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Abstract. Feature selection aims to select a small number of features
from a large feature set to achieve similar or better classification perfor-
mance than using all features. This paper develops a new binary particle
swarm optimisation (PSO) algorithm (named PBPSO) based on which
a new feature selection approach (PBPSOfs) is developed to reduce the
number of features and increase the classification accuracy. The perfor-
mance of PBPSOfs is compared with a standard binary PSO based fea-
ture selection algorithm (BPSOfs) and two traditional feature selection
algorithms on 14 benchmark problems of varying difficulty. The results
show that PBPSOfs can be successfully used for feature selection to select
a small number of features and improve the classification performance
over using all features. PBPSOfs further reduces the number of features
selected by BPSOfs and simultaneously increases the classification accu-
racy, especially on datasets with a large number of features. Meanwhile,
PBPSOfs achieves better performance than the two traditional feature
selection algorithms. In addition, the results also show that PBPSO as
a general binary optimisation technique can achieve better performance
than standard binary PSO and uses less computational time.

Keywords: Binary particle swarm optimisation, Feature selection, Clas-
sification

1 Introduction

Feature selection is an important task in classification, which aims to select a
subset of features and achieve similar or even better classification performance
than using all features [1]. By removing irrelevant or redundant features and
selecting only relevant features for classification, feature selection can reduce the
dimensionality, simplify the learned classifiers, and /or increases the classification
accuracy [1]. Feature selection is a difficult combinatorial problem with a large
search space. The size of the search space grows exponentially along with the
total number of features in the dataset. Therefore, it is usually impractical to
perform an exhaustive search and most of the existing methods suffer from the
problem of being computationally expensive or becoming stuck in local optima.
Therefore, feature selection tasks need an efficient global search method.



Evolutionary computation (EC) techniques are a group of powerful global
search algorithms. Particle swarm optimisation (PSO) [2, 3] is a relatively recent
EC technique, which is easy to implement, computationally less expensive, and
has fewer parameters than other EC algorithms, such as genetic programming
(GP) and genetic algorithms (GAs) [4]. Therefore, PSO has gained much atten-
tion since it was first proposed [2]. In PSO, each candidate solution is encoded
as an individual or a particle in the search space. Each particle ¢ has a position
shown by z; = (241, xs2, ..., z;p) and a velocity shown by v; = (v;1,vi2, ..., VD),
where D is the dimensionality of the search space. During the evolutionary pro-
cess, the best previous position of a particle is recorded as the personal best pbest
and the best position obtained by the population thus far is called gbest. PSO
searches for the optimal solutions by updating the velocity and the position of
each particle according to pbest and gbest. There are two main categories of PSO,
which are continuous PSO [3] and binary PSO (BPSO) [5]. Both continuous PSO
and BPSO have been used for feature selection [6-8].

Feature selection is a binary problem, where BPSO is a more appropriate
method than continuous PSO [7]. In BPSO, all elements in the position are
either 1 or 0. The velocity in BPSO indicates the probability of the corresponding
element in the position vector taking value 1. A sigmoid function is introduced
to transform v;q to the range of (0, 1). BPSO updates the position and velocity
of each particle according to the following formulae:

1,if rand() < — 41
mfjl = ’ 1+e*”fd+l (1)
0, otherwise
Ufjl =W * Vg + 1 * T * (Yia — vad) + c2 * 725 * (Ya — xﬁd) (2)

where ¢ denotes the ' iteration. d € D denotes the d** dimension in the search
space. rand() is a random number uniformly distributed in [0,1]. w is inertia
weight. ¢; and co are acceleration constants. r1; and 73; are random values uni-
formly distributed in [0, 1]. y;4 and 4 represent the elements of pbest and gbest
in the d** dimension.

There have been a large number of works on PSO [4], but most of them
focus on continuous PSO and there is not much work on BPSO [9] perhaps be-
cause there are some limitations on the current standard BPSO. For example,
the velocity shows the momentum of a particle’s movement in a direction in a
particular dimension of the search space. However, this was originally designed
for continuous spaces. For binary problems, x;; can only be 1 or 0, which means
particles cannot keep moving in one direction of a particular dimension. Mean-
while, the parameters in velocity were also designed for continuous PSO. When
applying the velocity to BPSO, the parameters cannot produce the effects they
were designed for and in fact, they produce an opposite effect compared with in
the original continuous PSO (detailed discussions can be seen in [10]). Therefore,
the velocity in PSO for continuous space is not meaningful any more in binary
space. Since the influence of personal best and global best is reflected through the
velocity updating equation, the personal experience and global experience can-



not effectively utilised in BPSO. Therefore, in order to address feature selection
problems, a new BPSO algorithm is needed.

