
Code Coverage Optimisation in Genetic Algorithms
and Particle Swarm Optimisation for Automatic

Software Test Data Generation

Chahine Koleejan, Bing Xue, and Mengjie Zhang
School of Engineering and Computer Science, Victoria University of Wellington

PO Box 600, Wellington 6140, New Zealand
Email: {Soyaume.Koleejan, Bing.Xue, Mengjie.Zhang}@ecs.vuw.ac.nz

Abstract—Automatic software test data generation is the
process of generating a set of test cases for a given program which
can achieve a high code coverage. Genetic algorithms (GAs) and
particle swarm optimisation (PSO) can automatically evolve a set
of test data, but the traditional representation in GAs and PSO
produces solutions with a single set of data cases, which may
not achieve good performance on programs with many complex
conditions. This paper proposes a multi-vector representation in
GAs and PSO, which can generate multiple sets of data cases
in a single run, to generate test data for complex test programs.
Experiments have been conducted to examine and compare the
performance of GAs and PSO on six commonly used benchmark
test programs and three newly developed programs with a
relatively large number of complex conditions. The experimental
results show that the proposed multi-vector representation can
improve the performance of GAs and PSO on all the nine tested
programs, achieving the optimal 100% code coverage on the
relatively easy programs. PSO outperforms GAs in terms of both
the code coverage and the computational efficiency, especially on
the hard programs.

I. INTRODUCTION

Software testing is an essential part in the software develop-
ment process, which aims to ensure that the software produced
meets both technical and business requirements. However,
software testing is extremely expensive and laborious, and it
has been estimated that about half of software development
costs are allocated to testing [1]. Test data generation is the
process of producing a set of data for testing software based
on a given criterion, which is a complex problem. Though a
lot of solutions have come forth, most of them are limited to
relatively easy programs. Since doing this manually is time-
consuming, error-prone and complex [2], automatic test gen-
eration can avoid such problems to improve the performance
and reduce the time and cost [3].

There have been many different ways for automatically
generating software test data. Heuristic search techniques for
automatic generation of test data becomes a hot topic in recent
years [4], which includes random search, hill climbing, and
simulated annealing. However, they have their own advantages
and limitations [4]. For example, random search is fast and
simple but does not deal well with programs with many
different structures. Hill climbing can deal with this problem
and is also fast but often fails to find the optimal solution.
Simulated annealing is computationally expensive and slow if

a good solution is required [4]. Evolutionary computation tech-
niques, such as genetic algorithms (GAs) and particle swarm
optimisation (PSO), are powerful heuristic search methods,
which have been widely used to solve problems in different
areas [5], [6], [7], [8]. GAs and PSO have shown some success
in automatic software test data generation [9], [10], [11], [12],
[3], [13], but most of them were tested on programs with
relatively easy structures. The potential of GAs and PSO for
automatic test data generation has not been fully investigated.

There are a number of possible objectives that a test data set
may seek to achieve [4], [14]. Functional testing is concerned
with verifying specific actions or functions of the code and
includes bug fixing. Structural testing is used to test the struc-
ture of the system in question and how the software executes
its code. One of the most important structural properties is
code coverage. Code coverage analysis reveals which areas of
the code have not been tested and as such enables software
developers to release products of higher quality [15]. A basic
and fundamental code coverage criterion is statement coverage,
which is a measure of how many statements in a program
are executed. Traditionally, when using GAs or PSO for data
generation to optimise code coverage, a candidate solution
is represented by a single input vector of the arguments.
However, when dealing with programs with conditions, using a
single input vector means half the branches in the program are
missed. Therefore, a new representation is needed to improve
the performance of GAs and PSO for automatic test data
generation.

A. Goals

The overall goal of this paper is to improve the performance
of GAs and PSO in generating test data to optimise the
statement coverage in complex programs. To achieve this, a
multi-vector representation is proposed for both GAs and PSO
to generate multiple sets of test data cases in a single run.
Since the current commonly used benchmark test programs
are relatively simple, new test programs will be developed with
more complex program structures to examine and compare the
performance of GAs and PSO. Specifically, we will investigate

• whether GAs and PSO with the multi-vector represen-
tation can improve their performance over using the
traditional single vector representation,

• whether PSO can achieve better statement coverage
performance than GAs, and978-1-4799-7492-4/15/$31.00 c© 2015 IEEE



• whether PSO can find good or optimal solutions faster
than GAs.

