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Abstract. In classification, feature selection is an important, but dif-
ficult problem. Particle swarm optimisation (PSO) is an efficient evolu-
tionary computation technique. However, the traditional personal best
and global best updating mechanism in PSO limits its performance for
feature selection and the potential of PSO for feature selection has not
been fully investigated. This paper proposes a new initialisation strategy
and a new personal best and global best updating mechanism in PSO
to develop a novel feature selection algorithm with the goals of minimis-
ing the number of features, maximising the classification performance
and simultaneously reducing the computational time. The proposed al-
gorithm is compared with two traditional feature selection methods, a
PSO based method with the goal of only maximising the classification
performance, and a PSO based two-stage algorithm considering both the
number of features and the classification performance. Experiments on
eight benchmark datasets show that the proposed algorithm can auto-
matically evolve a feature subset with a smaller number of features and
higher classification performance than using all features. The proposed
algorithm achieves significantly better classification performance than
the two traditional methods. The proposed algorithm also outperforms
the two PSO based feature selection algorithms in terms of the classifi-
cation performance, the number of features and the computational cost.
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1 Introduction

Classification problems usually have a large number of features, including rele-
vant, irrelevant and redundant features. However, irrelevant and redundant fea-
tures may reduce the classification performance due to the large search space,
known as “the curse of dimensionality” [3, 6]. Feature selection is to select a sub-
set of relevant features for classification, which could shorten the training time,
simplify the learned classifiers, and/or improve the classification accuracy [6].
Feature selection is a difficult problem due mainly to the large search space,
which increases exponentially with respect to the number of available features
[6]. Therefore, an exhaustive search is practically impossible in most situations.



Different heuristic search techniques have been applied to feature selection, such
as greedy search [3]. However, most of the existing algorithms still suffer from
the problems of stagnation in local optima or being computationally expensive
[3,6]. In order to better address feature selection problems, an efficient global
search technique is needed.

Evolutionary computation (EC) techniques are well-known for their global
search ability. They have been applied to feature selection problems, such as
genetic algorithms (GAs) [1], genetic programming (GP) [13], and particle swarm
optimisation (PSO) [15]. PSO [14] is a relatively recent EC technique, which is
computationally less expensive than some other EC algorithms. In PSO [14], a
population of candidate solutions are encoded as particles in the search space.
PSO starts with the random initialisation of a population of particles. Based on
the best experience of one particle (pbest) and its neighbouring particles (gbest),
PSO searches for the optimal solution by updating the velocity and the position
of each particle according to the following equations:
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where x and v represent the position and the velocity. ¢t denotes the tth it-
eration in the evolutionary process. d € D denotes the dth dimension in the
D-dimensional search space. w is inertia weight. ¢c; and ¢y are acceleration con-
stants. r1; and ro; are random values uniformly distributed in [0, 1]. p;q and pgyq
represent the elements of pbest and gbest in the dth dimension.

Many studies have shown that PSO is an efficient search technique for fea-
ture selection [2, 8, 15]. However, there are some limitations about current PSO
for feature selection. Firstly, PSO has not been tuned to the feature selection
task. Many initialisation strategies have been proposed in PSO to improve its
performance [16]. However, no existing initialisation strategies are specifically
proposed for feature selection. Secondly, the traditional pbest and gbest updat-
ing mechanism may cause missing good feature subsets with high classification
performance and a small number of features (Discussions in Section 2.2). There-
fore, the potential of PSO for feature selection has not been fully investigated.

1.1 Goals

The overall goal of this paper is to propose a new PSO based feature selection
approach to selecting a smaller number of features and achieving similar or even
better classification performance than using all features and traditional /existing
feature selection methods. To achieve this goal, we propose a new initialisation
strategy and a new mechanism for updating pbest and gbest in PSO to reduce
the number of features without reducing (or even increasing) the classification
performance. Specifically, we will:

— propose a new initialisation strategy in PSO to reduce the number of features
without decreasing the classification performance of the evolved subset,



— develop a new updating mechanism to lead PSO to search for the feature
subsets with high classification performance and small numbers of features,

— develop a new PSO based wrapper feature selection algorithm using the
proposed initialisation strategy and updating mechanism, and

— investigate whether the proposed feature selection algorithm can outperform
two traditional feature selection methods, a PSO based algorithm with the
goal of only maximising the classification performance, and a PSO based
two-stage algorithm considering both of the two main objectives.

