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ABSTRACT

Feature selection (FS) is an important data preprocessing
technique, which has two goals of minimising the classifica-
tion error and minimising the number of features selected.
Based on particle swarm optimisation (PSO), this paper pro-
poses two multi-objective algorithms for selecting the Pareto
front of non-dominated solutions (feature subsets) for clas-
sification. The first algorithm introduces the idea of non-
dominated sorting based multi-objective genetic algorithm
II into PSO for FS. In the second algorithm, multi-objective
PSO uses the ideas of crowding, mutation and dominance
to search for the Pareto front solutions. The two algorithms
are compared with two single objective FS methods and a
conventional FS method on nine datasets. Experimental re-
sults show that both proposed algorithms can automatically
evolve a smaller number of features and achieve better clas-
sification performance than using all features and feature
subsets obtained from the two single objective methods and
the conventional method. Both the continuous and the bi-
nary versions of PSO are investigated in the two proposed
algorithms and the results show that continuous version gen-
erally achieves better performance than the binary version.
The second new algorithm outperforms the first algorithm
in both continuous and binary versions.
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1. INTRODUCTION
In many problems such as classification, a large number of

features are introduced to well describe the target concepts.
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However, the large number of features causes the problem
of “the curse of dimensionality”, which is a major obstacle
in classification. Meanwhile, not all of the features are use-
ful for classification. Irrelevant and redundant features may
even increase the classification error rate. Feature selection
(FS) could reduce the number of features by eliminating ir-
relevant and redundant features, and thus result in enhanced
efficiency and/or increased classification performance [5].

Based on whether a learning algorithm is included in the
training process or not, existing FS approaches can be broadly
classified into two categories: filter and wrapper approaches.
A filter FS approach is conducted as a preprocessing proce-
dure and the search process is independent of a learning
algorithm. In wrapper approaches, a learning algorithm is
part of the evaluation function to determine the goodness of
the selected feature subset. Wrappers can usually achieve
better results than filters while filters are more general and
computationally less expensive than wrappers [14].

A FS algorithm explores the search space of different fea-
ture combinations to reduce the number of features and si-
multaneously optimise the classification performance. In FS,
the size of the search space for n features is 2n. So in most
situations, it is impractical to conduct an exhaustive search
[14]. Therefore, the search strategy is the key part in FS.
Different search techniques have been applied to FS such as
greedy search, but most of them suffer from the problem of
becoming stuck in local optima and/or high computational
cost [25, 17]. Therefore, an efficient global search technique
is needed to develop a good FS algorithm.

Evolutionary computation techniques are well-known for
their global search ability, and have been applied to the FS
problems. These include particle swarm optimisation (PSO)
[23, 26], genetic algorithms (GAs) [27] and genetic program-
ming (GP) [20]. Compared with GAs and GP, PSO is easier
to implement, has fewer parameters, computationally less
expensive, and can converge more quickly [12]. Due to these
advantages, two versions of PSO, namely continuous PSO
and binary PSO, have been used for FS problems [23, 26,
19]. However, no study has been conducted to investigate
the difference of using continuous PSO and binary PSO for
FS. FS problems have two goals, which are maximising the
classification performance (minimising the classification er-
ror rate) and minimising the number of features. These two
objectives are usually conflicting and there is a trade-off be-
tween them. However, most of the existing FS approaches,
including PSO based approaches, aim to maximise the clas-
sification performance only. Therefore, it is sought to use



PSO to develop a multi-objective FS approach to simultane-
ously minimising the classification error rate and minimising
the number of features selected.

1.1 Goals
The overall goal of this paper is to develop a PSO based

multi-objective FS approach to classification problems with
the expectation of obtaining a set of non-dominated solu-
tions, which contain a small number of features and achieve
better classification performance than using all features. To
achieve this goal, we will firstly develop two single objective
FS methods with a fitness function considering classification
error rate and the number of features. We will then develop
two new FS methods based on two multi-objective PSO al-
gorithms, non-dominated sorting PSO (NSPSO) using the
idea of non-dominated sorting based multi-objective genetic
algorithm II (NSGAII) and CMDPSO using the ideas of
crowding, mutation and dominance. These proposed FS al-
gorithms will be examined on benchmark problems of vary-
ing difficulty. Specifically, we will investigate