B. Organisation

The rest of this paper is organised as follows: section II
provides background information of this paper. Section III
describes the proposed multi-vector representation and the
GAs and PSO algorithms. Section IV presents the existing
test programs, the newly developed test programs, and the
parameter settings of the GAs and PSO algorithms. Section
V presents the experimental results and discussions. Section
VI draws conclusions and discusses future work.

II. BACKGROUND

This section presents the background of this work, mainly
about genetic algorithms, particle swarm optimisation, and
typical work on automatic software test data generation.

A. Genetic Algorithms

Genetic algorithms (GAs) [16] are evolutionary algorithms
that model the Darwinian theory of evolution, which are
possibly the first algorithmic models developed to simulate
genetic systems [17].

In GAs, candidate solutions of the target problem are
encoded as a population of chromosomes. A standard rep-
resentation of each chromosome is a fixed-length array of
bits (bit-strings). The population is evolved to search for
the optimal solution by applying genetic operators, such as
selection, crossover, and mutation. The evolutionary process
usually starts from a population of randomly generated in-
dividuals/chromosomes, and is an iterative process, with the
population in each iteration associated with a generation. In
each generation, the goodness (i.e. fitness) of every individual
in the population is evaluated by a fitness function, which
is predefined according to the problem to be solved. The
more fit individuals are stochastically selected from the current
population, and new solutions are produced by using mainly
two different genetic operators, i.e. crossover and mutation.
The new generation of candidate solutions is then used in
the next iteration of the algorithm. Commonly, the algorithm
terminates when either a maximum number of generations has
been conducted, or a satisfactory fitness level has been reached
for the population.

B. Particle Swarm Optimisation

Particle swarm optimisation (PSO) [18], [19] is an optimi-
sation method based on the behaviour of swarms of organisms
such as flocks of birds. It works by initialising a population
of particles randomly, each of which represents a candidate
solution. Each particle has a position vector and a velocity
vector. Each particle keeps track of its best position achieved so
far called personal best, as well as the entire population’s best
achieved position so far called global best. At each iteration
each particle’s velocity and position are updated according to
the following equations. This is repeated until the termination
criterion is met.

vt+1
id = w ∗ vtid + c1 ∗ ri1 ∗ (pid − xt

id) + c2 ∗ ri2 ∗ (pgd − xt
id) (1)

xt+1
id = xt

id + vt+1
id (2)

where vt+1
id shows the velocity of particle i in the dth dimen-

sion in the (t + 1)th iteration. w is the inertia weight, which
indicates the influence of the previous velocity. c1 and c2 are
acceleration constants. ri1, ri2 and rand() are random values,
which are uniformly distributed in [0, 1]. pid and pgd shows
the values of the personal best and the global best in the dth
dimension. A predefined maximum velocity, vmax, is used to
limit vt+1

id to [−vmax, vmax].

C. Related Work on Software Test Data Generation

Traditional methods, such as random search and gradient
descent, were considered viable for the problem of generating
test data [20]. Generating test data through random search is
probably the simplest way, which can be used to generate input
data for any type of program. However, it is hard to ensure a
good quality of the generated data since the data is generated
solely based on probability, it cannot accomplish high coverage
as the chances of finding semantically small faults is quite low
[20].

Evolutionary computation techniques have attracted much
attention for automatic test data generation. Michael et al. [21]
formed the task as a minimisation problem, and applied GAs
to this task by optimising the code coverage. The performance
of GAs was compared with that of random search and the
results showed that GAs outperformed random search, but the
test benchmark programs are quite simple. Pargas et al. [11]
used GAs to solve test data generation problems, where the
fitness function is to optimise the control-dependence graph
of the program. Michael et al. [9] compared the GAs with
random search and gradient search for test data generation
on a set of benchmark programs, which showed that GAs
outperformed both random search and gradient search. The
results also suggested that the performance of random search
deteriorated quickly as the increase of the program size.

