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Abstract—In this paper, we propose two new methods for
feature selection based on particle swarm optimisation and a
probabilistic rough set model called decision-theoretic rough
set (DTRS). The first method uses rule degradation and cost
properties of DTRS in the fitness function. This method focuses
on the quality of the selected feature subset as a whole. The
second method extends the first one by adding the individual
feature confidence to the fitness function, which measures the
quality of each feature in the subset. Three learning algorithms
are employed to evaluate the classification performance of the
proposed methods. The experiments are run on six commonly
used datasets of varying difficulty. The results show that both
methods can achieve good feature reduction rates with similar or
better classification performance. Both methods can outperform
two traditional feature selection methods. The second proposed
method outperforms the first one in terms of the feature re-
duction rates while being able to maintaining similar or better
classification rates.

I. INTRODUCTION

Reducing the number of features in a dataset is an important
step in many classification problems. Datasets often include
a large number of features in an attempt to describe its
domain as well as possible. This can lead to the creation
of many irrelevant and redundant features which impairs the
classification process. This problem can be avoided by using
feature selection whose goal is to find a subset of features
to achieve similar or better classification accuracy than using
all features. Feature selection can decrease computational time
and provide more general view of the underlying relationship
in datasets [1].

There exist two broad feature selection approaches: wrapper
and filter approaches. Their difference is in the evaluation
measures of the selected feature subsets. Wrappers include
a classification/learning algorithm to evaluate the goodness of
the selected features. They can achieve better classification
accuracy than filter approaches. However, the disadvantages
are their high computational costs because each evaluation
requires the classification algorithm to be run, and loss of
generality [2]. Filters select features based on the inherent
properties of a dataset. They are independent of a classification
algorithm and as such tend to be more efficient and general [3].
However, the design of evaluation criteria is not as straight-
forward as in wrappers. Many different criteria can be used,
including distance, dependency, and consistency measures [1].

Since the search space grows exponentially as the number
of features increases, performing an exhaustive search is not

practical [2]. As a result, the choice of a search method
is important. Various greedy algorithms have been used for
feature selection [1]. However, many have trouble finding
solutions beyond a local optima [4]. Evolutionary computation
(EC) techniques are well-known for their global search ability
and can be a candidate technique for addressing this problem.

One such EC technique is particle swarm optimisation
(PSO) [5]. Compared with genetic programming and genetic
algorithms, PSO is easier to implement, computationally less
expensive, and can converge more quickly [6]. Previous re-
search has shown that PSO can be successfully applied to
feature selection problems [4], [7], [8], [9], [10].

Rough set theory developed by Pawlak [11] is a math-
ematical approach to imperfect knowledge. It can be used
as an evaluation criteria in a filter based feature selection
approach. Wang et al. [12] achieved good results using PSO
based on rough set theory to find optimal feature subsets.
However, rough set theory applied to feature selection has
some limitations. For example, the uncertainty of the boundary
region is not considered. Probabilistic rough set models, one
of which is decision-theoretic rough set (DTRS) model, can
address such limitations with the introduction of probabilistic
threshold values into the standard model along with several
different evaluation properties, such as decision-monotocity,
confidence and cost [13]. However, these evaluation properties
have not been applied to feature selection together with PSO.

A. Goals
The overall goal is to develop a PSO based filter approach

to feature selection problems using the DTRS model as the
evaluation measure. The expectation is that this approach is
able to achieve reduction in the number of features while
maintaining or improving the classification accuracy over
using all original features. To achieve this goal, two new
methods are developed by using different evaluation properties
of DTRS in the fitness function. The new algorithms will
be validated using six commonly used UCI datasets [14]
of varying difficulty and compared with three existing PSO
and rough set based algorithms and two traditional feature
selection methods. Specifically, we will investigate:

• whether the first algorithm which considers the preser-
vation of decision rules and their cost can reduce the
number of features while maintaining good classification
accuracy;



• whether the second algorithm which besides the preser-
vation of decision rules and their cost also considers the
individual confidences of selected features can further
reduce the number of features and maintain or improve
the classification accuracy;

• whether the two proposed methods can outperform the
three PSO based algorithms and the two traditional fea-
ture selection methods.

• whether the proposed filter algorithms are general to
different classification algorithms.