• whether single objective PSO based FS algorithms can
select a small number of features and improve classifi-
cation performance over using all features,

• whether the NSPSO based multi-objective FS algo-
rithm can evolve a Pareto front of non-dominated so-
lutions with a smaller number of features and better
classification performance than single objective FS al-
gorithms,

• whether a CMDPSO based multi-objective FS algo-
rithm can obtain a better set of non-dominated solu-
tions than NSPSO and outperform the single objective
FS algorithms, and

• which of the two versions of PSO, continuous PSO and
binary PSO, can achieve better performance for FS.

2. BACKGROUND

2.1 Particle Swarm Optimisation (PSO)
PSO is an evolutionary computation technique proposed

by Kennedy and Eberhart in 1995 [10, 21]. In PSO, a pop-
ulation, called a swarm, of candidate solutions are encoded
as particles in the search space. PSO starts with the ran-
dom initialisation of a population of particles. The whole
swarm move in the search space to search for the best so-
lution by updating the position of each particle based on
the experience of its own and its neighbouring particles [10,
21]. During movement, the current position of particle i

is represented by a vector xi = (xi1, xi2, ..., xiD), where
D is the dimensionality of the search space. The veloc-
ity of particle i is represented as vi = (vi1, vi2, ..., viD),
which is limited by a predefined maximum velocity, vmax

and vtid ∈ [−vmax, vmax]. The best previous position of a
particle is recorded as the personal best pbest and the best
position obtained by the population thus far is called gbest.
Based on pbest and gbest, PSO searches for the optimal so-
lution by updating the velocity and the position of each par-
ticle according to the following equations:

xt+1

id
= xt

id + vt+1

id
(1)

vt+1

id
= w ∗ vtid + c1 ∗ r1i ∗ (pid − xt

id) (2)

+ c2 ∗ r2i ∗ (pgd − xt
id)

where t denotes the tth iteration. d ∈ D denotes the dth
dimension in the search space. w is inertia weight. c1 and

c2 are acceleration constants. r1i and r2i are random values
uniformly distributed in [0, 1]. pid and pgd represent the
elements of pbest and gbest in the dth dimension.

PSO was originally proposed for solving continuous prob-
lems [10]. However, many problems, such as FS, occur in
a discrete search space. Therefore, Kennedy and Eberhart
[11] developed a binary PSO (BPSO) for discrete problems.
In BPSO, xid, pid and pgd are restricted to 1 or 0. The veloc-
ity in BPSO indicates the probability of the corresponding
element in the position vector taking value 1. A sigmoid
function s(vid) is introduced to transform vid to the range
of (0, 1). BPSO updates the position of each particle ac-
cording to the following formulae:

xid =

{

1, if rand() < s(vid)
0, otherwise

(3)

where

s(vid) =
1

1 + e−vid
(4)

where rand() is a random number selected from a uniform
distribution in [0,1].

BPSO preserves the fundamental concept of the PSO al-
gorithm. However, not all important characteristics of the
PSO algorithm are completely present in BPSO [11].

2.2 Multi-Objective Optimisation
Multi-objective optimisation involves simultaneously opti-

mising two or more conflicting objective functions. In math-
ematical terms, the formulae for a minimisition problem
with multiple objective functions can be written as:

minimise F (x) = [f1(x), f2(x), ... , fk(x)] (5)

subject to
gi(x) 6 0, i = 1, 2, ... m (6)

hi(x) 6 0, i = 1, 2, ... l (7)

where x is the vector of decision variables, fi(x) is a function
of x, k is the number of objective functions to be minimised,
gi(x) and hi(x) are the constraint functions of the problem.

The quality of a solution in multi-objective problems is
explained in terms of trade-offs between two or more con-
flicting objectives. Let y and z be two solutions of the above
k-objective minimisation problem. If the following condi-
tions are met, one can say y dominates z (or z is dominated
by y, or y is better than z):

∀i : fi(y) 6 fi(z) and ∃fi(y) < fi(z) (8)

When y is not dominated by any other solutions, y is re-
ferred to as a Pareto-optimal solution. The set of all Pareto-
optimal solutions forms the trade-off surface in the search
space, the Pareto front. An multi-objective algorithm is de-
signed to search for a set of non-dominated solutions.