The use of PSO for software test data generation is much
later than that of GAs. In 2007, Windisch et al. [13] suggested
that since PSO is simpler and has fewer parameters than GAs,
it would be worth investigating its ability to generate software
test data. They compared the performance of GAs and PSO
on a set of simple test programs and the results showed that
in most cases PSO was competitive with GAs. Jia et al. [3]
proposed a new position initialising technique in PSO for soft-
ware testing, which aimed to optimise the condition-decision
coverage of benchmark programs. The results were compared
to GAs and the standard PSO algorithm, which showed that
the proposed PSO algorithm achieved better performance in
terms of condition-decision coverage.

Besides GAs and PSO, other evolutionary computation
techniques have also been used for automatic software test
data generation [22], [23], [24]. Arcuri and Yao [22] proposed
algorithms to automatically generate data for testing Java
containers, where five different search algorithms were used:
random search as a natural baseline, hill climbing as a local
search method, simulated annealing and GAs as global search
methods, and memetic algorithms combining together local
and global searches. The experimental results show that the five



Converted
Solution:

Test program:  function(double, int, double, boolean, int)

                           
Example solution: (1.46,  3,  0.29,  True,  4)

GA or PSO
Individual:

1.46 3 0.29 True 4

1.46 3.1 0.29 4.5 3.95

Round(3.1) Round(3.95)f(4.5)

Fig. 1: Single Vector Representation. An example of a test
program with five input variables.

Converted
Solution:

Test program:  function(double, int, int, boolean)

                           
Example solution: {(0.75, 8, 3, True), (1.2, 2, 1, False), (0.91, 4, 2, True)}

GA or PSO
Individual:

0.75 8 3 True 1.2 2 1 False 0.91 4 2 True

Vector 2 Vector 3Vector 1

0.75 7.9 2.7 5.2 1.2 2.3 1.1 0 0.91 4.2 1.6 4.6

Fig. 2: Multi-Vector Representation. An example of an
individual with three vectors for a test program with four

input variables.

search algorithms achieved better performance than traditional
techniques. Genetic programing (GP) has also been applied to
automatic software testing [24], [25] due to its flexible tree-
based representation.

Test data generation is a highly complex task particularly
with large programs and complex program structures. Most of
the work done in this area is based on programs that either
are very short in length or very low in complexity. Building
new test programs to examine the performance of the test data
generation algorithms is also an open issue.

III. THE APPROACH

This section proposes a multi-vector representation in GAs
and PSO for automatic software test data generation. The
representation, the fitness function, and the pseudo-code of
the algorithms are described here.

A. Representation

Traditionally, in the context of optimising code coverage,
a candidate solution is a single input vector of the input
arguments [13], which is called single vector representation
here. For example, if a function has three integer argu-
ments/variables, a possible solution would be (1,2,3). The
code coverage would be obtained by running the program
in question with arguments (1,2,3). However, when dealing
with programs with conditional structures, using a single input
vector means half the branches in the program are missed.
Multiple vectors are needed in order to obtain optimal code
coverage. Therefore, a multi-vector representation is proposed
here to encode a chromosome in GAs or a particle’s position
in PSO for optimising the code coverage in software test data
generation tasks.

1) Single Vector Representation: In this representation, the
length/dimensionality of a chromosome in GAs or a particle
in PSO equals to the number of input arguments/variables that
the test program has. A chromosome or a particle’s position
represents a vector as a solution of the test program, where
each bit corresponds to one argument/variable.

Fig. 1 takes a test program with five input arguments as
an example and shows how an individual in GAs or PSO
is converted to a solution vector. To convert a GA and PSO
individual to input arguments, one of the following decoding
processes is used:

• If the input argument type is float or double, we
can simply use the corresponding entry value in the
chromosome or position;

• If the input argument type is integer, the corresponding
entry value is rounded to the nearest integer;

• If it is a boolean, use the logistic function, i.e. Equa-
tion (3) to convert the corresponding entry value to 0
or 1 (False or True).

f(x) =
L

1 + e−k(x−x0)
(3)

where x is the value of an element in the chromosome
or the particle’s position, x0 = 0, L = 1, and k = 1.

2) Multi-Vector Representation: To avoid/reduce the limi-
tation of the traditional single vector representation, the pro-
posed multi-vector representation includes a set of vectors in
each chromosome or a particle. The length/dimensionality of
GAs or PSO equals to the number of vectors multiplying
the number of arguments/variables in the test program. When
the number of vectors is one, the multi-vector representation
becomes the same as the single vector representation. By using
multiple vectors in a single solution, it is expected to avoid
the situation in the single vector representation, where half
the branches in the program are missed when dealing with
programs containing conditional structures.