B. Organisation
The rest of the paper is organised as follows: Background

information and related work are presented in section II.
Proposed methods are detailed in section III. Sections IV
and V contain the description of experimental design and the
discussions on the experimental results, respectively. Finally,
section VI provides conclusions.

II. BACKGROUND

A. Particle Swarm Optimisation (PSO)
PSO is an evolutionary computation search technique de-

veloped by Kennedy and Eberhart [5], which stimulates social
behaviours such as bird flocking and fish schooling. The search
is performed using a population (called swarm) of particles,
where each particle represents a candidate solution. A particle
has a position vector and a velocity vector denoted by xi =
(xi1, xi2, ..., xiD) and vi = (vi1, vi2, ..., viD), respectively,
where D is the dimension and i is the index of a particle.
In each iteration, a particle’s vectors are updated based on its
past personal experience as well as the past experience of the
whole swarm. More specifically, each particle remembers its
personal best visited position (pbest) and the swarm records
the best position obtained by any particle in the population
so far (gbest). The following equations shows how these two
values are used to move the particles through the search space:

vt+1
id = w ∗ vtid + c1 ∗ r1 ∗ (pid − xt

id) + c2 ∗ r2 ∗ (pgd − xt
id) (1)

xt+1
id = xt

id + vt+1
id (2)

where t is the tth PSO iteration, d ∈ D is the dth dimension
of a particle, w is inertia weight, c1 and c2 are acceleration
constants, and r1 and r2 are random numbers with uniform
distribution in [0, 1].

Many optimisation problems, of which feature selection is
one, are set in a discrete space. For this reason, Kenedy and
Eberhart [15] proposed a binary PSO (BPSO) where every
dimension of a particle’s position is restricted to zero or one.
The velocity must be transformed to [0, 1] interval which is
achieved by using a sigmoid function s(vid). These changes
give the following rule for updating a particle position:

xid =

{
1, if rand() < s(vid)
0, otherwise (3)

where s(vid) =
1

1 + e−vid
(4)

and rand() is a random number with uniform distribution in
[0, 1].

B. Rough Set Theory
Rough set theory [11] is a mathematical approach to

imperfect knowledge. It can deal with data uncertainty and
vagueness without any additional information about the data.

Information and knowledge about the data can be repre-
sented by an information table I = (U,A), where U is a
finite set of objects and A is a finite set of attributes that
describe the objects. An equivalence relation with respect
to a reduct R ⊆ A is defined as IND(R) = {(x, y) ∈
U2|∀a ∈ R, a(x) = a(y)}. The two objects in U satisfy
the relation if and only if they have the same values on all
attributes in R, meaning they are indiscernible from each other.
The equivalence relation IND(R) partitions U (U/R) into
equivalence classes denoted as [x]R.

For a subset X ⊆ U , the lower approximation (RX) and
upper approximation (RX) of X with respect to the partition
U/R is defined as

RX = {x ∈ U |[x]R ⊆ X} = {x ∈ U |P (X|[x]) = 1} (5)

RX = {x ∈ U |[x]R ∩X ̸= ∅} = {x ∈ U |P (X|[x]) > 0} (6)

where P (X|[x]) = |[x]R∩X|
|[x]R| is the conditional probability that

an object x in the equivalence class [x]R belongs to X .
Based on RX and RX , the universe U can be separated

into three disjoint regions: the positive region (POS(X) = RX)
containing equivalence classes which can with certainty induce
the decision class of X , the boundary region (BND(X) = RX
- RX) whose equivalence classes can induce a partial decision
of X , and the negative region (NEG(X) = U − RX) which
includes all equivalence classes that for sure cannot induce the
decision class of X .

The lower approximation (RX) in standard rough set theory
with its condition P (X|[x]) = 1 requires that an equivalence
class is completely contained within X , which is often too
restrictive in classification problems. Also, the equivalence
classes in the upper approximation must have a non-empty
intersection with X which ignores the uncertainty of the
boundary region. Decision-theoretic rough set (DTRS) model,
which is a probabilistic rough set model [16], introduces a pair
of probabilistic thresholds α, β ∈ [0, 1] with α ≥ β which
are used to relax the approximation criteria. Consequently,
the approximation equations are modified into RX = {x ∈
U |P (X|[x]) ≥ α} and RX = {x ∈ U |P (X|[x]) > β}.
The condition α ≥ β ensures that the lower approximation
is smaller than the upper approximation. Also, the α value
should be greater than 0.5 to make sure that the positive region
is the dominant one.

