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Abstract—The advances in data collection increase the di-
mensionality of the data (i.e. the total number of features) in
many fields, which arises a challenge to many existing feature
selection approaches. This paper develops a new feature selection
approach based on particle swarm optimisation (PSO) and
a local search that mimics the typical backward elimination
feature selection method. The proposed algorithm uses a wrapper
based fitness function, i.e. the classification error rate. The local
search is performed only on the global best and uses a filter
based measure, which aims to take the advantages of both
filter and wrapper approaches. The proposed approach is tested
and compared with three recent PSO based feature selection
algorithms and two typical traditional feature selection methods.
Experiments on eight benchmark datasets show that the proposed
algorithm can be successfully used to select a significantly
smaller number of features and simultaneously improve the
classification performance over using all features. The proposed
approach outperforms the three PSO based algorithms and the
two traditional methods.

I. INTRODUCTION

Feature selection (also called dimension reduction), which
is a process of finding a small subset of features from a given
large feature set, has been of interest for many decades [1, 2].
In classification, feature selection is to find a subset of relevant
features so that the dimensionality of the data can be reduced
and the learning/classification process can be sped up while
the overall classification performance can be maintained or
improved [2].

A feature selection approach can be viewed as the combina-
tion of a search technique for finding an optimal feature subset
(s), along with an evaluation criterion which evaluates the
goodness of different feature subsets. Based on the evaluation
measure, there are two categories of feature selection methods
[2, 3]: wrapper approaches and filter approaches. Wrapper
approaches employ a classification/learning algorithm to eval-
uate the goodness of the selected features, where a classi-
fier is trained for each feature subset. Wrapper approaches
are usually computationally intensive, but provide promising
feature subsets for the particular classification algorithm. The
evaluations in filter approaches are independent of any classi-
fication algorithm. They use information measure, consistency
measure or other measures to evaluate feature subsets [2].
Filter approaches are often computationally cheaper and more
general to different classification algorithms than wrapper
approaches. Wrapper and filter methods can complement each

other in that filter methods can search through the feature space
efficiently while the wrappers provides good accuracy.

Feature selection has a large search space, which is 2n for a
dataset including n features. An effective and efficient search
technique is necessary for developing a promising feature
selection approach. Particle swarm optimisation (PSO) is an
evolutionary computation (EC) method [4, 5], which is a pow-
erful global search method and computationally cheaper than
other EC algorithms [6]. There are two main types of PSO,
which are continuous PSO [4, 5] and binary PSO [7]. Both
of them have been successfully applied to feature selection
[8, 9], but the research in [10] shows that continuous PSO
can achieve better performance than binary PSO. Therefore,
this work focuses mainly on investigating and improving
the performance of continuous PSO for feature selection in
classification.

In continuous PSO for feature selection, the position value
shows the probability of the corresponding feature being
selected. However, when evaluating the goodness of a particle,
a feature is either selected or not selected and the probability
information is not fully used. Meanwhile, feature selection is
a complicated task with many local optima, which easily leads
to the issue of being stuck in local optima. Combining local
search with EC algorithms has shown to be effective in many
fields, but this has seldom been investigated in PSO for feature
selection.

A. Goals
The overall goal of this paper is to develop a new PSO

based feature selection approach to reducing the dimensional-
ity of data while maintaining or increasing the classification
accuracy over using all features. To achieve this goal, a local
search mimicking a typical backward elimination method is
performed on the global best of the swarm in each iteration
to improve its search ability. This “backward elimination” (or
local search) is designed to be fast and effective by 1) using
a mutual information based filter measure 2) further utilising
the information given by the position value, and 3) performing
the search on small sub-groups of the features selected by
the global best, rather than on the whole set of selected
features. The proposed approach is examined and compared
with three recently developed PSO based algorithms and two
traditional feature selection algorithms on eight datasets of



varying difficulty. Specifically, we will investigate:
• whether the new approach can successfully select a

smaller number of features and achieve similar or higher
classification accuracy than using all features,

• whether the new approach can outperform the three PSO
based algorithms in terms of the classification perfor-
mance and the number of features, and

• whether the new approach can achieve better performance
than the two traditional algorithms.