Fig. 2 shows an example of the multi-vector representation,
where the test program has four input variables and each
individual in GAs or PSO includes three vectors. The decoding
processes described in the single vector representation are still
applied here to convert an individual to a desired solution.

B. Fitness Function

There are many commonly used code coverage perfor-
mance criteria [26], such as statement coverage, condition
coverage, multiple condition coverage, path coverage, branch
coverage, and condition-decision coverage. In this paper, we
mainly use the basic and fundamental statement coverage as
the code coverage criterion.

The fitness function here is to maximise the statement
coverage rate, which is calculated by converting an individual
in GAs or PSO to a solution and then running the test program
with the solution. Of course, the best (maximum) fitness value
is the 100%, which is achieved if every line of the program is
executed.



Algorithm 1 Pseudo-code of the PSO-based Algorithm
1: randomly initialise particles in the swarm;
2: convert each particle’s position to a solution with multiple input

vectors;
3: evaluate fitness value of each particle /*the code coverage of the

converted solution*/ ;
4: while termination condition is not reached do
5: evaluate fitness value of particle i;
6: for each particle i do
7: update pbest of i;
8: update gbest of i;
9: end for

10: for each particle i do
11: for each dimension d do
12: update vid according to Equation (1) ;
13: update xid according to Equation (2);
14: end for
15: end for
16: end while
17: return the gbest and the code coverage rate.

Algorithm 2 Pseudo-code of the GA-based Algorithm
1: initialise the population;
2: convert each chromosome to a solution with multiple input

vectors;
3: evaluate fitness value of chromosome /*the code coverage of the

converted solution*/ ;
4: while termination condition is not reached do
5: evaluate fitness value of each chromosome;
6: perform selection operator;
7: perform crossover operator;
8: perform mutation operator;
9: end while

10: return the best chromosome and the code coverage rate.

C. Pseudo-code

The pseudo-codes of the PSO and GAs with the pro-
posed multi-vector representation are shown in Algorithms
1 and 2, respectively. Both GAs and PSO are population-
based search techniques, but they follow different mechanisms.
PSO employs velocity and position updating equations to
gradually increase or decrease the values in each dimension
of candidate solutions while GAs use genetic operators to
create new solutions by updating a block of dimensions in
candidate solutions. So, when the input arguments have more
numerical types (float, double or integer), PSO may achieve
better performance than GAs, but when there are more nominal
arguments, GAs may achieve better performance than PSO.

IV. EXPERIMENT DESIGN

To examine the performance of the GAs and PSO algo-
rithms, different numbers of vectors are used in the multi-
vector representation, which are 2, 3, 4, 5, and 6. Therefore,
five different GAs and five different PSO algorithms are
developed, which are GA-2, GA-3, GA-4, GA-5 and GA-6,
and PSO-2, PSO-3, PSO-4, PSO-5 and PSO-6 (e.g. PSO-3
means PSO with 3 vectors in the representation). GAs and
PSO with the single vector representation are used as baseline
algorithms in the experiments, which are denoted as GA-1 and
PSO-1. They will be examined and compared with each other
on a number of benchmark test programs in the experiments.

TABLE I: Benchmark Test Programs

Program Parameters Lines Conditionals Loops Recursive

TC 3 41 8 0 No
MaxMin 3 47 5 0 No
BubbleSort 5 33 1 2 No
MergeSort 5 59 2 4 Yes
GCD 2 24 1 0 Yes
Month 1 60 12 0 No
f1 2 65 14 0 No
f2 3 71 17 0 No
f3 4 113 32 0 No

Input: int a, int b, int c
if a < b+ c then

if b < a+ c then
if c < a+ b then

if a! = b then
if a! = b then

if a! = b then
return 2

if a = b then
if b = c then

return 0
else

return 1
return -1

Fig. 3: Pseudo-code of TriangleClassification.

A. Benchmark Test Programs

Six test programs which are commonly used in recent pa-
pers are used as benchmark programs in the experiments. They
are TriangleClassification [27], [3], [28], [9], [13], MaxMin
[27], BubbleSort [27], [9], [29], MergeSort [29], GCD [9],
and Month. They are described in detail below.