FS can be expressed as a two-objective minimisation prob-
lems with the objectives of minimising the number of fea-
tures and the classification error rate.

2.3 Recent Work Related to FS

2.3.1 Classical FS Approaches

Sequential forward selection (SFS) [25] and sequential back-
ward selection (SBS) [17] are two popular wrapper FS ap-
proaches, but suffer from the so-called nesting effect and
easily trapped into local optima.

The FOCUS algorithm [1], a classical filter algorithm,
exhaustively examines all feature subsets, then selects the



smallest feature subset. However, the FOCUS algorithm is
computationally inefficient because of the exhaustive search.
The Relief algorithm [13] assigns a relevance weight to each
feature to denote the relevance of the feature to the tar-
get concept. However, Relief does not deal with redundant
features, because it attempts to find all relevant features
regardless of the redundancy between them.

2.3.2 Non-PSO Evolutionary computation Methods
for FS

GP, GAs and ant colony optimisation (ACO) have been
applied to FS. Based on GP and a variation of näıve Bayes,
Neshatian and Zhang [20] propose a FS approach, where
a bit-mask representation is used for feature subsets and
a set of operators are used as primitive functions. GP is
used to combine feature subsets and operators together to
find the optimal subset of features. Experiments show that
the dimensionality and processing time can be significantly
reduced by the proposed algorithm.

Chakraborty [3] proposes a GA with fuzzy sets based fit-
ness function to build a filter FS approach. This method
have the same fitness function with BPSO based method in
[4]. However, the performance of BPSO in [4] is better than
that of this GA based algorithm.

Based on ACO and rough sets theory, He [18] proposes
a filter based FS approach. The features included in the
core of the rough sets is the starting point of the proposed
method. Forward selection is adopted into the proposed
method to search for the best feature subset. Experimen-
tal results show that the proposed approach achieves better
classification performance with fewer features than a C4.5
based FS approach.

2.3.3 PSO based FS Approaches
PSO has recently gained more attention for solving FS

problems. Based on continuous PSO and support vector
machines (SVM), Azevedo et al. [2] propose a FS algorithm
for keystroke dynamics systems. Experimental results show
that the proposed algorithm produces better performance
than a GA with SVM model regarding the classification er-
ror, processing time and feature reduction rate.

Mohemmed et al. [19] propose a hybrid method (PSOAd-
aBoost) which incorporated PSO with an AdaBoost frame-
work for face detection. PSOAdaBoost aims to search for
the best feature subset and determine the decision thresh-
olds of AdaBoost simultaneously, which would also speed
up the process of training and increase the accuracy of weak
classifiers in AdaBoost.

Based on BPSO, Unler and Murat [23] propose a FS al-
gorithm with an adaptive selection strategy, where a fea-
ture is chosen not only according to the likelihood calcu-
lated by BPSO, but also to its contribution to the features
already selected. Experimental results suggest that the pro-
posed BPSO method outperforms the tabu search and scat-
ter search algorithms.

Based on PSO and SVM, Huang et al. [9] propose a FS
method in which BPSO is used to search the optimal feature
subset and continuous PSO is used to simultaneously opti-
mise the parameters in the kernel function of SVM. Exper-
iments show that the proposed algorithm could determine
the parameters and search the optimal feature subset simul-
taneously, and also achieve good classification performance.

Liu et al. [16] introduce a multi-swarm BPSO (MSPSO)
algorithm to search for the optimal feature subset and op-

timise the parameters of SVM simultaneously. Experiments
show that the proposed FS method could achieve higher clas-
sification accuracy than grid search, standard BPSO and
GA. However, the proposed algorithm is computationally
more expensive than the other three methods because of
the large population size and complicated communication
rules between different subswarms.

Many studies have shown that PSO is an efficient search
technique for FS. However, most of the existing work aims
to minimise the classification error and not much work has
been conducted for solving a FS task as a multi-objective
problem. Therefore, development of a multi-objective FS
algorithm using PSO to simultaneously minimise the classi-
fication error and minimise the number of features is still an
open issue.