II. BACKGROUND

A. Particle Swarm Optimisation (PSO)
Particle swarm optimisation (PSO) [4, 5] is based on the

idea of swarm intelligence, inspired by social behaviours, such
as fish schooling and birds flocking. In PSO, a candidate
solution is represented by a particle. A population of particles
move (“fly”) together in the search space to find the optimal
solutions. During the movement, each particle (i) has a posi-
tion shown by xi = (xi1, xi2, ..., xiD) and a velocity shown
by vi = (vi1, vi2, ..., viD), where D is the dimensionality of
the search space. During the search process, each particle can
remember its best position visited so far called personal best
(denoted by pbest), and the best previous position visited so
far by the whole swarm called global best (denoted by gbest).
Based on pbest and gbest, PSO iteratively updates xi and vi
of each particle to search for the optimal solutions according
to Eqs. 1 and 2.

vt+1
id = w ∗ vtid + c1 ∗ ri1 ∗ (pid − xt

id) + c2 ∗ ri2 ∗ (pgd − xt
id) (1)

xt+1
id = xt

id + vt+1
id (2)

where vt+1
id shows the velocity of particle i in the dth dimen-

sion at the (t + 1)th iteration. xt+1
id shows the position value

of particle i. w is the inertia weight reflecting the influence
of the previous velocity. c1 and c2 are acceleration constants.
ri1, ri2 and rand() are random values, which are uniformly
distributed in [0, 1]. pid and pgd shows the values of pbest
and gbest in the dth dimension.

B. Entropy and Mutual Information

Entropy and mutual information are two of the fundamental
concepts in information theory [11], which provide a way to
measure the information of random variables.

Let X be a random variable with discrete values, its
uncertainty can be measured by entropy H(X) defined as:

H(X) = −
∑
x∈X

p(x) log2 p(x) (3)

where p(x) = Pr(X = x) is the probability density function
of X . It is noted that entropy does not depend on actual values,
but just the probability distribution of the random variable.

For two discrete random variables X and Y with their
probability density function p(x, y), the joint entropy H(X,Y )
is defined as:

H(X,Y ) = −
∑

x∈X ,y∈Y

p(x, y) log2 p(x, y) (4)

In the situation, where a variable is known while the other
variables are unknown, the uncertainty can be evaluated by
conditional entropy. Let Y be the given/known variable, the
conditional entropy (denoted by H(X|Y )) of X with respect
to Y is defined as:

H(X|Y ) = −
∑

x∈X ,y∈Y

p(x, y) log2 p(x|y) (5)

where p(x|y) is the posterior probabilities of X given Y .
From this definition, if X completely depends on Y , then
H(X|Y ) is zero, which means that no more other information
is required to describe X when Y is known. Otherwise,
H(X|Y ) = H(X) denotes that knowing Y will provides no
information about X .

Mutual information measures the information shared be-
tween two random variables. Given a variable X , the infor-
mation gained from X about another variable Y is mutual
information denoted by I(X;Y ).

I(X;Y ) = H(X)−H(X|Y )

= H(Y )−H(Y |X)

= −
∑

x∈X ,y∈Y

p(x, y) log2
p(x, y)

p(x)p(y)
(6)

According to Eq. 6, I(X;Y ) will be large if two variables
X and Y are closely related. I(X;Y ) = 0 if X and Y are
totally unrelated.

Mutual information has been used as a filter measure in
feature selection [12, 13] with which the algorithms can suc-
cessfully reduce the dimensionality of the data and maintain
or increase the classification accuracy over using all features.

C. Related Work on Feature Selection

1) Traditional Feature Selection Methods.: Feature ranking
is a relax version of feature selection, where a score is assigned
to each of the available features individually according to a
pre-defined criterion [2]. Feature selection can be achieved
by choosing the features with the best scores. However, it
ignores the interaction between features. If the features in the
dataset are highly correlated, this approach may not achieve
good results because some of the selected features may be
redundant [2].

Sequential feature selection is a basic traditional feature se-
lection approach, including sequential forward selection (SFS)
[14] and sequential backward selection (SBS) [15]. SFS (or
SBS) selects features by incrementally adding (or removing)
features from the empty (or full) feature set. However, they
may suffer from the problem of “nesting”, i.e. once a feature
has been added to (or removed from) the feature set, it cannot
be removed (or added) later. To solve this problem, “plus-l-
take away-r” [16] was proposed to perform l times forward
selection and then r times backward selection. However, the
optimal values of (l, r) is hard to determine. Floating selection
methods [1], namely sequential backward floating selection
(SBFS) and sequential forward floating selection (SFFS), were
proposed to automatically determine (l, r). Later, a linear
forward selection (LFS) method was also proposed [17] based



on the best-first algorithm and SFFS. The number of features
considered in each step is restricted, which can reduce the
computational cost while maintaining the comparable classifi-
cation accuracy.