The complexity of a test program in the context of code
coverage is primarily determined by how many conditional
statements it contains. Our initial experiments show that these
six programs are relatively easy to solve. We further design
three programs, which contain a large number of conditions.
Since specific conditions are difficult to satisfy, the three
programs are harder to achieve good coverage rate on. The
three programs are called f1, f2, and f3.

The detailed information of the nine benchmark programs
are summarised in Table I. These nine benchmark programs
differ in terms of the length, the number of input arguments,
the number of conditional statements, whether containing
loops, and whether containing recursive structures.

1) TriangleClassification (TC): This is a commonly used
test program which takes the lengths of the three sides in a
triangle as input and determines whether it is scalene, isosceles,
equilateral or not a triangle. The pseudo-code is given in Fig.
3.

2) MaxMin (MM): This is a program which takes three
numbers and returns the largest and smallest numbers. Since
this program is very simple, the pseudo-code is not given here,
and so as BubbleSort, Recursive MergeSort, Greatest Common
Divisor, and Month.

3) BubbleSort (BS): This is the standard version of the
BubbleSort sorting algorithm.

4) Recursive MergeSort (RM): This is the recursive version
of the MergeSort sorting algorithm.



Input: int a, int b
if a+ b > 100 then

if a < 50 then
if b = 5 then

print 1
else if b = 80 then

print 2
else

print 3
else if a > 75 then

if b = 10 then
print 4

else if b = 60 then
print 5

else
print 6

else
if b = 55 then

print 7
else if b = 45 then

print 8
else

print 9
else

if b > 50 then
if a = 1 then

print 10
else

print 11
else if b < 25 then

if a = 15 then
print 12

else
print 13

else
if a = 90 then

print 14
else

print 15

(a) Pseudo-code of f1.

Input: int a, int b, int c
if a+ b+ c > 200 then

if a+ b < 10 then
if c = 100 then

print 1
else if c = 80 then

print 2
else

print 3
else if a+ b > 150 then

if c = 30 then
print 4

else if c = 10 then
print 5

else
print 6

else
if c = 20 then

print 7
else if c = 1 then

print 8
else

print 9
else

if c+ b > 100 then
if a = 1 then

print 10
else if a = 11 then

print 11
else

print 12
else if b+ c < 50 then

if a = 15 then
print 13

else if a = 95 then
print 14

else
print 15

else
if a = 90 then

print 16
else if a = 40 then

print 17
else

print 18

(b) Pseudo-code of f2.

Fig. 4: Pseudo-code of f1 and f2.

5) Greatest Common Divisor (GCD): This is a program
that returns the greatest integer that divides two given numbers.

6) Month (M): This is a program that returns the name
of the month (e.g. “February”) by giving the corresponding
nominal number (e.g. 2). Let m be a variable, if m=1, return
“January”; if m=2, return “February”; ... if m=12, return
“December”; . Note that although the 12 possible numbers
are integer/ordinal numbers, there is not direct relationship
between any two numbers, they are actually nominal argument.

7) Three New Test Programs: f1, f2, and f3. Since the
other programs are relatively simple, three more complicated
programs f1,f2 and f3 were created for this research. In terms
of complexity, they are more representative of the kind of
programs used in practice. They take 2, 3 and 4 arguments,
respectively. They are of increasing the program length and
the number of conditions to be much larger than those of
the simpler programs. Moreover, a large number of these
conditions are hard to satisfy because multiple variables need
to be optimised concurrently in order to do so. The pseudo-
codes of f1 and f2 are given in Fig. 4, and the pseudo-code
of f3 is given in Fig. 5.

B. Parameter Settings

Both the GAs and PSO algorithms have been conducted
for 50 independent runs on each test benchmark program. The
GAs and PSO settings that are commonly used in literature in
recent years were used in the experiments. Both the GAs and
PSO share the same termination condition. The algorithm stops