C. Recent Work on Feature Selection

1) EC Algorithms for Feature Selection: It has been shown
that EC algorithms can give good results when applied to the
feature selection problem [17], [18].

AlSukker et al. [19] propose a method to overcome prema-
ture convergence that genetic algorithms (GAs) suffer from.
The proposed method (DGA) is a GA based on enhanced
population diversity, parents’ selection and improved genetic



operators. The results show that DGA outperformed other GAs
with a similar computation cost. However, its limitation is that
its performance suffers when applied to high redundant data
with high dimensionality.

Huang et al. [20] propose a hybrid GA for feature selection,
which consists of two optimisation stages. The outer optimi-
sation stage performs the global search for the best subset
of features in a wrapper way, while the inner optimisation
performs the local search in a filter manner in which the redun-
dancy of the already selected features is taken into account.
The experimental results show both good feature reduction
and classification rates. A drawback of this method is its long
running time. Babaoglu et al. [21] have done a comparison
of feature selection models based on GA and BPSO on
coronary artery disease data. Classification performance and
efficiency are compared and the results show that BPSO is
more successful than GA.

Neshatian and Zhang [22] propose a genetic programming
(GP) approach where the building blocks are subsets of
features and set operators. GP combines these subsets and
set operators to find an optimal subset of features. The
experiments performed on highly imbalanced face detection
problems demonstrate that this approach is effective in terms
of the dimensionality reduction and processing time.

Another GP approach proposed by Neshatian and Zhang
[23] turns to feature scoring as a way of evaluating selected
feature subsets. The features are assigned a score in the
context of other features participating in a GP program. The
results show that the proposed feature ranking method can
identify important features and obtain the same classification
performance as when all features are used.

2) PSO for Feature Selection: PSO based feature selection
methods gained attention in recent years. Wang et al. [12]
propose a feature selection approach based on rough sets and
PSO. The rough set degree of dependency is used to evaluate
the fitness of each particle. They show that compared with
GAs, PSO is computationally inexpensive in terms of both
memory and runtime and at the same time can give promising
feature reduction results.

Unler and Murat [24] develop a modified BPSO algorithm
for the feature selection. This approach dynamically accounts
for the relevance and dependence of any features to be added
to the already selected ones. Experiments suggest that the
proposed method outperforms the tabu search and scatter
search algorithms.

Abdul-Rahman et al. [9] propose a new strategy based on
PSO and rough set theory (RST). It has characteristics of both
wrapper and filter approaches. RST and its discernibility rela-
tion is used to pre-reduce the feature set before optimisation
by PSO. Experimental results show that the proposed method
significantly improves classification and feature reduction rates
for most datasets.

Two different approaches based on BPSO are proposed by
Cervante et al. [10], [25]. The first employs DTRS and the sec-
ond one employs mutual information and entropy to evaluate
the selected feature subsets. The results from both approaches

show that with proper weights they can usually select a smaller
feature subset with similar or better classification rates.

Previous research has shown that PSO and rough set theory
are effective techniques for feature selection problems. Little
work has been done on DTRS which was argued to be a good
evaluation measure [13]. The work has mostly focused on the
fitness functions based on the positive probabilistic region in
DTRS, while the effect of boundary region has been taken into
account.

III. PROPOSED METHODS

In this section, we propose two new methods based on
DTRS model [13] which calculates the probabilistic thresholds
(α, β) based on a set of loss functions. The loss functions
represent costs of decision rules, which are derived from the
concept of three regions in rough set theory.

In DTRS, a decision rule [x] → Di indicates that an object
with description [x] would be in the decision class Di. If
[x] ⊆ POSα,β(Ui), a positive rule is induced ([x] →P Ui).
Otherwise, if [x] ⊆ BNDα,β(Ui), a boundary rule is induced
([x] →B Ui), or if [x] ⊆ NEGα,β(Ui), a negative rule is
induced ([x] →N Ui).