2) EC Approaches for Feature Selection.: EC algorithms
have been applied to feature selection problems, such as PSO,
genetic algorithms (GAs) [18], genetic programming (GP)
[19], and differential evolution (DE) [20].

Based on GP, Ahmed et al. [19] proposed a filter feature
selection algorithm for biomarker discovery in LC-MS data.
The results show that the proposed algorithm can significantly
reduce the number of features and increase the classification
accuracy. Al-Ani et al. [20] also proposed a DE based feature
selection method, where features are distributed to a set of
wheels and DE is employed to select features from each wheel.
This algorithm can significantly reduce the number of features
and improve the classification performance. Zhu et al. [18]
proposed a feature selection method incorporating GA with
local search (i.e. forms a memetic algorithm). Meanwhile,
this algorithm combines filter ranking measure into a wrapper
framework to take the advantages of both filter and wrapper
approaches. The results show that this algorithm outperforms
GA alone and other algorithms.

A PSO based filter-wrapper feature selection algorithm was
proposed in [8], where a filter measure is used to encode the
position of each particle and the classification performance is
used in the fitness function. The experiments show that the
proposed method slightly outperforms a binary PSO based
filter method. However, it has not been compared with any
wrapper algorithm, which can usually obtain higher classifi-
cation performance than a filter algorithm. Fdhila et al. [21]
applied multi-swarm PSO to solve feature selection problems.
However, the computational cost of the proposed algorithm is
high because it involves parallel evolutionary processes and
multiple sub-swarms with a relative large number of particles.

Many existing studies improved PSO for feature selection
algorithms by developing new gbest updating mechanisms.
Chuang et al. [9] proposed to reset gbest elements to zero if
it maintains the same values for several iterations. However,
the performance of this algorithm is not compared with the
standard PSO based feature selection algorithm. Chuang et
al. [22] applied the so-called catfish effect to gbest in PSO
for feature selection, which introduces new particles into the
swarm by re-initialising the worst particles when gbest has not
been improved for a number of iterations. The authors claimed
that the introduced catfish particles could help PSO avoid pre-
mature convergence and lead to better results than sequential
GA, SFS, SFFS and other methods. Recently, Xue et al. [23]
developed a new pbest and gbest updating mechanism in PSO
for feature selection by considering the number of features
when updating them. The proposed algorithm can increase the
classification accuracy and reduce both the number of features
and the computational time.

Lin et al. [24] proposed a wrapper feature selection algo-
rithm using PSO and support vector machine (SVM). This
algorithm aims to optimise the parameters in SVM and search

Algorithm 1: Pseudo-code of PSOBE.
Input : A Training set and a Test set, parameters in PSO;
Output : gbest (selected feature subset);

Training and test classification accuracies.

1 begin
2 randomly initialise the position and velocity of each particle;
3 while Maximumiterations is not reached do
4 evaluate fitness of each particle ; /* i.e. the

classification error rate (Eq. 7) */
5 for i=1 to PopulationSize do
6 update the pbest of particle i;
7 end
8 update the gbest ; /* fully connected

topology */
9 for i=1 to PopulationSize do

10 for d=1 to Dimensionality do
11 update vid according to Eq. 1;
12 update xid according to Eq. 2;
13 end
14 end
15 perform “backward elimination” on gbest ;

/* According to Fig. 1 */
16 end
17 calculate the classification accuracy of the selected feature

subset on the test set;
18 return the position of gbest (the selected feature subset), the

training and test classification accuracies;
19 end

for the best feature subset simultaneously. Cervante et al.
[13] developed a PSO based filter approach, where mutual
information and entropy were used to form the fitness function.
Experiments show that PSO using mutual information can
effective address feature selection problems. Our recent work
on PSO for feature selection can be seen in [25, 26, 27, 28]

Based on PSO and a statistical clustering method [29, 30]
that groups features to different clusters and similar features
to the same cluster, Lane et al. [31] proposed a feature
selection algorithm, which uses PSO to select one feature
from each cluster. The results show that by selecting a rep-
resentative feature from each cluster, the proposed algorithm
can significantly reduce the number of features and increase
the classification performance. This shows the the statistical
clustering information (i.e. feature clusters) can provide useful
information in feature selection. Therefore, this work will also
utilise such information to further develop the new approach
(details can be seen in Section III-D).

III. PROPOSED APPROACH
A. Overall Algorithm

Algorithm 1 shows the overall structure of the proposed
algorithm named PSOBE. PSOBE follows the basic steps of
a standard PSO algorithm except the “backward elimination”
procedure on gbest.