2 Proposed Approach

Feature selection has the two main objectives of maximising the classification
performance and minimising the number of features. However, most existing
methods only aim to maximise the classification performance [2]. Some works
combine these two objectives into a single fitness function [8,18], but they
need a predefined parameter to balance these two components, which is usu-
ally problem-dependent and hard to determine a priori. To solve this problem,
we only include the classification error rate in the fitness function (Equation
3) because it is more important than the number of features. Meanwhile, we
propose an initialisation strategy and a new pbest and gbest updating mecha-
nism to reduce the number of features without decreasing or even increasing the
classification performance, which also reduces the computational cost.

Fitness1 = ErrorRate (3)

2.1 New initialisation Strategy

The new initialisation strategy is motivated by the two traditional methods,
forward selection [17] and backward selection [12]. Forward selection starts with
an empty set of features and it usually selects a smaller number of features, but it
may miss the optimal feature subset with a large number of features. Backward
selection starts with the full set of features and it usually selects a large number
of features, but the computational time is longer than forward selection.
Hence, we propose a new initialisation strategy to take the advantages of for-
ward and backward selection and avoid their disadvantages. In this new strategy,
particles are initialised using a small number of features. Therefore, the algorithm
will start with searching the solution space with small feature subsets. This will
also reduce the computational cost because the evaluation of a small feature sub-
set in wrapper approaches takes less time than a large feature subset. However,
if all the particles are initialised with small subsets, PSO may miss the medium
or large feature subsets that can achieve the best classification performance.
Therefore, in the proposed initialisation strategy, most particles are initialised
using a small number of features (simulating forward selection) and other par-
ticles are initialised using large feature subsets (simulating backward selection).
Meanwhile, through social interaction (updating pbest and gbest), PSO is ex-
pected to be able to reach and search the solution space with medium feature
subsets if these feature subsets can achieve better classification performance.



2.2 New pbest and gbest Updating Mechanism

In PSO, particles share information through pbest and gbest, which can influence
the behaviour of the swarm during the evolutionary process. Traditionally, the
pbest and gbest are updated solely based on the fitness value of the particles
(i.e., classification performance in feature selection problems). pbest of a particle
is updated only when the fitness of the new position of the particle is better
than the current pbest. In feature selection, the traditional updating mechanism
has a potential limitation. If the classification performance of the particle’s new
position is the same as the current pbest, but the number of features is smaller,
the particle’s new position corresponds to a better feature subset. However,
according to the traditional updating mechanism, the pbest will not be updated
because their classification performance is the same.

To overcome this limitation, we propose a new pbest and gbest updating
mechanism. In the new mechanism, the classification performance of the feature
subset is used as the fitness function, which means the classification performance
is still the first priority, but the number of features is also considered. pbest and
gbest are updated in two situations. The first situation is that if the classifica-
tion performance of the particle’s new position is better than pbest, pbest will be
updated and replaced by the new position. In this case, the number of features
selected will be ignored. The second situation is that if the classification perfor-
mance of the new position is the same as pbest and the number of features is
smaller, the current pbest will be replaced by the particle’s new position. After
updating pbest, gbest of each particle is updated in the same way by comparing
gbest with the pbest of the particle and its neighbours.

By adding the second situation, the proposed updating mechanism is ex-
pected to avoid the limitation of traditional updating mechanism. Where avail-
able, it will always select a better feature subset to be the pbest or gbest, which
either has better classification performance or the same classification perfor-
mance with a smaller number of features. This can help the algorithm filter out
redundant features and make the feature subset with good classification perfor-
mance and a small number of features to be the leader (pbest or gbest) of each
particle and the whole swarm.

Note that in GP, each individual can be represented as a tree. The size of the
trees can be considered in the selection process, known as parsimony pressure
[11]. The parsimony pressure seems similar to the proposed pbest and gbest
updating mechanism. However, they are different ideas in two aspects. Firstly,
the parsimony pressure in GP changes the size of the trees while the proposed
pbest and gbest updating mechanism does not change the size of the particles that
is always the total number of features in the dataset. Secondly, the parsimony
pressure is to control the size of the trees in GP, which can be used in any
problem domain, but the number of features considered in the proposed pbest
and gbest updating mechanism is particularly for feature selection problems to
optimise one of the two main objectives, i.e., minimising the number of features.