Confidence of a decision rule in DTRS is a quantitative
measure, which is defined as the ration of the number of
objects in an equivalence class [x] that are correctly classified
as the decision class Di and the number of objects in the
equivalence class [x]:

confidence([x] → Di) =
|[x] ∩Di|

|[x]| (7)

where |.| is the set cardinality. The higher the confidence value,
the more valuable the rule is.

Corresponding to the previously described three decision
rules, three actions aP , aN and aB can be taken when deciding
an object to be in POS(X), NEG(X) or BND(X) region,
respectively. Each action comes with a cost or risk value. If
an object belongs to X , then λPP , λBP and λNP specify the
costs of taking the actions aP , aN and aB . If an object does
not belong to X , then λPN , λBN and λNN are the costs of
the actions. These costs have the following relationship with
the probabilistic thresholds α and β in DTRS:

α = λPN−λBN
(λPN−λBN )+(λBP−λPP )

,

β = λBN−λNN
(λBN−λNN )+(λNP−λBP )

(8)

A. Proposed Algorithm 1 (PSOCP)

A new algorithm PSOCP based on cost and preservation of
decision rules is proposed. PSOCP aims to preserve the deci-
sion rules obtained from all features, as well as to minimise
costs of deciding which region an object belongs to. These two
criteria aims to ensure that the decrease of decision making
cost does not worsen the induced decision rules for a selected
subset of features [13].

Having the information table I from section II-B in mind,
let R ⊆ A be a reduct. For any object x ∈ U , the preservation
of decision rules criterion can be represented by:

([x]A →P Dmax([x]A)) =⇒ ([x]R →P Dmax([x])A)), and
([x]A →B Dmax([x]A)) =⇒ ([x]R →B/P Dmax([x])A))

(9)



where Dmax is a decision class for which equivalence class
[x]A has the highest confidence. The criterion ensures that the
positive and boundary rules obtained with all features do not
degrade. In other words, for any x if x ∈ POSU/A(Di), then
x ∈ POSU/R(Di). Similarly, if x ∈ BNDU/A(Di), then x ∈
BNDU/R(Di) or the rule is upgraded to x ∈ POSU/R(Di).

The cost criterion is represented as the sum of costs of
positive and boundary rule sets:

ΩP∪B(U → U/D) =
∑

[x]⊆POS(α,β)(U/D)

Ω(aP |[x])

+
∑

[x]⊆BND(α,β)(U/D)

Ω(aB |[x]) (10)

where
Ω(aP |[x]) = λPPP (X|[x])λPNP (¬X|[x]),
Ω(aB |[x]) = λBPP (X|[x])λBNP (¬X|[x]) (11)

The cost of the partition with respect to reduct R should
not increase, meaning Ω(U/R → U/D) ≤ Ω(U/A → U/D).

The fitness function in PSOCP combines the preservation
of decision rules and cost in the following manner:

Fitness1(R) = ND + Cost (12)

where ND is the number of non-degraded positive and bound-
ary rules. Cost is the difference between (λPP+λPN+λBN+
λBP ) and the value calculated by the Equation 10, which is
a maximisation problem like ND. Both ND and Cost are
scaled to [0,1] so that neither value overwhelms the other.

B. Proposed Algorithm 2 (PSOCPC)

The fitness function Fitness1(R) aims to maximise the
classification performance only. If several solutions have
the same fitness value, but different numbers of features,
Fitness1(R) does not prefer the solutions with a smaller
number of selected features.

To address this issue, another new algorithm (PSOCPC)
is proposed based on cost, preservation of decision rules
and confidence, where Fitness2(R) is the fitness function.
Besides the component which focuses on the classification
performance (ND+Cost), Fitness2(R) includes the AvgIC
component which aims to reduce the number of features:

Fitness2(R) = (1− γ) ∗ (ND + Cost) + γ ∗AvgIC (13)

where γ ∈ (0, 1) determines the relative importance of the
two components. AvgIC is the average of the individual
confidences of the selected features. The individual confidence
of a feature f from the selected features is calculated using
the Equation 7. The equivalence class [x] in the equation is
obtained by partitioning the universe using the feature f .