In PSOBE, each particle is encoded as a vector of real
numbers, xi = (xi1, xi2, .., xid, .., xiD), where D is the di-
mensionality of the dataset. 0 ≤ xid ≤ 1 shows the probability
of the dth feature being selected. A threshold θ is used to
determine whether this feature is selected. If θ ≤ xid, the dth
feature is selected. Otherwise, the dth feature is not selected.
The classification error rate (i.e. a wrapper measure) is used
as the fitness function in PSOBE (shown by Eq. 7), which



aims to minimise the classification error rate (or maximise the
classification accuracy) of the selected features.

ErrorRate =
FP + FN

TP + TN + FP + FN
(7)

where FP, FN, TP and TN stand for false positives, false
negatives, true positives, and true negatives, respectively.

A “backward elimination” procedure is developed to mimic
the typical backward elimination (or backward selection) al-
gorithm [15]. This “backward elimination” is used as a local
search based on gbest to find a better solution, to improve the
search ability and to avoid the algorithm becoming stagnation
in local optima. Two of the key components to develop
this “backward elimination” is the measure to evaluate the
goodness of each feature and how to perform the “backward
elimination”. Meanwhile, as discussed before, the position
values show the probability of the corresponding features
being selected, but such information is not fully reflected by
the evaluation because the feature can only be either selected
or not selected when evaluating the classification error rate.
Therefore, this “backward elimination” also aims to further
utilise the information from the position values.

The “backward elimination” measure, the consideration
of the position value and how to perform the “backward
elimination” are described in detail in Sections III(B), (C) and
(D).

B. “Backward elimination” measure

Since wrapper based feature selection approaches suffer
from the problem of high computational cost, this “backward
elimination” should not be computationally heavy, but can
still capture the usefulness of features. Therefore, a fast filter
measure, which is based on mutual information, is used here.
More importantly, by using this filter measure, PSOBE is also
expected to take the advantages of both filter methods and
wrapper methods.

When using mutual information in feature selection [12, 13],
features and the class label are treated as variables. Mutual
information evaluates the shared information between a feature
and the class label or between two features. Let F be a set of
selected features, c be the class label, fi (1 ≤ i < |F |) is any
feature in F . The relevance between F and c can be measured
by Eq. 8 [12, 13], which suggests that the contribution of fi to
the relevance can be shown by Eq. 9. The detailed calculation
of I(fi; c) can be referred to Eq. 6.

Rel(F ) =
∑
fi∈F

I(fi; c) (8)

4Rel(fi) =I(fi; c) (9)

The redundancy contained in F can be measured by Eq. 10
[12, 13], which suggests that the redundancy brought by fi
can be shown by Eq. 11.

Red(F ) =
∑

fi,fj∈F

I(fi, fj) (10)

4Red(fi) =
∑

fj∈F ;fi 6=fj

I(fi, fj) (11)

In [12, 13], the goodness of the feature subset (F ) is
evaluated by (Rel(F )−Red(F )), i.e. the relevance of F minus
the redundancy of F . Therefore, Eq. 12 is proposed here to
measure the goodness of fi in F , i.e. the relevance of fi minus
the redundancy brought by fi. |F | means the size of the feature
subset F .

Fit(fi) = 4Rel(fi)−
1

|F | − 1
4Red(fi) (12)

Eq. 12 is a maximisation function, the larger the better. For
backward elimination, the feature that has the largest redun-
dancy and the smallest relevancy, i.e. the smallest value of
Fit(fi), should be removed. However, when Fit(fi) ≥ 0, the
relevance of fi is larger or at least the same as its redundancy,
fi should not be removed. Therefore, feature fi is removed
only when Fit(fi) < 0 and Fit(fi) is the smallest value
among all the possible features in F , i.e. Fit(fi) ≤ Fit(fj),
where j = 1, 2, ...|F | and j 6= i.

C. Consideration of the position value

The position value is considered in the “backward elimina-
tion” step to further utilise the information it carries (i.e. prob-
ability information). This is achieved by adding the position
value of fi, (i.e. xi) to Eq. 12, which forms the new equation
(Eq. 13). θ < xi ≤ 1.0 since the corresponding feature is
selected.

By adding xi, Eq. 13 ensures that if two features has the
same smallest value from Eq. 12, the one with a smaller
position value (i.e. smaller probability) will be removed from
F . Therefore, fi is removed only when Fit′(fi) < 0 and
Fit′(fi) ≤ Fit′(fj), where j = 1, 2, ...|F | and j 6= i.