1.1 Goals

The overall goal of this paper is to develop a new BPSO algorithm for feature
selection to select a small feature subset and achieve better classification perfor-
mance than using all features. To achieve this goal, we propose a new updating
mechanism to develop a new BPSO algorithm based on which a new feature
selection approach is proposed to reduce the number of features and increases
the classification accuracy. Specifically, we will investigate:

— whether the new feature selection approach can be used to address feature
selection problems to reduce the number of features and increase the classi-
fication accuracy,

— whether the new feature selection approach can achieve better performance
than two traditional feature selection algorithms, and

— whether the new BPSO algorithm as a general binary optimisation tech-
nique can achieve better performance than the standard BPSO in a shorter
computational time.

2 Proposed Approach

To overcome the limitations of standard BPSO [5], we develop a new binary PSO
algorithm, where two important issues are considered. The first is to follow the
key ideas of the standard (continuous) PSO algorithm, which is that particles
are updated according to the best experience of its own (i.e. personal best, pbest)
and the best experience of its neighbours (i.e. global best, gbest). The second
is to keep advantages of PSO compared to other EC techniques, i.e. PSO is
simple, has fewer parameters and computationally cheaper. Therefore, we aim
to develop a new BPSO algorithm, which is simpler than standard BPSO, but
has a more powerful search ability.

Since the velocity component in BPSO is not as meaningful as in continuous
PSO, we propose a new probability based BPSO named PBPSO, where a “flip-
ping” probability is introduced to replace the velocity to update each particle
during the evolutionary process. p shows the “flipping” probability, which is a
D—dimensional vector. p; = (pi1, Pi2, -, Pip) shows the “flipping” probability for

particle i. p;g shows the probability of z;4 being “flipped”, i.e. update xﬁgl =1
if 2, = 0 or update x/j" = 0 if 2!, = 1, where ¢ means the ¢** iterations in the

evolutionary process. The new position updating equation is shown by Equation

3. p is calculated based on the current position of a particle, pbest and gbest,
where the updating formula is shown by Equation 4.

1 1 —zt,, if random() < pia

Tid = { xt,, otherwise (3)

Pid = Po + Ppd + Pgd (4)



where

ppa= 4 PU if iy # Yia
P 0, otherwise

and

Pgd = b2, lf‘rid#gé
g 0, otherwise

In Equation 3, (1 — z¢,) is used to update xfjl from 1 to 0 or from O to 1.

DPpd and pgq reflect the influence of personal best pbest and global best gbest.
po, p1 and py are real numbers in (0,1). 0 < po is used to ensure that there is
always a probability to change the value of z!,. The values of pyq and pyq are
calculated for each dimension in every iteration, but they are not stored through
the evolutionary process, which is cheaper than the standard BPSO in terms of
memory. py + p1 + p2 = 1 ensures that when z!, is different from both y!, and
gL, the probability for z!, to change equals to 1.

2.1 PBPSOfs for Feature Selection

Based on the proposed PBPSO, a new feature selection approach named PBP-
SOfs is developed and the Pseudo-code of PBPSOfs is shown by Algorithm 1.
Two key components that need to be shown are the encoding scheme and the
fitness function.

In PBPSOfs, the dimensionality (D) of the search space equals to the total
number of features in the dataset. So each particle is a D-dimensional binary
string, where “1” means the corresponding feature is selected and “0” means the
corresponding feature is not selected.

Feature selection has two main objectives, which are maximising the clas-
sification accuracy (minimising the error rate) and minimising the number of
features. Therefore, a fitness function that combines the two objectives is used
in PBPSOfs, which is shown by Equation 5.

#Features

Fitness = a* ErrorRate + (1 — a) * #All Features )

where ErrorRate represents the classification error rate of the selected features.
#Features shows the number of selected features and #All Features shows
the total number of features in the datasets. a and (1 — «) reflect the relative
importance of the classification performance and the number of selected features.
a € (0.5, 1] because the classification performance is regarded as more important
than the number of features.