There is expected to be some variations in the individual
confidences of features and the AvgIC component makes use
of this. It tries to find a feature subset with as high average
of individual confidences as possible. This can be achieved
by removing features with poor individual confidences, which
leads to decrease in the number of selected features. Similarly,

TABLE I
DATASETS

Dataset #Features #Classes #Instances
Dermatology 33 6 366

Spect 22 2 267
LED Display 24 10 1000

Soybean (large) 35 19 683
Waveform 40 3 5000
Mushroom 22 2 5644

the AvgIC value is degraded in the solutions containing
many low confidence features while the solutions without such
features have higher AvgIC value.

IV. DESIGN OF EXPERIMENTS

Experiments have been conducted on six commonly used
datasets from the UCI machine learning repository [14]. Their
properties can be found in Table I. They are used as the
representative of problems the proposed methods can address.
All datasets contain categorical data and no missing values.

The datasets are randomly split into two parts with 2/3 of
instances being training and 1/3 of instances being test set. As
filter approaches, the proposed methods are run on the training
set producing a subset of features. The classification accuracy
of the subset is evaluated by learning algorithms on the unseen
test set. Three learning algorithms are used to evaluate the
generality of the proposed algorithms, which are decision tree
(DT), naive Bayes (NB), and K-nearest neighbour (5-NN). The
size of the swarm is 30 and the number of iterations is limited
to 100, w = 0.7298, c1 = c2 = 1.49618. This setting is based
on the experimental design described in [10], [26]. The results
shown in next section are the testing classification rates over
30 independent runs.

In DTRS, different values are used for probabilistic thresh-
olds α (0.9, 0.8, 0.7, 0.6) and β (0.1, 0.25, 0.4, 0.55, 0.65). All
combinations have been tested with the exception of (α, β) =
(0.6, 0.65) because of the α ≥ β condition. The tests show
the effect these threshold values have on the performance. The
experiments on the PSOCPC algorithm are conducted with
five different γ values (0.1, 0.3, 0.5, 0.7, 0.9), each over 30
independent runs, to see the effects of the variation in γ value
on the performance.

The performance of the proposed methods are compared
to the three existing feature selection methods based on PSO
and rough set theory described in [10]. The three methods
are called PSORS, PSOPRS and PSOPRSN. PSORS evaluates
potential solutions using standard rough set theory. PSOPRS
and PSOPRSN are both based on DTRS with one difference
that the latter also considers the number of selected features
in its fitness function. Two conventional filter feature selec-
tion methods (CfsF and CfsB) in Waikato Environment for
Knowledge Analysis (Weka) [27] are also used for comparison
purposes. CfsF and CfsB uses a correlation measures proposed
by Hall [28] and employ forward and backward selection,
respectively.

V. RESULTS
Results are displayed in tables II, III, IV, V. “#Attr” is the

average number of features selected by a proposed method



TABLE II
RESULTS OF THE PSOCP ALGORITHM WITH β = 0.25

Dermatology
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
All 33 0.828 0.959 0.934
α

0.6 18.3 0.848 (0.044, 0.943) 0.917 (0.035, 0.975) 0.897 (0.036, 0.975)
0.7 18.67 0.858 (0.040, 0.951) 0.924 (0.030, 0.967) 0.903 (0.033, 0.959)
0.8 18.5 0.853 (0.038, 0.943) 0.921 (0.033, 0.967) 0.898 (0.034, 0.959)
0.9 18.4 0.852 (0.040, 0.967) 0.917 (0.036, 0.967) 0.893 (0.033, 0.943)

LED Display
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
All 24 1.0 1.0 0.895
α

0.6 14.37 0.854 (0.157, 1.0) 0.850 (0.162, 1.0) 0.810 (0.168, 1.0)
0.7 14.23 0.845 (0.197, 1.0) 0.842 (0.197, 1.0) 0.805 (0.194, 1.0)
0.8 14.23 0.845 (0.197, 1.0) 0.842 (0.197, 1.0) 0.805 (0.194, 1.0)
0.9 14.27 0.824 (0.212, 1.0) 0.824 (0.207, 1.0) 0.785 (0.204, 1.0)

Spect
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
All 22 0.809 0.764 0.786
α