Based on the new initialisation strategy and updating mechanism, a new
feature selection algorithm is proposed named IniPG. The pseudo-code of IniPG



Algorithm 1: The pseudo-code of the proposed algorithm (IniPG)

begin

initialise most of the particle using small feature subsets and the others
particles using relatively large feature subsets;

initialise the velocity of each particle;

while Mazximum Iterations or the stopping criterion is not met do
evaluate the fitness of each particle on the Training set;

for i=1 to Population Size do
if fitness of particle i (x;) is better than that of pbest then
L pbest = x; // Update the pbest of particle 1

else if fitness of x; is the same as pbest and |z;| < |pbest| then
L pbest = x; ; // Update the pbest of particle i

if fitness of pbest of any neighbour is better than that of gbest then
L gbest = pbest ; // Update the gbest of particle ¢

else if fitness of pbest of any neighbour is the same as gbest and
|pbest| < |gbest| then
L gbest = pbest ; // Update the gbest of particle ¢

for i=1 to Population Size do
| update the velocity and the position of particle ¢

calculate the classification accuracy of the selected features on the Test set;
return the position of gbest (the selected feature subset);
| return the training and test classification accuracies;

can be seen in Algorithm 1. PSO has two versions, which are continuous PSO [14]
and binary PSO [9], but binary PSO has potential limitations [10]. Therefore,
we will use continuous PSO to propose a novel feature selection algorithm. The
representation of a particle is a “n” bits string, where “n” is the total number of
features. The position value in each dimension (z;4) is in [0,1]. A threshold 6 is
needed to compare with the value of x;4. If x;4 > 6, the dth feature is selected.
Otherwise, the dth feature is not selected.

3 Design of Experiments

3.1 Benchmark Techniques

To examine the performance of the proposed algorithm (IniPG), two traditional
wrapper feature selection methods and two PSO based algorithms (ErRt and
2Stage) as benchmark techniques in the experiments.

The two traditional methods are linear forward selection (LFS) [5] and greedy
stepwise backward selection (GSBS), which were derived from SFS and SBS,
respectively. More details about LFS can be seen in the literature [5] and GSBS
starts with all available features and stops when the deletion of any remaining
feature results in a decrease in classification performance. ErRt only uses the
classification error rate as the fitness function. 2Stage [18] employs a two-stage
fitness function to optimise the classification in the first stage and take the



Table 1. Datasets

Dataset #Features #Classes #Instances| Dataset #Features #Classes #Instances
Wine 13 3 178 Zoo 17 7 101
Wisconsin Breast Cancer Vehicle 18 4 846
(Diagnostic) (WBCD) 30 2 569
Ionosphere 34 2 351 Lung 56 3 32
Hillvalley 100 2 606 Madelon 500 2 4400

number of features into account in the second stage [18]. Binary PSO was used
in [18], but continuous PSO is employed in this paper to keep consistent with
ErRt and IniPG for fair comparisons.

3.2 Datasets and Parameter Settings

Eight datasets (Table 1) are chosen from the UCI machine learning repository
[4], which have different numbers of features, classes and instances. For each
dataset, the instances are randomly divided into two sets: 70% as the training
set and 30% as the test set.

K-nearest neighbour (KNN) was used in the experiment and K=5 (5NN).
Weka [7] is used to run the experiments of using LFS and GSBS. All the settings
in LFS and GSBS are kept to the defaults except that backward search is chosen
in GSBS. The parameters of PSO in ErRt, 2Stage and IniPG are set as follows:
w = 0.7298, ¢; = co = 1.49618, v,,4. = 6.0, population size is 30, and the
maximum iteration is 100. The fully connected topology is used. These values
are chosen based on the common settings in [14]. According to our previous
experiments, the threshold 6 is set as 0.6 in the three PSO based algorithms. In
IniPG, a major part of the swarm (2/3) is initialised using around 10% of the
total number of features. The other minor part of the swarm (1/3) is initialised
using more than half of the total number of features, where a random number
(e.g. m, where m is between half and the total number of features) is firstly
generated and m features is randomly selected to initialise this particle.

For each dataset, each each experimental test has been conducted for 40
independent runs. A statistical significance test, T-test, is performed between
their classification performances and the significance level was selected as 0.05.

4 Experimantal Results and Discussions

Table 2 shows the experimental results of the proposed algorithm and the bench-
mark techniques. “All” means that all features are used for classification. “NO.”
represents the average number of features selected. “Ave”, “Best” and “StdDev”
indicate the average, the best and the standard deviation of the 40 test accu-
racies in ErRt, 2Stage or IniPG. “T-test” shows the result of the T-test, where
“47 (%) means that the classification performance of a benchmark technique is
significantly better (worse) than that of IniPG. “=" indicates they are similar.