Input: int a, int b, int c, int d
if a+ b > 100 then

if c < 50 then
if d = 5 then

print 1
else if d = 80 then

print 2
else

print 3
else if c > 75 then

if d = 10 then
print 4

else if d = 60 then
print 5

else
print 6

else
if b = 55 then

print 7
else if b = 45 then

print 8
else

print 9
else

if c > 50 then
if d = 1 then

print 10
else

print 11
else if c < 25 then

if d = 15 then
print 12

else
print 13

else
if d = 90 then

print 14
else

print 15

if c− d > 100 then
if a < 50 then

if b = 5 then
print 16

else if b = 80 then
print 17

else
print 18

else if a > 75 then
if b = 10 then

print 19
else if b = 60 then

print 20
else

print 21
else

if b = 55 then
print 22

else if b = 45 then
print 23

else
print 24

else
if b > 50 then

if a = 1 then
print 25

else
print 26

else if b < 25 then
if a = 15 then

print 27
else

print 28
else

if a = 90 then
print 29

else
print 30

Fig. 5: Pseudo-code of f3.

TABLE II: Parameter Settings in GAs

Parameter value

Population Size 100
Termination Global optimum found or 60 generations
Crossover type Two-point
Mutation type Reset
Mutation probability 0.05
Elitism rate 0.05

either when the maximum number of iterations or generations
have been reached or when the algorithm have found the best
solution.

To show the difference in the obtained code coverage rates
and the computational time used between the GAs and PSO,
a non-parametric statistical significance test, Wilcoxon test, is
used in the experiments. The significance level is chosen to be
0.05 (or equivalently, 5%).

1) GAs Settings: The settings in GAs are shown in Table
II. The breeding pipeline consists of two individuals selected
by tournament selection of size 4 being crossed-over and the
resultant invididual mutated with probability 0.05.

2) PSO Settings: The parameters used in PSO are sum-
marised in Table III, which follow the common settings
suggested in [30].

V. RESULTS AND DISCUSSIONS

The results of the statement coverage obtained by the GAs
and PSO algorithms are shown in Tables IV, V and VI and
Fig.6. The computational cost are presented in Fig. 7 and Table
VII.



TABLE III: Parameter Settings in PSO

Parameter Value

No. of particles 30
Inertia weight 0.7298
Acceleration coefficients 1.49618
Termination Global optimum found or 200 iterations

TABLE IV: Statement coverage(%) achieved by each GA
algorithm on the test programs

GA-1 vector GA-2 GA-3 GA-4 GA-5 GA-6
Mean±Std Mean±Std Mean±Std Mean±Std Mean±Std Mean±Std

TC 83.0±0.0 91.8±0.8 96.0±0.0 100.0±0.0 100.0±0.0 99.9±0.6
MaxMin 60.0±0.0 77.0±0.0 87±0.0 93.0±0.0 97.0±0.0 100.0±0.0
BubbleSort 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
MergeSort 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
GCD 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Month 36.0±0.0 42.0±0.0 47.0±0.0 53.0±0.0 58.0±0.0 64.0±0.0
f1 35.0±0.0 44.0±0.0 52.0±0.0 58.5±0.5 64.5±0.6 68.6±0.5
f2 33.0±0.0 41.8±0.4 49.0±0.3 54.7±0.5 60.0±0.8 63.1±0.9
f3 28.0±0.0 36.0±0.0 41.7±0.5 47.2±1.1 51.3±1.2 55.0±1.8

TABLE V: Statement coverage(%) achieved by each PSO
algorithm on the test programs

PSO-1 vector PSO-2 PSO-3 PSO-4 PSO-5 PSO-6
Mean±Std Mean±Std Mean±Std Mean±Std Mean±Std Mean±Std

TC 83.0±0.0 92.0±0.0 96.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
MaxMin 60.0±0.0 77.0±0.0 87.0±0.0 93.0±0.0 97.0±0.0 100.0±0.0
BubbleSort 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
MergeSort 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
GCD 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Month 36.0±0.0 42.0±0.0 47.0±0.0 53.0±0.0 58.0±0.0 63.8±0.8
f1 35.0±0.0 44.0±0.0 52.0±0.0 58.9±0.3 64.9±0.3 68.9±0.3
f2 33.0±0.0 42.0±0.0 49.0±0.0 55.0±0.0 60.5±0.5 63.6±0.5
f3 28.0±0.0 36.0±0.0 42.0±0.2 48.5±0.6 53.0±0.8 56.5±1.1

A. Code Coverage

Tables IV and V show the statement coverage achieved by
each algorithm on each benchmark test program, and Table VI
shows the results of statistical significance tests between the
PSO and GA algorithms, where ≈ means there is no statistical
significant difference between PSO and the GA algorithm. Fig.
6 compares the performance of using different numbers of
vectors in the multi-vector representation in GAs and PSO.