3 Experiment Design
3.1 Benchmark Techniques

To examine the performance of the proposed algorithm (PBPSOfs), it is com-
pared with a standard BPSO based feature selection algorithm (BPSOfs) [11].
BPSOfs shares the same encoding scheme, fitness function and random seeds
with PBPSOfs for fair comparisons.



Algorithm 1: Pseudo-code of PBPSOfs

Input : po, p1, p2; P: the population size; T: maximum iterations;
D: dimensionality of search space (i.e. total number of features)
Output: gbest (i.e. selected features), training and testing accuracies of the
selected features

begin
randomly initialise the position each particle;
for t=1 to T do
evaluate fitness of each particle;
for i=1 to P do
update the pbest of particle ¢;
| update the gbest of particle i;
for i=1 to P do
for d=1 to D do
if xﬁ;l #* yfd_l then

Ppd = D1 ; // personal experience, pbest
else
L ppa=0
if 217" # 97" then
L Dgd = D2 ; // neighbourhood’s experience, gbest
else
L pga =0

Pid = Po + Ppd + Pgd;
if rand < prob then
L%‘d:l—l‘id; // zi;q from 1 to 0 or from O to 1

else
L Tid = Tid

| return gbest, training and testing accuracies of the selected features;

Two traditional methods are also used to test the performance of PBPSOfs,
which are linear forward selection (LFS) [12] and greedy stepwise backward se-
lection (GSBS) [13]. LFS and GSBS were driven from two typical traditional
feature selection algorithms, i.e. sequential forward selection (SFS) [14] and se-
quential backward selection (SBS) [15]. LFS [12] performs a forward selection,
but restricts the number of features that are considered in each step. LFS is
computationally less expensive than SFS because it reduces the number of eval-
uations. More details can be seen in [12]. The greedy stepwise based selection
method is implemented in Weka [16], which can perform both forward and back-
ward selection [13]. Given that LFS is based on forward selection, the greedy
stepwise search is set to be backward to conduct a greedy stepwise backward
selection (GSBS). GSBS starts with all available features and stops when the
deletion of any remaining feature results in a decrease in classification accuracy.

3.2 Datasets and Parameter Settings

14 datasets were chosen from the UCI machine learning repository [17] to test
the performance of PBPSOfs, BPSOfs, LFS and GSBS. The datasets are shown



Table 1. Datasets

Dataset No. of No. of No. of Dataset No. of No. of No. of
atase Features Classes Instances atase Features Classes Instances
Australian 14 2 690 Zoo 17 7 101

Wisconsin Breast Cancer

(Diagnostic) (WBCD) 30 2 569 Vehicle 18 4 846
Tonosphere 34 2 351 German 24 2 1000
Hillvalley 100 2 606 Lung 56 3 32
Musk Versionl(Muskl) 166 2 476 Sonar 60 2 208
Arrhythmia 279 16 452 Madelon 500 2 4400
Multiple Features 649 10 2000 Isolets 617 2 1559

in Table 1. The 14 datasets were chosen to have different numbers of features,
classes and instances. For each dataset, the instances are randomly divided into
two sets: 70% as the training set and 30% as the test set.

As wrapper approaches, all the algorithms need a learning/classification algo-
rithm. A simple and commonly used learning algorithm [7], K-nearest neighbour
(KNN), was used in the experiment and K=5 (5NN). During the evolution-
ary training process, the classification error rate used in the fitness function is
calculated using 10-fold cross-validation on the training set. Note that 10-fold
cross-validation is performed as an inner loop in the training process to evaluate
the classification performance of a single feature subset on the training set and
it does not generate 10 feature subsets. After the training process, the selected
features are evaluated on the test set to obtain the testing classification perfor-
mance of the selected features. A detailed discussion of why and how 10-fold
cross-validation is applied in this way is given by [18].

PBPSOfs only involves three parameters, which are pgy, p1 and ps. pg = 0.05
is to make sure that there is always at least a very small probability to update the
particle. p; = 0.35 and ps = 0.65 are to ensure that the global best has slightly
more influence than the personal best. The parameters of BPSOfs are set as
follows [3]: w = 0.7298, ¢; = ¢z = 1.49618. For both BPSOfs and PBPSOfs, the
population size is 50, and the maximum number of iterations is 100. The fully
connected topology is used. @ = 0.9 is used in the fitness function to make sure
that the classification performance is much more important than the number of
features. Both PBPSOfs and BPSOfs have been conducted for 40 independent
runs on each dataset.