Fit′(fi) =
1

xi
∗ (4Rel(fi)−

1

|F | − 1
4Red(fi)) (13)

D. How to perform the “backward elimination”

When using the “backward elimination”, the number of
features being removed is an important factor, but it is difficult
to pre-determine. It should be a dynamic value determined
according to the features selected by gbest.

To solve this problem, a statistical clustering method
[29, 30] is used to first group features to different clusters,
where similar features are in the same cluster. The “backward
elimination” is then performed on each cluster rather than on
all the features selected by gbest. The intuition is that if a
large number of features is selected from one cluster, removing
one feature will not reduce the classification performance too
much because features in the same cluster are similar features.
Specifically, for each cluster, the features selected by gbest
are first collected to form the feature subset (i.e. F used
above) on which the “backward elimination” may perform.
Then the “backward elimination” is performed on F to reduce
one feature only when there are more than

√
m + 1 features

are selected by gbest (i.e. |F | >
√
m+1), where m is the total
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Fig. 1. The Flowchart of “Backward Elimination”

number of features included in this cluster. This can ensure that
when a small proportion of features are selected by gbest, they
will remain to preserve the useful information. On the other
hand, if a large proportion of features are selected, the removal
of one feature will not reduce the classification performance.
Meanwhile, performing Eq. 13 on small feature clusters will
also reduce the computation cost over performing it on a large
feature set.

The flowchart of the “backward elimination” process is
shown by Fig. 1. Note that although this “backward elimina-
tion” has many steps, their calculation is substantially faster
than a wrapper evaluation involving training a classifier. In
fact, reducing features from gbest will guide the algorithm
to search for small feature subsets, which needs shorter or
much shorter time depending on the number of features
reduced. Therefore, we hypothesise that using this “backward
elimination” as local search on gbest will reduce the number
of features, improve the classification performance and also
reduce the computational cost.

IV. EXPERIMENTS CONFIGURATION

A. Benchmark Techniques
To examine the performance of PSOBE, two traditional

wrapper feature selection methods and three PSO based al-
gorithms (PSOFS, PSO2S [32] and PSO42 [23]) are used as
benchmark techniques in the experiments. The results in [31]
are not listed here due to the page limit, but comparing the
results on the datasets used in both this paper and [31], PSOBE
achieved better performance than the method in [31].

TABLE I
DATASETS

Dataset # Features # Clusters # Classes # Instances
Wine 13 6 3 178
Vehicle 18 6 4 846
Ionosphere 34 11 2 351
Sonar 60 12 2 208
Musk Version 1 (Musk1) 166 14 2 476
Arrhythmia 279 15 16 452
Madelon 500 11 2 4400
Multiple Features 649 15 10 2000

The two traditional algorithms are LFS [17] and greedy
stepwise backward selection (GSBS), which were derived from
two typical greedy search based feature selection methods, i.e.
SFS and SBS, respectively. LFS restricts the number of fea-
tures that are considered in each step of the forward selection,
which can reduce the number of evaluations. Therefore, LFS is
computationally less expensive than SFS and can obtain better
results. More details can be seen in the literature [17]. GSBS
is a backward selection that starts with all available features
and stops when the deletion of any remaining feature results
in a decrease in the classification accuracy. PSOFS, PSO2S
and PSO42 are three PSO based algorithms. PSOFS uses the
standard continuous PSO for feature selection. PSO2S is a
two-stage based algorithm and the details can be seen from
[32]. Note that PSO2S in [32] is based on binary PSO and
PSO2S here is based on continuous PSO to be consistent with
PSOBE and others. PSO42 is based on an initialisation strategy
and a pbest and gbest updating mechanism. The details of
PSO42 can be seen from [23]. PSOFS, PSO2S and PSO42
use the classification error rate as the fitness function, which
is the same as PSOBE.

B. Datasets and Parameter Settings

Eight datasets (Table I) chosen from the UCI machine
learning repository [33] are used in the experiments. The eight
datasets are chosen to have different numbers of features,
classes and instances to be used as representatives of problems
that the proposed algorithm can address. For each dataset, the
instances are randomly divided into two sets: 70% as the train-
ing set and 30% as the test set. Since the statistical clustering
method and mutual information only work on discrete data, the
training data is first discretised using Weka [34]. The statistical
clustering method only needs to perform once for each dataset
and the number of clusters is shown in Table I.