3. PROPOSED APPROACHES

3.1 Single Objective PSO for FS
FS can be performed by BPSO as a single objective prob-

lem to minimise the classification error rate. The goal is to
see whether BPSO can select a subset of features to achieve
a lower classification error rate than using all features, and
the results will be used to as a baseline to compare the per-
formance of newly developed algorithms. The fitness func-
tion (Equation 9) is to minimise the classification error rate
obtained by the selected feature subset during evolution.

F itness1 = ErrorRate =
FP + FN

TP + TN + FP + FN
(9)

where TP, TN, FP and FN stand for true positives, true
negatives, false positives and false negatives, respectively.

The representation of a particle in BPSO is a n-bit binary
string, where n is the number of available features in the
dataset and also the dimensionality of the search space. In
the binary string, “1” represents that the feature is selected
and “0” otherwise.

3.2 Single Objective PSO for Weighting Two
Objectives in FS

The feature subset selected by BPSO may still contain po-
tential redundancy because the fitness function (Equation 9)
does not intend to minimise the number of features. A new
fitness function (Equation 10) is proposed with the goals of
minimising both the classification error rate and the number
of features selected.

F itness2 = α ∗

#Features

#All Features
+ (1− α) ∗

ErrorRate

Error0
(10)

where α ∈ [0, 1], α and (1 − α) show the relative impor-
tance of the number of features and the classification error
rate. (1 − α) is set larger than α because the classifica-
tion performance is assumed more important than the num-
ber of features. However, the number of selected features
#Features is usually much larger than the classification er-
ror rate ErrorRate. In order to balance these two compo-
nents, #Features is divided by the total number of features
#All Features, which transforms the value to the range of
(0, 1]. Meanwhile, the classification error rate is normalised
via dividing it by the error rate using all available features
Error0.

The representation of a particle in this algorithm is the
same as the n-bit binary string described in Section 3.1.



Algorithm 1: NSBPSO for Feature Selection
begin

divide Dataset into a training set and a test set; initialise each particle in the swarm (Swarm);
while Maximum Iterations is not met do

evaluate two objective values of each particle ; /* number of features and the training error rate */
identify the non-dominated particles (nonDomS) in Swarm;
calculate crowding distance of each particle in nonDomS;
Sort particles in nonDomS according to the crowding distance;
copy all the particles in Swarm to a form temporary swarm (temSwarm);
for i=1 to Population Size (P ) do

update the pbest of particle i;
randomly selecting a gbest for particle i from the highest ranked (least crowded) solutions in nonDomS;
update the velocity and the position of particle i;
add the updated particle i to temSwarm;

identify different levels of non-dominated fronts F = (F1, F2, F3, ...) in temSwarm;
empty the current Swarm for the next iteration;
i = 1;
while |Swarm| < P do

if (|Swarm|+ |Fi| 6 P ) then
calculate crowding distance of each particle in Fi;
add Fi to Swarm;
i = i+ 1;

if (|Swarm|+ |Fi| > P ) then
calculate crowding distance of each particle in Fi;
sort particles in Fi;
add the (P − |Swarm|) least crowded particles to Swarm;

calculate the classification error rate of the solutions in the F1 on the test set ; /* F1:achieved Pareto front */
return the positions of particles in F1;
return the training and test classification error rates of the solutions in F1;

3.3 NSPSO for FS
Equation 10 considers both the number of features and

classification performance, but a proper value of α needs
to be pre-determined. In most situations, users may want
to make an informed decision from many available feature
subsets. Therefore, it is needed to use multi-objective PSO
to address FS problems with the objectives of minimising
both the number of features and the classification error rate.

PSO was originally proposed as a single objective tech-
nique for continuous problems. In order to use PSO for
multi-objective problems, we need to determine a good leader
(gbest) for the swarm among a set of potential non-dominated
solutions. Li [15] introduces the idea of non-dominated sort-
ing in NSGAII [6] into PSO to develop a continuous multi-
objective PSO algorithm and shows that the proposed algo-
rithm can achieve promising results on the optimisation of
several functions. However, this algorithm has never been
applied to FS problems.