To test their classification performance, the non-parametric statistical signif-
icance test, Wilcoxon test, is performed compare the classification performance
of BPSOfs (or PBPSOfs) and that of all features. The significance test is used
to compare the classification performance between BPSOfs and PBPSOfs. The
significance level is selected as 0.05 (or confidence interval is 95%).

4 Results and Discussions
4.1 Results of PBPSOfs and BPSOfs in Testing Process

Table 2 shows the experimental results of PBPSOfs and BPSOfs on the unseen
test sets, where “All” means that all of the available features are used for clas-
sification, “AveSize” shows the average number of features selected in the 40



Table 2. Experimental Results in Testing Process

Dataset Method [AveSize|BestAcc|AveAcc £ StdAcc|Test 1|Test 2
All 14 70.05

Australian BPSOfs 3.18 87.44 82.46 + 7.3131 +
PBPSOfs| 2.82 85.51 81.96 + 7.7095 + =
All 17 80.95

700 BPSOfs 4.15 97.14 95.12 + 0.6455 +
PBPSOfs| 3.35 95.24 95.17 + 0.2508 + =
All 18 83.86

Vehicle BPSOfs' 5.38 86.22 84.21 + 0.8119 +
PBPSOfs| 5.02 84.84 84.09 + 0.434 + =
All 24 68.0

German BPSOfs 7.9 73.33 68.89 + 2.0768 +
PBPSOfs| 5.95 72.67 69.09 + 1.7842 + =
All 30 92.98

WBCD BPSOfs 7.92 94.74 93.57 + 1.2474 +
PBPSOfs| 2.02 94.74 94.4 + 0.8049 + +
All 34 83.81

Tonosphere BPSOfs 8.92 93.33 88.14 + 2.3128 +
PBPSOfs| 4.58 91.43 88.45 + 2.0447 -+ =
All 56 70.0

Lung BPSOfs 23.28 90 74.75 + 7.0666 +
PBPSOfs| 6.78 80 77.25 + 5.9108 + =
All 60 76.19

Sonar BPSOfs 23.02 | 85.71 78.57 + 3.4594 +
PBPSOfs| 14.28 87.3 78.21 + 3.0323 + =
All 100 56.59

Hillvalley BPSOfs | 39.35 | 60.16 56.88 + 1.6322 =
PBPSOfs| 31.08 | 61.26 58.25 + 1.6952 + +
All 166 83.92

Muskl BPSOfs 75.52 | 90.91 84.21 + 2.8401 =
PBPSOfs| 69.3 88.81 85.38 + 1.8087 + +
All 279 94.46

Arrhythmia BPSOfs 99.7 95.14 94.21 + 0.3937 -

. PBPSOfs| 63.42 | 95.48 94.71 + 0.3405 + +

All 500 70.9

Madelon BPSOfs | 243.85 | 78.59 75.81 + 1.4905 +
PBPSOfs| 212.42 | 81.15 78.91 4+ 1.2565 + +
All 617 98.45

Isolet5 BPSOfs | 225.15 | 98.59 98.25 + 0.1354 -
PBPSOfs| 169.35 | 98.87 98.61 + 0.1248 -+ -+
All 649 98.63

Multiple Features BPSOfs | 237.05 | 99.1 98.89 + 0.0923 +
PBPSOfs| 176.15 | 99.27 99.01 + 0.1043 + +

independent runs, “BestAcc”, “AveAcc” and “StdAcc” show the best, the av-
erage and the standard deviation of the 40 testing accuracies. “Test 1”7 shows
the results of the Wilcoxon significance tests between PBPSOfs (or BPSOfs)
and “All”, where “+” (-) means PBPSOfs or BPSOfs is significantly better (or
worse) than “All”, and “=" means they are similar (no significant difference).
“Test 2”7 shows the Wilcoxon significance tests between PBPSOfs and BPSOfs.

