMSE of
100 runs of the best individual on every generation
on the Test Sets.

on the test data. The evolution plots confirm that GPSRM
has a dramatic generalisation gain than SGP over all the
test data of the considered benchmarks. It can be observed
from the increasing test errors of GP over generations that,
on most of the problems (except for f1), standard GP, which
guides the evolutionary process only by the empirical risk on
the training data, overfits the training sets, while GPSRM
generalise well on all these benchmarks. On six of the prob-
lems (except for the problem of f1 and f6), standard GP
overfits very quickly on the first several generations, while
GPSRM guiding the evolutionary process by the estimated
generalisation error can eliminate overfitting effectively on
three problem (i.e. f2, f5, f8) and at least overfit less on
the other three problems (i.e. f3, f4, f7). The trend of less
overfitting or eliminate overfitting to the training data of
GPSRM confirms the expectation of the SRM’s estimation
ability of generalisation error.
On f6 where standard GP does not overfit very dramati-

cally and f1 where standard GP does not overfit the training
data at all, GPSRM can still performs better than standard
GP on the test sets. This might due to GPSRM’s less greedy
to the lower training error and a better exploration of the
search space which is guided by the implicit objective of the
complexity of the models.
The trend on the test errors also confirms the reason of

the different trends on the change of the model size. As
mentioned before, the reduction of model complexity (model
size) should be related to the trend of overfitting. For f1,
where no overfitting occurs, the reduction of model complex-
ity of GPSRM is smaller than on other overfitted problems.
The results also indicate that GPSRM is better than using

a validation set to control overfitting. Regarding the “test
set" for SGP as the “validation set", then a “stopping point"
for training should be picked at the lowest error on the vali-



Table 4: Example of best-of-the-run models for
Problem f6

Method Evolved Model Simplified Model

1) GPSRM

(+(+(sqrt(0−(∗(0−x2)
(0− (0−x2)))))(0−x2))
(∗(+(∗x1x1)(∗(0− x1)
(∗(0− x1)
(0− x1))))(0− x1)))

x4
1 − x

3
1

SGP

(+(∗(∗x18.75)x1)
(∗(∗(sqrtx1)(sqrtx1))
(0− (+(∗(∗(%0.905x1)
(+x1x1))(+(∗x11.538)
(sqrt17.205)))(%
(∗1.538(sqrtx1))x1)))))

11.54x2
1 + 7.51x1

+1.54/√x1

2) GPSRM
(+(+(∗(∗x1x1)
(+(∗x1x1)(0− x1)))
(0− x2))(sqrtx2))

x4
1 − x

3
1 +√x1 − x2

SGP

(∗(∗x1x1)(+(%(∗
(∗(+1.204(0− x2))
(sqrt(%x18.20)))
(sqrt(%(%x18.20)
(0− x2))))(∗x1x1))
(+(0− x1)(∗x1x1))))

x4
1−x

3
1−

(1.21−x2)x1
8.2√x2

Table 5: Generalisation performance (RMSE on the
test sets) of standard GP, BVGP, and GPSRM

SGP BVGP SGP BVGP GPSRM Signi-
ficant

(median)[1] (median±std) Test
f1 0.32 0.28 0.18±0.07 0.28±0.67 0.13±0.05 −
f2 0.22 0.25 0.81±2.76 0.58±0.42 0.72±0.14 =
f3 3.66 3.03 3.38±113.1 9.18±62.9 3.17±18.1 −
f4 2.65 1.98 6.83±66.29 392.9±472.1 5.776±20.6 −
f5 56.9 0.68 0.87±2.27 1.04±0.89 0.74±0.01 −
f6 13.5710.52 6.15±3.95 7.01±4.37 2.34±1.74 −
f7 35.3627.27 1.25±0.95 1.91±0.39 1.17±0.22 −
f8 16.365.25 2.21±41.71 4.87±14.28 1.22±0.41 −

dation set for SGP. In fact, in the usual case, the true error
on an independent test set should be slightly larger (at least
not smaller) than on the validation set. As can be seen from
the figure, except for problems f5 and f7, the test errors of
GPSRM continues to decrease after the “stopping points",
which suggests that GPSRM has the potential to achieve
better performance than using a validation set to control
overfitting. At the same time, compared with using a val-
idation set, GPSRM is more suitable when the number of
available data is small, since it does not require additional
samples for validating the candidate models.