In this study we propose a multi-objective FS framework
(NSPSO) and the continuous multi-objective PSO [15] is
applied to search for the non-dominated solutions. Fur-
ther, we propose a new binary multi-objective PSO using
the idea of non-dominated sorting and applied in the pro-
posed FS framework (NSPSO). Therefore, the FS frame-
work, NSPSO, includes both the continuous and the binary
versions of multi-objective PSO for FS. Algorithm 1 shows
the pseudo-code of binary NSPSO for FS.

When using continuous NSPSO for FS, the representation
of a particle is a vector of n real numbers and a threshold θ is
needed to compare with the value xi in the vector. Feature
i is selected if θ > xi and θ 6 xi otherwise.

3.4 CMDPSO for FS
Although NSPSO has shown promising results on differ-

ent problems [15], it has a potential limitation. By select-
ing particles from the combination of current swarm and
the updated swarm, all non-dominated particles that share
the same position will be added into the next iteration.
Therefore, the diversity of the swarm might be lost dur-
ing the evolutionary process. In order to better address FS
problems, we develop another multi-objective FS framework,
CMDPSO, based on multi-objective PSO using the ideas of
crowding, mutation and dominance [22].

The ideas of crowding, mutation and dominance were used
to in a continuous multi-objective PSO [22], but it has never
been applied to FS and will employed in the proposed FS
framework to develop a continuous versions of CMDPSO.
Further, we develop a binary multi-objective PSO using the
ideas of crowding, mutation and dominance to propose a bi-
nary CMDPSO FS algorithm. Except for the steps related
to the selection of gbest, mutation and dominance, binay
CMDPSO follows the basic steps of a PSO algorithm. In
order to address the main issue of determining a good leader
(gbest), a leader set is used to keep the non-dominated so-
lutions as the potential leaders for each particle. The max-
imum size of the leader set is usually set as the number
of individuals in the population. A crowding factor is em-
ployed to decide which non-dominated solutions should be
added into the leader set and kept during the evolutionary
process. Binary tournament selection based on the crowding
factor is applied to choose a leader (gbest) for each particle
from the leader set. A bit-flip mutation operator is adopted
to keep the diversity of the swarm and improve the search
ability of the algorithm. An archive is used to keep the
non-dominated solutions and a dominance factor is adopt
to determine the size of archive, which is also the number of
non-dominated solutions that CMDBPSO reports.

In binary CMDPSO, the representation of each particle



Table 1: Datasets
Dataset # features # classes # instances
Wine 13 3 178
Zoo 17 7 101
Vehicle 18 4 846
World Breast Cancer 30 2 569
-Diagnostic (WBCD)
Sonar 60 2 208
Movementlibras 90 15 360
Hillvalley 100 2 606
Musk Version 1 166 2 476
(Musk1)
Isolet5 617 2 1559

is the same as the n-bit binary string described in Section
3.1. In continuous CMDPSO for FS, the representation of
each particle is the same as the vector of n real numbers
described in Section 3.3.

4. EXPERIMENTAL DESIGN
Table 1 shows the nine datasets used in the experiments,

which are chosen from the UCI machine learning repository
[7]. The nine datasets were selected to have different num-
bers of features (from 13 to 617), classes and instances as the
representative samples of the problems that the proposed al-
gorithms can address. In the experiments, the instances in
each dataset are randomly divided into two sets: 70% as the
training set and 30% as the test set.

All the algorithms are wrapper approaches, i.e. needing
a learning algorithm in the evolutionary training process.
Many learning algorithms can be used here and one of the
simplest algorithms, K-nearest neighbour (KNN), was cho-
sen in the experiments. We use K=5 in KNN (5NN) to
simplify the evaluation process. The linear forward selec-
tion (LFS) [8] is used as a benchmark technique to examine
the performance of the proposed approaches.

In both single objective and multi-objective algorithms,
the parameters of PSO are set as follows: inertia weight w =
0.7298, acceleration constants c1 = c2 = 1.49618, maximum
velocity vmax = 6.0, population size P = 30, maximum
iteration T = 100. The fully connected topology is used
in BPSO. These values are chosen based on the common
settings in the literature [21, 24]. In the weighted single
objective algorithm, α = 0.2 is used in Equation 10 to give
more weight to classification performance. The threshold
used in the continuous version of PSO for FS is set to 0.6.
For each dataset, each algorithm has been conducted for 40
independent runs.