Results of BPSOfs. According to Table 2, it can be seen that in most cases
(i.e. 12 out of the 14 datasets), the classification performance of the feature
subsets selected by BPSOfs is significantly better or similar to that of using all
features. In all cases, the average number of features selected by BPSOfs is less
than half of the total number of original features. However, on the six datasets
with a large number of features (100 or more), the classification performance of
BPSOfs is better than using all features on only two datasets.

The results show that BPSOfs with the standard BPSO algorithm can be
used to address feature selection problems to reduce the number of features and



Table 3. Comparisons with LFS and GSBS

Dataset Australian Zoo Vehicle German WBCD Tonosphere Lung
Size|Acc [T |Size|Acc |T|Size|Acc [T|Size|Acc |[T|[Size[Acc |T|Size|Acc [T |Size|Acc|T
LFS 4 70.05[+(8 79.05(+9 83.07(+|3 68.67|=[10 |88.89|+|4 |[86.67|+|6 [90.0]-
GSBS (12 [69.57|+|7 |80.0 |+|16 |[75.79|+|18 [64.33|4|25 |83.63|+(30 |78.1 |+|33 [90.0(-
Dataset Sonar Hillvalley Musk1 Arrhythmia| Madelon Isoletb MultipleF.
Size[Acc [T |[Size[Acc [T|Size[Acc [T|[Size[Acc [T|Size[Acc [T [Size[Acc [T|[Size[Acc|T
LFS 3 77.78|=|8 57.69(+[10 |85.31|=[11 |94.46|+|7 |64.62|+|24 [98.34|+ (18 [99.0|=
GSBS (48 [68.25(+(90 [49.45|+[122 |76.22|+|130 [93.55(+|489 [51.28|+[560 [97.16|+ +

maintain or even increase the classification performance. However, the results
also show the BPSOfs cannot scale well for high-dimensional problems, where
feature selection is important and necessary on such problems.

Results of PBPSOfs. From Table 2, it can be seen that the classification per-
formance of the feature subsets selected by PBPSOfs is significantly better than
using all features on all datasets. In most cases, the average number of features
selected by PBPSOfs is less than one third of the total number of features. For
example, on the WBCD dataset, PBPSOfs selected only 6.73% (i.e. on average
2.02 of 30) of the original features and achieved significantly better classification
performance than using all features.

The results show that PBPSOfs with the new updating mechanism can suc-
cessfully evolve a smaller feature subset to increase the classification accuracy.

Comparisons Between PBPSOfs and BPSOfs. From Table 2, it can be
seen that on all the 14 datasets, PBPSOfs selected a smaller number of fea-
tures and achieved similar or significantly better classification performance than
BPSOfs. The results of the significance tests (Test 2) show that the classifica-
tion performance of PBPSOfs is similar to BPSOfs in seven cases. Particularly,
PBPSOfs is significantly better than BPSOfs on all the six datasets with a large
number of features, and the number of features is much smaller in PBPSOfs
than in BPSOfs. For example, on the Isolet5 dataset, PBPSOfs further reduced
around 24.78% of the number of features selected by BPSOfs to reduce the aver-
age number of selected features from 225.15 to 169.35, but PBPSOfs significantly
increased the classification accuracy. Meanwhile, in almost all cases, the stan-
dard deviation values of PBPSOfs is smaller than that of BPSOfs, which shows
that PBPSOfs is more stable than BPSOfs.

The comparisons show that PBPSOfs using the newly developed updating
mechanisms can better explore the search space of a feature selection task to
further reduce the number of features and simultaneously maintain or increase
the classification performance.

Comparisons with LFS and GSBS. Table 3 shows the results of LFS and
GSBS. Both LFS and GSBS are deterministic methods, which produce a unique
solution/feature subset on each dataset. In the table, “I” shows the results of
the significance tests between the classification accuracy of LFS (or GSBS) and
PBPSOfs. “+”7 (or “”) means the PBPSOfs is significantly better than LFS
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Fig. 1. Evolutionary Process of BPSOfs and PBPSOfs (colour).

or GSBS. Note that the results of GSBS on the Multiple Features (MultipleF.)
dataset are not available because the experiment cannot finish within a week.