0.6 8.73 0.781 (0.028, 0.843) 0.770 (0.029, 0.843) 0.772 (0.027, 0.843)
0.7 15.3 0.808 (0.019, 0.843) 0.766 (0.019, 0.809) 0.781 (0.020, 0.809)
0.8 16.23 0.804 (0.019, 0.843) 0.773 (0.022, 0.832) 0.782 (0.014, 0.809)
0.9 16.43 0.812 (0.024, 0.843) 0.769 (0.023, 0.809) 0.786 (0.019, 0.820)

Soybean
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
All 35 0.819 0.903 0.894
α

0.6 20.77 0.814 (0.030, 0.877) 0.863 (0.028, 0.912) 0.830 (0.032, 0.894)
0.7 20.47 0.792 (0.040, 0.868) 0.843 (0.033, 0.912) 0.808 (0.042, 0.899)
0.8 20.47 0.792 (0.041, 0.868) 0.842 (0.038, 0.912) 0.802 (0.048, 0.899)
0.9 20.63 0.797 (0.035, 0.868) 0.845 (0.035, 0.912) 0.807 (0.049, 0.899)

Waveform
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
All 40 0.748 0.797 0.801
α

0.6 21.37 0.728 (0.027, 0.765) 0.758 (0.030, 0.798) 0.717 (0.040, 0.772)
0.7 21.37 0.728 (0.027, 0.765) 0.758 (0.030, 0.798) 0.717 (0.040, 0.772)
0.8 21.37 0.728 (0.027, 0.765) 0.758 (0.030, 0.798) 0.717 (0.040, 0.772)
0.9 21.37 0.728 (0.027, 0.765) 0.758 (0.030, 0.798) 0.717 (0.040, 0.772)

Mashroom
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
All 22 1.0 0.961 1.0
α

0.6 11.2 0.997 (0.003, 1.0) 0.946 (0.035, 0.986) 0.995 (0.004, 1.0)
0.7 11.63 0.999 (0.001, 1.0) 0.954 (0.030, 0.986) 0.997 (0.003, 1.0)
0.8 11.5 0.999 (0.001, 1.0) 0.956 (0.025, 0.986) 0.997 (0.003, 1.0)
0.9 11.73 0.999 (0.001, 1.0) 0.955 (0.002, 0.985) 0.951 (0.024, 1.0)

over 30 independent runs. The average test classification
accuracy (Ave), the standard deviation (Sd), and the best
classification accuracy (Best), are shown for each learning
algorithm (“DT”, “NB” and “NN”).

A. Results of the PSOCP Algorithm

The results in Tables II and III show that PSOCP can
significantly reduce the number of features while maintaining
similar or better classification rates in most cases.

Table II displays the results of different α values when β =
0.25. The α value indicates how tolerant the fitness function
is in accepting reducts to the positive rough set region. It can

TABLE III
RESULTS OF THE PSOCP ALGORITHM WITH α = 0.8

Dermatology
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
All 33 0.828 0.959 0.934
β

0.1-0.55 18.5 0.883 (0.038, 0.943) 0.921 (0.033, 0.967) 0.898 (0.034, 0.959)
0.65 18.4 0.849 (0.041, 0.943) 0.919 (0.036, 0.967) 0.894 (0.037, 0.959)

LED Display
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
All 24 1.0 1.0 0.895
β

0.1-0.4 14.23 0.845 (0.197, 1.0) 0.842 (0.197, 1.0) 0.805 (0.194, 1.0)
0.55-0.65 14.2 0.845 (0.197, 1.0) 0.842 (0.197, 1.0) 0.805 (0.195, 1.0)

Spect
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
All 22 0.809 0.764 0.786
β

0.1-0.4 16.23 0.804 (0.019, 0.843) 0.773 (0.022, 0.832) 0.782 (0.014, 0.809)
0.55 16.07 0.805 (0.018, 0.843) 0.774 (0.020, 0.820) 0.792 (0.015, 0.820)
0.65 16.47 0.808 (0.018, 0.843) 0.774 (0.020, 0.820) 0.777 (0.014, 0.809)

Soybean
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
All 35 0.819 0.903 0.894
β

0.1-0.4 20.47 0.792 (0.041, 0.868) 0.842 (0.038, 0.912) 0.802 (0.048, 0.899)
0.55 20.6 0.788 (0.036, 0.868) 0.848 (0.030, 0.912) 0.810 (0.035, 0.877)
0.65 20.73 0.784 (0.036, 0.863) 0.839 (0.037, 0.890) 0.797 (0.051, 0.863)