5.3 Analysis of the Evolved Programs
To study the behavioural difference between models evolved

by both methods, as an example, two groups of best-of-the-
run models on the f6 problem are given in Table 4 for each
method. The target model is shown in Equation (10). Each
group of evolved models are the results of the same run of
the two methods. To make the study of the behaviour of
the models easier, the mathematical simplified form of the
models are also provided. From the form of original mod-
els, it can be observed that the model produced by GPSRM
is less complex than standard GP. The simplified models,
which shows the behaviours of the models, indicates that
the behaviour of the models evolved by GPSRM are more
similar to the target model, although none of the evolved
models has exactly the same form as the target model.

5.4 Comparison with BVGP
The results of the comparison of the generalisation abil-

ity between GPSRM and BVGP can be found in Table 5.
The first two columns of results are taken directly from [1].

These are the best median generalisation error of BVGP un-
der different tuning parameters in [1]. Since the parameter
settings in [1] is not very common (like extremely large max-
imum tree depth and the higher mutation rate but lower
crossover rate), the training samples in this work are dif-
ferent from [1], and [1] also used the validation sets that
contain the same number of samples as the training sets to
select the best-of-the-run models among a group of best-of-
the generation models, this work tries to re-implement the
bias-variance decomposition method without using a valida-
tion set. The purely comparsion between the generalisation
performance of the two methods under the same and more
common parameter settings are presented in this work.
The results of this work are shown in the 3rd to 5th

columns in Table 5. The last column shows the statisti-
cal significant test result (Wilcoxon test is used, with a sig-
nificant level of 0.05). While “- (+)" means BVGP has worse
(better) generalisation performance than GPSRM, “=" means
no significant difference. It can be observed that on seven
of the eight problems, under the setting of this work, GP-
SRM performs better generalisation than BVGP. Even using
the best results from [1], GPSRM still outperform BVGP
on four benchmarks and has similar performance on three
benchmarks of the eight benchmarks. This can confirm the
advance generalisation of GPSRM over BVGP to some ex-
tent. Another advantage of GPSRM is that, it does not
require any tuning parameter (for the only parameter γ is
optional and also has a fix value), while BVGP needs to tune
at least two parameters to achieve a good balance between
bias error and variance error.

6. CONCLUSIONS
This work developed a new GP method — genetic pro-

gramming with structural risk minimisation (GPSRM) by
introducing SRM into GP to estimate the difference between
the generalisation error and the empirical error. The goal of
GPSRM is to improve the generalisation ability of GP for
symbolic regression. A set of experiments have been con-
ducted to investigate the influence of SRM on the learning
and generalisation ability of GP on eight synthetic symbolic
regression problems.
The results show that GPSRM has huge generalisation

gain than standard GP and BVGP on the considered prob-
lems. This dramatical generalisation improvement depends
on the accurate estimation of generalisation error during the
evolutionary process of GP and not only purchasing lower
empirical/training errors, which might lead to a better ex-
ploration of GP. Furthermore, the size of the models evolved
by GPSRM are generally much smaller than standard GP.
However, the expensive computational cost of GPSRM

and uniform setting of the parameters in measuring the VC-
dimension are problems that need to be addressed in the fol-
lowing work. At the same time, the effectiveness of GPSRM
on improving generalisation has not been compared with
some other multi-objective GP methods, like GP with or-
der of nonlinearity in [29] and GP with first order derivate
of the model in [20]. This will also be part of our future
work. We also plan to introduce some other model selec-
tion approaches like Akaike Information Criterion [2] and
Bayesian Information Criterion [6] from statistical learning
theory into GP and compare them with GPSRM on improv-
ing the generalisation performance.
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