In single objective algorithms, one single solution (feature
subset) is obtained in each run while for multi-objective al-
gorithms CMDPSO and NSPSO, a set of solutions (feature
subsets) are obtained in each run. In order to compare these
two kinds of algorithms, 40 results (from 40 runs) of each
single objective algorithm are presented in the Section 5. 40
sets of feature subsets achieved by each multi-objective algo-
rithm are firstly combined into one union set. In the union
set, the classification error rate of feature subsets, which
share the same number of features (e.g. m), are averaged.
The average classification error rate is assigned as the clas-
sification performance of the subsets with m features. A set
of average solutions is obtained by using the average clas-
sification error rates and the corresponding numbers. The
set of average solutions is called the average Pareto front
and presented in the Section 5. Besides the average Pareto
front, the non-dominated solutions in the union set are also

presented in the Section 5 to compare with the solutions
achieved by single objective algorithms. Experiments have
been conducted on nine datasets, but due to the page limit,
results on six datasets are presented as other three datasets
have similar results.

5. RESULTS AND DISCUSSIONS
Experimental results of the four algorithms on six of the

nine datasets are shown in Figures 1 and 2. In each figure,
the numbers in the brackets show the number of available
features and the classification error rate using all features.
In each chart, the horizontal axis shows the number of fea-
tures selected for classification and the vertical axis shows
the classification error rate.

In Figure 1, “NSB-Ave” (“NSC-Ave”) stands for the aver-
age Pareto front resulted from binary (continuous) NSPSO
for FS in the 40 independent runs. “NSB-Best”(“NSC-Best”)
represents the non-dominated solutions of all solutions re-
sulted from binary (continuous) NSPSO for FS. “Stand”rep-
resents the solutions of BPSO with the overall classification
performance as the fitness function. “Weights” shows the so-
lutions of BPSO with the fitness function considering both
the number of features and the classification performance.
In Figure 2, “CMDB- ” and “CMDC- ” show the results of
binary and continuous CMDPSO.

For “Stand” and “Weights”, in some datasets, the algo-
rithm may evolve the same feature subset in different runs
and they are shown in the same point in the chart. There-
fore, for “Stand” or “Weights”, 40 results are presented, but
there may be less than 40 points shown in each chart.

5.1 Results of Single Objective PSO for FS
According to Figures 1, in all datasets, both “Stand” and

“Weights” can evolve many feature subsets, which selected
around half of the available features and achieved a lower
classification error rate than using all features.

Comparing “Stand” with “Weights”, in all datasets, the
number of features evolved by “Weights” is usually smaller
than that of “Stand”, which is caused by the weight factor
in the fitness function (Equation 10). There is no signifi-
cant difference between the classification error rates achieved
by “Stand” and “Weights”. This shows that feature subsets
evolved by “Stand” still have redundancy because the num-
ber of features was not considered in the fitness function.

The results suggest that in all datasets, BPSO with the
overall classification error rate as fitness function can effec-
tively select a feature subset that contains around half of the
available features and increases classification performance.
By considering the number of features in the fitness func-
tion, “Weights” can further reduce the number of features
while maintaining the classification performance.

5.2 Results of NSPSO for FS

5.2.1 Results of Binary NSPSO for FS
According to Figure 1, in almost all datasets, the average

Pareto front of binary NSPSO (“NSB-Ave”) contains two or
more solutions, which selected a small number of features
and achieved a lower classification error than using all fea-
tures. For the same number of features, there are a variety
of combinations of features with different classification error
rates, the feature subsets obtained in different runs are usu-
ally different. Therefore, although the solutions obtained in
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Figure 1: Results of continuous and binary NSPSO for FS and two single objective algorithms.

each run are non-dominated, some solutions in the average
Pareto front may dominate others.
“NSB-Best” shows the non-dominated solutions of the bi-

nary NSPSO in the 40 independent runs. In almost all
datasets, “NSB-Best”can evolve two or more feature subsets,
which selected around only one third of the available features
and achieved better classification performance than using all
features (except for around 40% in the Isolet5 dataset).