According to Table 3, it can be seen that PBPSOfs achieved significantly
better classification performance than LFS on nine of the 14 datasets and sim-
ilar classification performance on four datasets. The best accuracy of PBPSOfs
is better than LFS on 13 out of the 14 datasets, although the number of features
is larger. PBPSOfs selected a smaller or much number of features than GSBS in
all cases and achieved significantly better classification performance than GSBS
on 13 out of the 14 datasets. Only on the Lung dataset, the classification per-
formance of LFS and GSBS is better than PBPSOfs. The main reason is that
the Lung dataset has a small number of examples, where it is easy to have over-
fitting problems. PBPSOfs clearly has such a problem because it achieved the
training accuracy of 100% in 39 of the 40 independent runs.

4.2 Results of PBPSOfs and BPSOfs in Training Process

Analysing the performance of PBPSOfs and BPSOfs in the training process can
further show the search abilities of PBPSO and BPSO as general optimisation
techniques rather than specific feature selection algorithms.

Evolutionary Process. We take the Lung and Muskl datasets as two exam-
ples to analyse the evolutionary process. Other datasets show a similar pattern.
Figure 1 shows the change of the gbest during the evolutionary process, where
the horizontal axis shows the number of iterations and the vertical axis shows
the average fitness value of the gbest in the 40 independent runs.

According to Figure 1, it can be observed that the gbest in PBPSOfs and BP-
SOfs have the same average fitness value at the first iteration because they were
set to start from the same points for fair comparisons. However, even starting
from the same points, PBPSOfs using the newly developed updating mechanisms
can better explore the solution space to optimise (i.e. minimise) the fitness value
to obtain much better results than BPSOfs. Considering the training process
only, feature selection is a binary/combinatorial problem with a large and com-
plex search space. The superior performance of PBPSOfs during the training
process shows that the proposed PBPSO algorithm can successfully address dif-
ficult binary/combinatorial problems, as a general binary optimisation technique
(not only specifically designed for feature selection tasks).



Table 4. Experimental Results in Training Process

Dataset Method [AveSize|BestAcc|AveAcc + StdAcc|Test 1|Test 2| Time
All 14 75.78

Australian BPSOfs 3.18 88.2 83.25 + 7.0772 + 4.91
PBPSOfs| 2.82 86.96 83.41 + 7.7095 = = |4.59
All 17 86.72

Zoo BPSOfs 4.15 98.39 97.37 + 0.3484 + 0.12
PBPSOfs| 3.35 97.99 97.33 + 0.2327 = = ]0.11
All 18 88.18

Vehicle BPSOfs 5.38 90.54 89.45 + 0.6187 + 8.48
PBPSOfs| 5.02 90.37 89.44 4+ 0.4998 = = [8.28
All 24 80.14

German BPSOfs 7.9 82.71 80.11 4+ 2.3069 = 13.2
PBPSOfs| 5.95 82.71 79.7 £ 1.5259 - - 12.3
All 30 94.97

WBCD BPSOfs 7.92 96.73 95.6 £ 0.5919 + 4.62
PBPSOfs| 2.02 96.48 95.13 + 0.396 = - 13.32
All 34 85.77

Tonosphere BPSOfs 8.92 93.5 91.09 + 1.1403 + 1.92
PBPSOfs| 4.58 95.53 94.08 + 0.7378 + + |1.76
All 56 81.82

Lung BPSOfs | 23.28 100 95.68 + 2.02 + 0.04
PBPSOfs| 6.78 100 99.89 + 0.7097 + + ]0.02
All 60 83.45

Sonar BPSOfs 23.02 93.1 89.12 + 1.7137 + 0.97
PBPSOfs| 14.28 | 94.48 91.03 + 1.895 + + 10.77
All 100 71.46

Hillvalley BPSOfs | 39.35 73.94 72.28 + 1.0503 + 50.28
PBPSOfs| 31.08 | 75.94 73.75 + 1.0739 + + ]46.1
All 166 92.19

Musk1 BPSOfs 75.52 95.5 93.15 + 1.1531 + 13.96
PBPSOfs| 69.3 97.3 94.83 + 1.0976 + +  |12.7
All 279 94.79

Arrhythmia BPSOfs 99.7 95.37 94.93 + 0.2288 + 16.97

. PBPSOfs| 63.42 | 95.86 95.55 + 0.1657 + + [12.44

All 500 83.24

Madelon BPSOfs | 243.2 | 87.69 85.93 + 0.7274 + 991.6
PBPSOfs| 212.42 | 90.55 88.91 + 0.6204 + + 1953.63
All 617 99.15