From Table IV, it can be seen that on the simple test
programs, such as BubbleSort, MergeSort, and GCD, GAs with
the traditional single vector representation are able to generate
data with 100% statement coverage. On the four programs with
more conditions, i.e. Month, f1, f2, and f3, the performance
of the GA with single vector representation is poor, with less
than 40% of the code coverage. By using the proposed multi-
vector representation, the performance of GAs can reach 100%
on four or five of the six commonly used test programs. The
performance on the four hards programs are also substantially
increased. The results also suggest that the loop and recursive
structures in the BubbleSort and GCD programs do not cause
much difficulties for GAs, but the increase in the number of
conditional structures brings difficulties.
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According to Table V, PSO with the single vector rep-
resentation can address simple programs like BubbleSort,
MergeSort, and GCD to achieve a coverage of 100%, but not
on the four hard programs, i.e. Month, f1, f2, and f3. By
using the proposed multi-vector representation, PSO are able to
achieve 100% statement coverage on five of the six commonly
used benchmark test programs. On the four hard programs,
PSO-6 improves the coverage performance to 63.8%, 68.9%,
63.6%, and 56.5% from 36%, 35%, 33%, and 28% in PSO
with single vector representation, respectively.

Fig. 6 shows the performance of GAs and PSO with
different number of vectors in the representation on the six
benchmark programs, i.e. f1, f2, f3, Month (M), MaxMin
(MM), and TriangleClassification (TC). BubbleSort, Merge-
Sort, and GCD are not included since both GAs and PSO can
achieve 100% coverage with a single vector representation.
The pattern in Fig. 6 is very clear that using more vectors
in the representation can improve the statement coverage on
all these six programs in both GAs and PSO. This is because
more vectors being used means more conditions are able to
be satisfied. The programs with a relatively large number of
conditions require a considerable number of vectors to obtain a
good statement coverage. Conversely, the test programs which
have fewer conditions (BubbleSort, MergeSort and GCD) can
be easily optimised with only one vector. A perfect statement
coverage was unable to be achieved on the programs with
many conditional structures (Month, f1, f2 ,f3), even using six
input vectors. It can be generalised that the more conditions a
program has, the more input vectors are required to achieve a
high coverage rate.

According to Table VI, when using the traditional single
vector representation, there is no statistical significant differ-
ence between GAs and PSO, i.e. both of them obtain perfect
results for the three easy programs (BubbleSort, MergeSort,
and GCD), reasonably good solutions on two programs (TC
and MM), and equally very poor results on the four hard
programs (Month, f1, f2, and f3). By using the multi-vector
representation, there are still no statistical significant difference



TABLE VI: Which algorithm is better according to the
statistical significance test

1 vector 2 3 4 5 6

TC ≈ ≈ ≈ ≈ ≈ ≈
MaxMin ≈ ≈ ≈ ≈ ≈ ≈
BubbleSort ≈ ≈ ≈ ≈ ≈ ≈
MergeSort ≈ ≈ ≈ ≈ ≈ ≈
GCD ≈ ≈ ≈ ≈ ≈ ≈
Month ≈ ≈ ≈ ≈ ≈ GA
f1 ≈ ≈ ≈ PSO PSO PSO
f2 ≈ PSO PSO PSO PSO PSO
f3 ≈ ≈ PSO PSO PSO PSO
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Fig. 7: Time(s) vs No. of Input vectors.

between GAs and PSO on the five relatively simple programs,
since both of them can obtain the optimal solution of 100%
statement coverage. However, for the four hard programs,
twelve cases, PSO achieves significantly better performance
than GAs in twelve cases. GAs only achieve significantly better
performance than PSO in one case, using 6 vectors on the
Month program, where the 12 possible numbers are actually
nominal numbers, where GAs is expected to achieve better
performance than PSO. The results show that PSO can better
utilise the multi-vector representation than GAs to obtain a set
of vectors (test data) to cover the code in the hard programs.
The main reason is that the search mechanism in PSO is more
suitable than GAs for generating numerical data in the tested
programs.