Comparing binary NSPSO with “Stand” and “Weights”,
it can be seen that in some datasets, feature subsets ob-
tained by “Stand” and “Weights” achieved a lower classifica-
tion error rate than the average Pareto front (“NSB-Ave”).
However, in almost all cases, the non-dominated solutions
(“NSB-Best”) of binary NSPSO are better than the feature
subsets evolved by “Stand” and “Weights” in terms of both
the number of features and the classification error rate.

5.2.2 Results of Continuous NSPSO for FS
According to Figure 1, in almost all cases, “NSC-Ave”con-

tains two or more solutions, which selected a small number
of features and achieved a lower classification error rate than
using all features.

In all cases, “NSC-Best” evolved one or more feature sub-
sets, which selected no more than 10% of the available fea-
tures and achieved better classification performance than
using all features (except for around 16% in the Isolet5
dataset). For example, in the Hillvalley dataset, by using the
selected 1 or 10 features (from the available 100 features),
5NN can achieve a lower classification error rate than using
all features.

Comparing continuous NSPSO with“Stand”and“Weights”,
it can be seen that in most cases, “NSC-Ave” successfully
selected a smaller or much smaller number of features and
achieved similar or better classification performance than
“Stand” and “Weights”. In all datasets, the solutions in
“NSC-Best” are better than the feature subsets evolved by

“Stand” and “Weights” in terms of both the number of fea-
tures and classification performance.

The results suggest that in all datasets, both continuous
and binary versions of NSPSO can evolve a set of feature
subsets that selected only a small number of features but
achieved better classification performance than using all fea-
tures. The two versions of NSPSO as multi-objective tech-
niques guided by two objectives can achieve better feature
subsets than “Stand” and “Weights” in terms of the classifi-
cation performance and the number of features.

5.3 Results of CMDPSO for FS

5.3.1 Results of CMDPSO for FS
According to Figure 2, in all datasets, “CMDB-Ave” con-

tains two or more solutions, which successfully selected a
small number of features and achieved better classification
performance than using all features.

In most datasets, “CMDB-Best” contains one or more fea-
ture subsets, which selected around one third of the available
features and achieved better classification performance than
using all features.

Comparing the results of binary CMDPSO with that of
“Stand” and “Weights”, it can be seen that in almost all
datasets, the classification error rate of“Stand”and“Weights”
is similar with that of the solutions included in “CMDB-
Ave”. However, in all datasets, the non-dominated solutions
(“CMDB-Best”) of binary CMDPSO had a smaller number
of features and achieved better classification performance
than feature subsets evolved by “Stand” and “Weights”.

5.3.2 Results of Continuous CMDPSO for FS
According to Figure 2, in all datasets, “CMDC-Ave” ba-

sically followed the same behaviours of “CMDB-Ave”, but
achieved better results than “CMDB-Ave” in most cases.

Comparing continuous CMDPSO with“Stand”and“Weights”,
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Figure 2: Results of continuous and binary CMDPSO for FS and two single objective algorithms

in almost all datasets, some of the feature subsets in“CMDC-
Ave” selected a smaller number of features and achieved
similar or even better classification performance than the
feature subsets evolved by “Stand” and “Weights”. In all
datasets, the non-dominated solutions (“CMDC-Best”) out-
performed feature subsets evolved by“Stand”and“Weights”.

The results suggest that in all datasets, both continu-
ous and binary versions of CMDPSO can evolve a set of
feature subsets with a small number of features and bet-
ter classification performance than using all features. Al-
though CMDPSO share the same parameter settings with
“Stand”and “Weights”, both versions of CMDPSO as multi-
objective techniques can effectively explore the Pareto front
and achieve better classification performance using fewer
features than “Stand” and “Weights”.

5.4 Comparisons Between Two Multi-objective
Approaches

The results of “Stand”and“Weights” are shown in Figures
1 and 2. Therefore, “Stand” and “Weights” can be a base-
line to compare the performance of the NSPSO with that of
CMDPSO for FS.