Isolets BPSOfs | 225.15 | 99.28 99.14 + 0.0826 = 384.16
PBPSOfs| 169.35 | 99.49 99.36 + 0.0643 + + [328.34
All 649 99.36

Multiple Features BPSOfs | 237.05 | 99.51 99.41 4+ 0.0533 + 692.54
PBPSOfs| 176.15 | 99.63 99.52 4+ 0.0542 + + |551.44

Training Performance. Table 4 shows the experimental results of PBPSOfs
and BPSOfs from the training process. The average size of the feature subsets
in Table 4 is the same as in Table 2 because they are the same feature subsets,
but their classification performances are different because they are used on dif-
ferent sets of data, i.e. the training set and test set, respectively. The average
computational time of PBPSOfs and BPSOfs are also listed in the last column
of Table 4, where the numbers are expressed in minutes.

From Table 4, it can be seen that both PBPSOfs and BPSOfs can reduce
the number of features and maintain or even increase the training classification
accuracy in almost all cases. Comparing PBPSOfs with BPSOfs, for all the
fourteen datasets, PBPSOfs selected a smaller number of features than BPSOfs.
On 12 out of the 14 datasets, the training classification accuracy of PBPSOfs is
similar or significantly better than BPSOfs. Particularly, on all the nine datasets
with more than 30 features/dimensions, PBPSOfs achieved significantly better



performance than BPSOfs, i.e., selected a much smaller number of features and
achieved significantly better classification accuracy. For some datasets, e.g. Lung,
PBPSOfs has the problem of over-fitting and we will address this in future work.

The results show that PBPSOfs with the newly developed updating mech-
anisms can improve the search ability over BPSOfs, especially for the high-
dimensional problems, where the search space is larger and more complex than
low-dimensional problems.

4.3 Analysis on Computational Time

According to Table 4, it can be seen that on datasets with a small number of
features or instances, both PBPSOfs and BPSOfs can finish the evolutionary
feature selection process in a very short time, which is even less than one minute
on the Zoo and Lung datasets. In all the 14 benchmark problems, PBPSOfs used
a shorter time than BPSOfs. There are two main reasons. The first reason is that
the newly developed PBPSO has a simpler updating equation than the standard
BPSO. The second reason is that as wrapper approaches, the majority part of
the computational time in PBPSOfs and BPSOfs are used on fitness evaluations,
which needs to calculate the classification error rate of the selected features. For
the same dataset, a large number of selected features needs longer time to calcu-
late the error rate than a small number of selected features. Since PBPSOfs and
BPSOfs have the same number of evaluations during the evolutionary training
process and PBPSOfs usually selected a smaller number of features, PBPSOfs
is faster than BPSOfs.

5 Conclusions and Future Work

This paper developed a new probability based updating mechanism based on
which a new BPSO named PBPSO was proposed. A new feature selection ap-
proach named PBPSOfs was developed to maximise the classification accuracy
and minimise the number of features. PBPSOfs was examined and compared
with a standard BPSO based feature selection approach (BPSOfs) and two tra-
ditional feature selection algorithms on 14 datasets of varying difficulty. The
experimental results show that PBPSOfs achieved better performance than the
two traditional feature selection algorithms. Meanwhile, PBPSOfs outperformed
BPSOfs in terms of both the classification performance and the number of fea-
tures, especially on high-dimensional problems. The performances of PBPSOfs
and BPSOfs in the training process show that PBPSO as a general method has
better optimisation capability than standard BPSO. Additionally, PBPSOfs is
computationally less expensive than BPSOfs due to its simple calculation of the
new updating mechanism and selecting a smaller number of features. Overall,
the newly developed PBPSO algorithm outperformed the standard BPSO in
terms of both the effectiveness and the efficiency.

This work mainly focuses on binary problems, but in future, we will inves-
tigate a new PSO algorithm for general discrete problems. We will also further
investigate and improve the performance of BPSO by developing new updating



mechanisms and new representation or encoding schemes. From the classifica-
tion point of view, the proposed algorithm may have over-fitting problems, which
will also be addressed in future. Meanwhile, we also intend to develop a multi-
objective feature selection approach to find a set of trade-off solutions to meet
different requirements in real-world applications.
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