4.1 Results of Benckmark Techniques

Results of LES and GSBS: according to Table 2, LFS selected a smaller number
of features and achieved a similar or higher classification accuracy than using



Table 2. Experimantal Results

Dataset MethodNO. Ave(Best) StdDev T-test|Dataset MethodNO. Ave(Best) StdDev T-test
All 13 76.54 - All 17 80.95 -
LFS 7  74.07 - LFS 7 74.07 -
Wine GSBS 8  85.19 = lzoo GSBS 8 85.19 -
ErRt 8  95.96 (100) 1.83E-2 = ErRt 9.18 95.5 (97.14) 90.3E-4 =
2Stage 8  95.96 (100) 1.83E-2 = 2Stage 9.18 95.5 (97.14) 90.3E-4 =
IniPG  6.78 95.12 (98.77) 1.87E-2 IniPG 6.58 95.52 (97.14)71.3E-4
All 30 92.98 B All 18 83.86 -
LFS 10 88.89 - LFS 9 83.07 -
GSBS 25 83.63 - ., GSBS 16  75.79 -
WBCD  piRt  13.4203.39 (94.74)55.8E-4 - |Y°Mle mRe 952 85 (87.01) 79E4 =
2Stage 5  93.54 (94.74)75.1E-4 - 2Stage 8.65 84.95 (87.01)77.9E-4 =
IniPG  3.45 94.09 (94.74)82.5E-4 IniPG  10.28 85.31 (87.01)95.5E-4
Al 34 8381 - Al 56 70 -
LFS 4  86.67 - LFS 6 90 +
Tonosphere GBS 30 78.1 - lLung GSBS 33 90 +
ErRt 12.5888.4 (93.33) 2.14E-2 + ErRt 27.35 72 (80) 6E-2 -
2Stage 12.0588.14 (91.43)1.89E-2 + 2Stage 27.38 72.25 (90) 6.89E-2 -
IniPG 3.2 87.14 (91.43)1.88E-2 IniPG 6.22 78.75 (90) 6.4E-2
ATl 100 56.59 B Al 500 709 -
LFS 8  57.69 = LFS 7 64.62 -
Hillvalley GSBS 90 49.45 = Madelon GSBS 489 51.28 -
ErRt 47.3257.54 (61.81)1.52E-2 = ErRt 258.1 76.55 (79.49)1.22E-2 -
2Stage 47.0557.57 (61.81)1.55E-2 = 2Stage 256.4876.52 (79.36) 1.26E-2 -
IniPG  12.7257.95 (60.71) 1.48E-2 Initia 216.4 78.49 (84.23)3.23E-2

all features in most cases. GSBS could reduce the number of features, but only
achieved better classification performance on a few datasets. In most cases, LFS
outperformed GSBS in terms of both the number of features and the classifica-
tion performance. The results indicate that LFS as a forward selection algorithm
is more likely to obtain good feature subsets with a small number of features
GSBS (backward selection) because of different starting points. Feature subsets
selected by GSBS may still have redundancy. This also suggests that utilising
the advantages of both forward selection and backward selection can improve
the performance of a feature selection algorithm, which motivates the proposal
of the new initialisation strategy in this work.

Results of ErFs: according to Table 2, in almost all datasets, ErRt achieved sim-
ilar or better classification performance than using all features, and the evolved
feature subsets only included around half of the available features. This sug-
gests that PSO as an evolutionary search technique can be successfully used for
feature selection problems.

Results of 2Stage: according to Table 2, 2Stage evolved feature subsets with
around half (or less) of the available features and achieved better classification
performance than using all features in almost all cases. 2Stage outperformed
ErRt in almost all cases. However, 2Stage attempted to find a trade-off between
the classification performance and the number of features, which means the re-
duction of the number of features might decrease the classification performance.

4.2 Results of IniPG

According to Table 2, in 11 of the 12 datasets, IniPG evolved feature subsets
that selected less than half (or even close to than 10% in four datasets) of the



available features, but achieved significantly better classification performance
than using all features. Only in the Movement dataset is the average classification
performance obtained by IniPG (94.62%) is less, by 0.2%, than that of using all
features (94.81%), but the best accuracy (95.19%) is higher.

Comparisons Between IniPG and Two Traditional Methods (LFS and GSBS):
in almost all datasets, IniPG achieved significantly better or similar classification
performance to LFS, although the number of features is slightly larger in some
cases. Comparing IniPG with GSBS, the number of features in IniPG is smaller
than GSBS in all datasets and the classification performance of IniPG is signifi-
cantly better than GSBS in 11 of the 12 datasets. This suggest that IniPG as a
PSO based algorithm can search the solution space more effectively than both
LFS and GSB. The initialisation strategy movitated by both forward selection
and backward selection can help IniPG take the advantages of both forward se-
lection and backward selection to obtain feature subsets with a smaller number
of features and better classification performance than both LFS and GSB.