In the experiments, K-nearest neighbour (KNN), where
K=5, was used as the classification/learning algorithm. During
the training process, KNN with 10-fold cross-validation is em-
ployed to evaluate the classification error rate of the selected
feature subset on the training set, and then the selected features
are evaluated on the test set to obtain the testing classification
error rate. A detailed discussion of why and how 10-fold cross-
validation is applied in this way is given by [3].

Weka [34] is used to run the experiments of LFS and GSBS
and all the settings are kept to the defaults. The parameters
of PSOFS, PSO2S, PSO42 and PSOBE are set as follows:
w = 0.7298, c1 = c2 = 1.49618, vmax = 6.0 [5]. the
population size is 30, and the maximum iteration is 100. The



TABLE II
COMPARISONS WITH PSO BASED ALGORITHMS

Dataset Method Ave-Size Best Ave ± Std T T1 T2 T3

Wine

All 13 76.54
PSOFS 7.93 98.77 95.6 ± 1.7953 +
PSO2S 7.93 98.77 95.6 ± 1.7953 +
PSO42 6.73 98.77 94.86 ± 1.8628 +
PSOBE 3.67 100 97.82 ± 2.0826 + + + +

Vehicle

All 18 83.86
PSOFS 9.5 87.01 85.03 ± 0.8899 +
PSO2S 8.63 87.01 84.91 ± 0.8762 +
PSO42 10.33 87.01 85.44 ± 0.8372 +
PSOBE 4.67 85.63 83.86 ± 0.8847 = - - -

Ionosphere

All 34 83.81
PSOFS 12.47 93.33 88.41 ± 2.3079 +
PSO2S 11.83 91.43 88.16 ± 1.9931 +
PSO42 3.13 91.43 86.89 ± 1.6444 +
PSOBE 3.67 93.33 88.54 ± 2.3776 + = = +

Sonar

All 60 76.19
PSOFS 26.1 84.13 77.3 ± 3.5765 =
PSO2S 24 84.13 77.46 ± 3.5582 +
PSO42 11.23 84.13 77.94 ± 3.2104 +
PSOBE 11.13 87.3 78.25 ± 4.2621 + = = =

Musk1

All 166 83.92
PSOFS 85.93 88.81 84.61 ± 2.0568 =
PSO2S 85 88.81 84.52 ± 1.9819 =
PSO42 77.3 89.51 84.87 ± 2.7042 =
PSOBE 36.7 90.91 84.76 ± 2.8856 = = = =

Arrhythmia

All 279 94.46
PSOFS 118.73 95.14 94.56 ± 0.3517 =
PSO2S 126.43 95.14 94.44 ± 0.263 =
PSO42 69.77 95.59 94.77 ± 0.4495 +
PSOBE 18.27 95.81 94.86 ± 0.4962 + + + =

Madelon

All 500 70.90
PSOFS 259.07 78.97 76.35 ± 1.0909 +
PSO2S 257.33 79.36 76.39 ± 1.1957 +
PSO42 206.57 84.23 78.81 ± 3.1171 +
PSOBE 47.83 88.33 84.73 ± 2.3752 + + + +

MultipleF

All 649 98.63
PSOFS 297.07 99.20 99.00 ± 0.0934 +
PSO2S 311.23 99.13 98.99 ± 0.0582 +
PSO42 314.5 99.20 99.00 ± 0.0935 +
PSOBE 51.1 99.10 98.86 ± 0.1356 + - - -

fully connected topology is used. All the four PSO based
algorithms share the same representation. The threshold θ
is set as 0.6, which is to keep consistent with the value in
[32, 23].

LFS and GSBS are deterministic methods, which produce a
unique solution. The four PSO based algorithms are stochastic
methods and each of them has been performed for 30 inde-
pendent runs on each dataset. A statistical significance test,
Wilson test, is performed between the classification accuracies
achieved by different algorithms. The significance level of the
Wilson test was selected as 0.05.

V. RESULTS AND DISCUSSIONS

This section firstly discusses the results of PSOBE and
the other three PSO based feature selection algorithms (Table
II), then compares the performance of PSOBE and the two
traditional methods, i.e. LFS and GSBS (Table III).

In Table II, “All” means all the available features, “Size”
means the average number of features selected by a PSO based
algorithm. “Best”, “Ave” and “Std” show the best, average
and standard deviation of the testing accuracies achieved by
PSOFS, PSO2S, PSO42 or PSOBE in the 30 independent runs.
“T” shows the results of the significance tests between the

testing accuracy of “All” and that of the three PSO based
algorithms. “T1”, “T2”, and “T3” represent the results of
the significance tests between the testing accuracy of PSOBE
against that of PSOFS, PSO2S and PSO42, respectively. “+”
(“-”) means the accuracy of PSOBE is significantly higher
(lower) than that of “All”, PSOFS, PSO2S and PSO42. “=”
means there is no significant difference.