Taking the WBCD dataset as an example, the average
Pareto fronts of the two NSPSO algorithms could not achieve
a lower classification error rate than “Stand” and “Weights”.
However, some solutions in the average Pareto fronts of
the two CMDPSO algorithms have a smaller number of
features and achieve better classification performance than
“Stand” and “Weights”. Comparing Figure 1 with Figure 2,
in most cases, the performance of the average Pareto front of
CMDPSO is better than that of NSPSO in both continuous
and binary versions. In almost all cases, “CMDB-Best” and
“CMDC-Best” outperformed “NSB-Best” and “NSC-Best”,
respectively, in terms of classification performance and the
number of features.

Generally, CMDPSO can achieve better performance than

NSPSO for FS. The reason may be that the way of setting
the new positions for particles in NSPSO makes the swarm
quickly loss diversity during the evolutionary training pro-
cess and could not effectively search the solution space. We
will investigate this in the future.

5.5 Comparisons Between Continuous and Bi-
nary PSO for FS

According to Figure 1, in almost all datasets, the aver-
age Pareto front, “NSC-Ave” outperformed “NSB-Ave”. In
the datasets with a relatively large number of features, con-
tinuous NSPSO can obtain a much smaller feature subset
with similar or even better classification performance than
binary NSPSO. The results of “NSC-Best” are also better
than those of “NSB-Best” in most cases. According to Fig-
ure 2, continuous CMDPSO outperformed binary CMDPSO
in almost all cases.

Generally, the two continuous versions of multi-objective
PSO (“NSC”,“CMDC”) achieved better performance than
the two binary versions of multi-objective PSO ( “NSB”,
“CMDB”). This might be because BPSO does not present
all of the important characteristics of the PSO algorithm.

5.6 Comparisons with a Conventional FS
Method

Taking the Zoo and WBCD datasets as examples, we
check how well the four proposed algorithms perform com-
pared with linear forward selection (LFS) [8]. LFS selected 6
features in Zoo with a classification error rate of 4.76% and 9
features in WBCD with a classification error rate of 11.70%.
Comparing the results in Figures 1 and 2, “Stand”,“Weights”
can evolve two or more feature subsets that outperformed
the subset selected by LFS. Results of NSPSO (“NSB-Ave”,
“NSB-Best”, “NSC-Ave”, and “NSC-Best”) and CMDPSO
(“CMDB-Ave”, “CMDB-Best”, “CMDC-Ave”, and “CMDC-



Best”) are much better than those of LFS. Other datasets
have similar results, which show that PSO can effectively
select a good feature subset with a small number of features
and achieve high classification performance.

6. CONCLUSIONS
The goal of this paper was to develop a PSO based multi-

objective FS approach to selecting a set of non-dominated
feature subsets and achieving high classification performance.
This goal was successfully achieved by developing two new
multi-objective FS algorithms. The first algorithm employed
multi-objective PSO using the idea of NSGAII to search
for the Pareto front in FS problems. The second algorithm
employed multi-objective PSO, which adopted the idea of
crowding, mutation and dominance, as the seach technique
for FS. The two proposed algorithms were examined and
compared with two single objective FS algorithms and LFS
on nine benchmark datasets of varying difficulty. The re-
sults suggest that two proposed algorithms can obtain a set
of non-dominated solutions, which can successfully select a
small number of features and achieve higher classification
performance than using all features. In terms of both the
number of features and classification performance, the two
proposed algorithms outperformed the two single objective
methods and LFS, and the second algorithm outperformed
the first algorithm. In both two algorithms, using contin-
uous PSO achieved better performance than using binary
PSO, especially in the number of features selected.

The two propsed algorithms successfully reduced the num-
ber of features needed and achieved higher classification per-
formance, but it is unknown whether the classification per-
formance can be further increased without increasing the
number of features, or whether the number of features can
be further reduced with similar classification performance.
In the future, we will further investigate the multi-objective
PSO based FS approach to better exploring the Pareto front
of non-dominated solutions in FS problems. We will intend
to further investigate the why BPSO usually evolve a larger
subset of features than continuous PSO, then develop a new
BPSO algorithm to overcome the limitation of BPSO and
address this problem.
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