B. Computational Cost

Fig. 7 shows the computational time used by GAs and PSO
with different numbers of input vectors on the nine benchmark

TABLE VII: Which algorithm is faster according to the
statistical significance test

1 vector 2 3 4 5 6

TC PSO PSO PSO PSO PSO PSO
MaxMin PSO PSO PSO PSO PSO PSO
BubbleSort PSO PSO PSO PSO PSO PSO
MergeSort PSO PSO PSO PSO PSO PSO
GCD PSO PSO PSO PSO PSO PSO
Month PSO - GA GA GA GA
f1 PSO PSO PSO PSO PSO PSO
f2 PSO PSO PSO PSO - -
f3 PSO PSO PSO PSO PSO PSO

programs, where the horizontal axis shows the number of
input vectors used in the multi-vector representation while the
vertical axis shows how many seconds that GAs or PSO took
on average for a single run. Table VII shows the results of
significance test between the time used by the GAs and PSO
algorithms.

In general, the algorithms take longer to run on programs
with more conditions and complex conditions. The programs
that take the longest time were the most complicated f1, f2 and
f3 programs, which contain much more conditions than other
programs and some of the conditions are hard to satisfy. On the
hard programs, increasing the number of vectors increases the
average computational time, as the global optimum or optima
become harder to find. In contrast, on the simple programs,
increasing the number of vectors does not significantly increase
the computational cost, but may even reduce the computational
time. The reason is that the algorithms with more vectors can
easily find the optimal solution to achieve 100% code coverage
and then stop the search process.

When comparing the efficiency of GAs with PSO, PSO
is clearly faster than the GAs regardless the number of input
vectors, which can be found in Table VII. PSO is statistically
significantly faster than GAs in 47 cases and is slower in
only 4, all of which are on the same program, Month, since
the Month program involves nominal data which are more
suitable for GAs than PSO. In two cases, there is no statistical
significant difference between the time taken by the GAs and
PSO algorithms. PSO is by far the superior algorithm on eight
out of the nine test programs, including the three hardest
programs, f1, f2 and f3.

VI. CONCLUSIONS AND FUTURE WORK

This paper developed a multi-vector representation in GAs
and PSO for automatic software test data generation with the
expectation of increasing the code coverage performance on
complex programs. Since the recent commonly used bench-
mark test programs are relatively simple, we also developed
three hard test programs with a relatively large number and
hard conditions. Experiments on nine test programs (including
six commonly used ones and three newly developed ones)
show that with the proposed multi-vector representation, both
GAs and PSO significantly increased the code coverage per-
formance over the traditional single vector representation,
and automatically generated software test data to achieve the
optimal, 100%, code coverage on five out of the six simple



programs. On the four hard programs, using more vectors
substantially improved the code coverage performance in both
the GAs and PSO algorithms. PSO and GAs achieved similar
performance on the six simple programs, but on the hard
programs and using more vectors, PSO achieved significantly
better performance than GAs. In terms of the efficiency, using
more vectors increased the cost on hard programs, but not
always on the simple programs since the algorithms can easily
find the optimal solution and stop searching. PSO generally
outperformed GAs in terms of both the code coverage and the
computational cost.

The experimental results illustrated the effectiveness and
efficiency of the proposed algorithms, but unless a theoretical
analysis is done, it is hard to determine the optimal number of
vectors prior. Therefore, in future, we will further investigate
the relationship between the number of conditions and the
number of vectors, and develop novel approaches which are
capable of generating test sets of variable sizes. We will also
compare the proposed algorithms with existing GAs, PSO and
other algorithms in the literature.

Automatic software testing tools are still far from ideal
for real-world software. In the future, developing more hard
benchmark test programs and further testing on industrial-size
programs may give more insight into the differences between
algorithms and how the properties of the test programs affect
their performances. The criterion of statement coverage was
used for the purpose of this investigation. Other important
criteria, such as branch and path coverage, could be used to
compare the algorithms. Furthermore, GP, which has a flexible
representation scheme, can handle different types of input
variables and the tree-based representation is more directly
comparable and suitable for being mapped instantly to abstract
syntax trees commonly used in computer languages and com-
pilers [24], [25]. However, GP is often computationally more
expensive than GAs and PSO, so how to utilise the flexible
representation in GP and improving the efficiency in automatic
software test generation is also an interesting topic.
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