Comparisons Between IniPG and ErRt: according to Table 2, IniPG selected
feature subsets including smaller numbers of features and achieved significantly
better or similar classification performance than ErRt in almost all datasets (ex-
cept for the Ionosphere dataset, where the number of features in IniPG is around
one fourth of that in ErRt). This suggests that although ErRt and IniPG shared
the same fitness function (Equation 3), the proposed initialisation strategy and
pbest and gbest updating mechanism can help IniPG to effectively eliminate
the redundant and irrelevant features to obtain a smaller feature subset with
significantly better classification performance than ErRt.

Comparisons Between IniPG and 2Stage: according to Table 2, in almost all
datasets, the classification performance of IniPG is significantly better or sim-
ilar to that of 2Stage and the number of features is smaller. The reason might
be that the fitness function in the second stage in 2Stage aims to find a balance
between the classification performance and the number of features. Therefore,
the reduction of the number of features will also decrease the classification per-
formance. In IniPG, the fitness function only includes the classification perfor-
mance during the whole evolutionary process. This ensures that the reduction of
the number of features in IniPG will not reduce the classification performance.
Meanwhile, the proposed initialisation strategy and pbest and gbest updating
mechanism can help IniPG further remove the irrelevant or redundant features
to reduce the number of features, which in turn could increase the classification
performance. In addition, compared with 2Stage, another advantage of IniPG is
that it does not need a predefined parameter to balance the relative importance
of the classification performance and the number of features.

Note that simply increasing the number of iterations cannot help ErRt and
2Stage achieve the same performance obtained by IniPG. The main reason is
that ErRt does not consider the number of features in the fitness function and
2Stage takes a trade-off between the classification performance and the number



of features. IniPG simulates both forward and backward selection to duplicate
their advantages, which helps IniPG pay more attention to small feature subsets,
but does not miss the large feature subsets with high classification performance.
Meanwhile, because of the new updating mechanism, for two feature subsets
with the same classification performance, IniPG will select the smaller one as
the new pbest or gbest. ErRt and 2Stage using traditional updating mechanism
will not do this during the evolutionary training process. Therefore, ErRt and
2Stage can not achieve as good performance as IniPG in almost all situations.

4.3 Analysis on Computational Time

All the five methods used in the experiments are wrapper based feature selection
approaches. Therefore, most of their computational time is spent on the fitness
evaluation, which regards the training and testing classification processes.

LF'S usually used less time than the other four methods because the forward
selection strategy starts with a small number of features and the evaluation of a
small feature subset takes less time than a large feature subset. GSBS cost less
time than other three PSO based algorithms (ErRt, 2Stage and IniPG) on the
datasets with a small number of features, but more time on the datasets with a
large number of features, such as the Madelon and Isoleth datasets. The reason is
that GSBS starts with the full set of features, which needs much longer time for
each evaluation. The number of evaluations in GSBS substantially increases in
such large datasets while the number of evaluations in PSO based algorithms is
still the same. Generally, 2Stage cost less time than ErRt because the size of the
feature subsets evolved by 2Stage is smaller than ErRt during the evolutionary
training process. For the same reason, the computational time of IniPG is less
than both of ErRt and 2Stage.

5 Conclusions

This paper proposes a new PSO algorithm for feature selection problems (IniPG).
In IniPG, a new initialisation strategy was proposed based on the ideas of two
traditional feature selection methods (forward selection and backward selection)
to utilise the advantages of these two methods. Meanwhile, a new pbest and gbest
updating mechanism was proposed to overcome the limitation of the traditional
updating mechanism in order to ensure the feature subset with the highest clas-
sification performance and their smallest number of features become the new
pbest or gbest. IniPG was examined and compared with two traditional feature
selection algorithms (LFS and GSBS), a PSO based algorithm with only the clas-
sification error rate as the fitness function (ErRt) and a PSO based two-stage
algorithm (2Stage). Experimental results show that in almost all datasets, IniPG
achieved significantly better classification performance than LFS and GSBS, al-
though the number of features is larger than LFS in some cases. In almost all
cases, IniPG outperformed ErRt and 2Stage in terms of the number of features
and the classification performance, and used less computational time.

In the future, we will further tune the PSO algorithm for feature selection
problems. We will also investigate multi-objective PSO for feature selection in



classification problems. We will also investigate whether using a given learning
algorithm in a wrapper feature selection approach can select a good or near-
optimal feature subset for other learning algorithms in the future.
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