A. Results of PSOBE

According to Table II, it can be seen that on the eight
datasets, PSOBE achieved similar classification accuracy to
all features on two datasets, and significantly higher accuracy
than all features on six datasets. In all cases, PSOBE only
selected less than 25% of the total number of features. For the
datasets including a relatively large number of features, i.e.
Arrhythmia, Madelon, and MultipleF, PSOBE removed more
than 90% of the features and at the same time significantly
increased the classification accuracy.

The results show that PSOBE is an effective feature selec-
tion algorithm, which can reduce the dimensionality of the
data and at the same time improve the classification accuracy.

B. Comparisons with PSO based Algorithms
According to Table II, the “Size” and “T” values show

that all the four PSO based algorithms can be successfully
used to address feature selection problems, which selected a
smaller number of features and maintain or even increase the
classification accuracy.

Comparing PSOBE with PSOFS, Table II shows that in
all cases, the number of features selected by PSOBE is
significantly smaller than that of PSOFS. On six of the
eight datasets, PSOBE achieved significantly higher or similar
classification accuracy to PSOFS. Although on the Vehicle
and MultipleF (Multiple Features) datasets, the classification
accuracy of PSOBE is slightly lower than that of PSOFS,
but the number of features is significantly smaller. Especially
on the MultipleF dataset, PSOFS selected on average 297.07
features and PSOBE further reduced the number of features
to only 51.1, but the average classification accuracy was
only decreased for less than 0.14% (only 0.1% for the best
accuracy).

Comparing PSOBE with PSO2S and PSO42, it can be
observed that in almost all cases, PSOBE selected a smaller
number of features than both PSO2S and PSO42. The only
exception is that PSOBE selected a slightly larger number of
features (only 0.5 on average) than PSO42 on the Ionosphere
datasets (both are are between 3 and 4), but PSOBE achieved
significantly better classification performance than PSO42.
Meanwhile, the overall classification performance of PSOBE
is similar or better than PSO2S and PSO42 in most cases.

The results show that PSOBE with the “backward elimina-
tion” step on the gbest can help the algorithm better explore
the solution space than PSOFS, PSO2S and PSO42. It results
in a better features subset, which includes a smaller number of
features and similar or better classification performance than
all the other three algorithms.



TABLE III
RESULTS OF LFS ANG GSBS

Wine Vehicle
Method Size Acc T4 Method Size Acc T4
LFS 7 74.07 - LFS 9 83.07 -
GSBS 8 85.19 - GSBS 16 75.79 -
PSOBE 3.67 97.82 PSOBE 4.67 83.86

Ionosphere Sonar
Method Size Acc T Method Size Acc T
LFS 4 86.67 - LFS 3 77.78 =
GSBS 30 78.1 - GSBS 48 68.25 -
PSOBE 3.67 88.54 PSOBE 11.13 78.25

Musk1 Arrhythmia
Method Size Acc T Method Size Acc T
LFS 10 85.31 = LFS 11 94.46 -
GSBS 122 76.22 - GSBS 130 93.55 -
PSOBE 36.7 84.76 PSOBE 18.27 94.86

Madelon MultipleF
Method Size Acc T Method Size Acc T
LFS 7 64.62 - LFS 18 99.0 +
GSBS 489 51.28 - GSBS
PSOBE 47.83 84.73 PSOBE 51.1 98.86

C. Comparisons with Traditional Methods

Table III compares the results of PSOBE with that of LFS
and GSBS. LFS or GSBS produces a single solution, where
number of features and classification accuracy are shown in the
“Size” and “Acc” columns. For PSOBE, the average number
of features and the average classification accuracy are listed
in the “Size” and “Acc” columns. “T4” shows the significance
tests between the classification accuracy of PSOBE and LFS
or GSBS, where “-” (“+”) means that LFS and GSBS is
significantly worse (better) than PSOBE. Therefore, the more
“-”, the higher PSOBE’s classification accuracy. The results
of GSBS on the MultipleF dataset are not presented since the
experiment cannot finish within a week.

According to Table III, PSOBE selected a larger number of
features than LFS, but achieved significantly better classifica-
tion accuracy than LFS in most cases. Although on the Mul-
tipleF dataset, LFS achieved better classification performance
than PSOBE, but the highest classification accuracy of PSOBE
(seen from Table II) is better than LFS. PSOBE outperformed
GSBS in terms of both the classification accuracy and the
number of features in all cases. The results show that PSOBE
using PSO and the “backward elimination” can better explore
the solution space to search for a better feature subset than
the traditional methods, LFS and GSBS.

D. Comparisons on Computational Time

Table IV presents the average computational time used by
PSOFS, PSO2S, PSO42 and PSOBE in a single run. The
values in the table are expressed in minutes.

According to Table IV, it can be seen that in most cases,
all the four PSO based algorithms can finish one run within
10 minutes except on the datasets with a large number of
features and instances. The main reason of using long time
on large datasets is that all the four algorithms are wrapper
approaches. Most of their computational time was spent on
fitness evaluations, where a classification process is conducted
to get the training classification error rate as the fitness value
of the feature subset. A larger number of features or instances
needs a longer time for evaluating its fitness.

TABLE IV
COMPUTATIONAL TIME

Wine Vehicle Ionosphere Sonar Musk1 Arrhythmia Madelon MultipleF
PSOFS 0.25 8.14 1.37 0.75 10.16 11.77 866.15 676.52
PSO2S 0.23 5.99 1.09 0.59 7.71 11.19 962.42 875.63
PSO42 0.31 8.6 1.03 0.54 6.47 8.84 810.27 703.72
PSOBE 0.19 7.56 1.69 0.71 4.16 3.69 322.56 157.05

From Table IV, it can also be observed that PSOBE usually
used shorter time than other three algorithms, i.e. PSOFS,
PSO2S, and PSO42. Although compared with the other three
algorithms, PSOBE has extra steps regarding the “backward
elimination”, PSOBE is still computationally cheaper than the
other three algorithms, which is consistent with our hypoth-
esis. The reason is that the filter “backward elimination” is
extremely fast compared with the wrapper fitness evaluation
and the reduction of the features can significantly reduce the
computational time. This pattern is particularly obvious on the
two large datasets (i.e. Madelon and MultipleF), where the
number of features selected by PSOBE is much smaller and
it used a much shorter time than the other three algorithms.

Compared with LFS and GSBS, PSOBE is slower than LFS
because LFS selected a smaller number of features. PSOBE
is slower than GSBS on the datasets with a small number of
features, but faster than GSBS on the datasets with a large
number of features, e.g. Madelon and MultipleF. The main
reason is that GSBS starts with all the available features and
large feature subsets are involved during the search process,
which needs a long time for each evaluation. Meanwhile,
PSOBE has a fixed number of evaluations, but the number
of evaluations in GSBS grows on the large datasets.

VI. CONCLUSIONS AND FUTURE WORK

The goal of this paper was to develop a new PSO approach
to feature selection in classification to select a small subset
of features and increase the classification accuracy. This goal
has been achieved by proposing a “backward elimination”
procedure mimicking a typical backward elimination method
to improve the gbest during the search process. The“backward
elimination” uses a computationally cheap filter measure
to incorporate with the wrapper fitness function aiming to
take the advantages of both filter and wrapper approaches.
The“backward elimination” is performed on clusters of fea-
tures rather than all the features selected by gbest to auto-
matically determine the number of features being removed.
The proposed approach was examined and compared with a
standard PSO based algorithm, two recently developed PSO
algorithms, and two traditional algorithms (LFS and GSBS) on
eight datasets. The results showed that the proposed algorithm
can be successfully used to reduce the number of features
and increase the classification accuracy. It outperformed the
three PSO based algorithms and GSBS in terms of both the
classification performance and the number of features, and
selected a slightly larger number of features than LFS, but
achieved significantly higher classification accuracy than LFS
on almost all datasets. In additional, the proposed approach is
also computationally cheaper than the other three PSO based
algorithms. This suggests that the proposed algorithm takes



the advantages of both filter and wrapper approaches, which
helps increase the classification accuracy. Meanwhile, the filter
“backward elimination” is very fast. It may cause a subtle
increase in the computational time, but the reduction of the
number of features can significantly reduce the time.

From the results, it can also be observed that when the
number of features reaches a certain small value, it may
sacrifice the classification performance, like on the Vehicle
and MultipleF. datasets. Therefore, in the future, we will
further improve the performance of the proposed algorithm and
also investigate a multi-objective feature selection approach to
search for a set of trade-off feature subsets to meet different
requirements in real-world applications.
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