Waveform
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
All 40 0.748 0.797 0.801
β

0.1-0.65 21.37 0.728 (0.027, 0.765) 0.758 (0.030, 0.798) 0.717 (0.040, 0.772)
Mushroom

DT NB NN
#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)

All 22 1.0 0.961 1.0
β

0.1-0.55 11.5 0.999 (0.001, 1.0) 0.956 (0.025, 0.956) 0.997 (0.003, 1.0)
0.65 11.47 0.999 (0.001, 1.0) 0.956 (0.025, 0.986) 0.997 (0.003, 1.0)

be seen that the classification rates are competitive to using all
features in most datasets. The only exception is LED Display
which has a perfect classification rate using all features. The
classification rates of the DT and NB learning algorithms are
improved in the Dermatology and Spect datasets, respectively.
The classification rates and their standard deviation are similar
to each other across different α values. The best rates achieved
by the selected features are equal to or greater than the ones
achieved by all features in all cases.

The proposed algorithm can achieve the reduction rates of
at least 25%. However, the change in α value does not bring
about notable change in reduction rates. The only exception
is Spect dataset which can be explained by the fact that the
fitness function does not have a mechanism to give preference
to smaller reducts. That is, as long as two different sized
reducts preserve the decision rules and their cost, the function
treats these reducts the same. The exception in Spect dataset
suggests that the dataset contains more redundant features.
Consequently, it is more common for smaller sized reducts
to be more valuable as they are less likely to have as many



redundant features as larger reducts.
Table III displays what kind of effect different β values have

on the performance of the PSOCP algorithm. The larger the
β value is, the smaller boundary rough set region becomes.
Smaller boundary regions in theory reduce the uncertainty of
how to classify instances, but at the same time can introduce
more classification errors. The results indicate that the β value
has little to no effect. Both reduction and classification rates
change only slightly for larger values of β and this appears
to be dataset dependent. For example, the number of features
is the smallest in Dermatology, LED Display and Mushroom
datasets when β = 0.65, while not for other datasets.

B. Results of the PSOCPC Algorithm
According to the results in Table IV and V, the PSOCPC

algorithm can further reduce the number of features while
mostly achieving similar or better classification rates.

From Table IV, it can be seen that the classification rates
of Spect and Soybean datasets are the best when the smallest
number of features is selected. Moreover, LED Display dataset
can achieve perfect or close to perfect classification rates with
a significantly reduced number of features. This indicates that
the dataset contains a lot of noisy data. Once the features
containing this data are removed, classification rate can come
very close to perfect. The obtained best classification rates
with selected features are similar or better than those obtained
with all features with the exception of Soybean.

In all datasets, the average number of selected features
decreases with the decrease of α value. Slight deviation from
this pattern is present in Mashroom dataset with lower α
values. The acceptance of instances into the positive region
is more lenient with smaller α values, which develops the
ability to remove additional redundant features from reducts.
The most dramatic reduction across all α values can be seen in
Mushroom. The two datasets with most features, Dermatology
and Soybean, see the feature reduction rates of at least 42%.

Similarly to the PSOCP algorithm, different β values do
not have noticeable effect on the algorithm performance and
for that reason these experimental results are not shown. This
suggests that the boundary rough set region plays a minor role
in performance of the proposed algorithms.

Table V shows the performance of PSOCPC with different
weights applied to its two terms. It can been seen that in
most cases the number of features is the lowest when the
highest importance, i.e. largest γ value, is placed on the
average individual confidence component. This is consistent
with the previous expectation that the addition of the individual
confidence to Fitness1(R) would further reduce the number
of features.

C. PSOCP VS PSOCPC
When comparing classification rates, the PSOCPC algo-

rithm generally achieves better results. This is most obvious
in LED Display dataset where the average classification rates
are greatly improved. In addition, the performance in Spect
dataset when α = 0.6 is significantly better. Moreover, most
standard deviations of the classifiers in PSOCPC are smaller

TABLE IV
RESULTS OF THE PSOCPC ALGORITHM WITH β = 0.25 AND γ = 0.5

Dermatology
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
All 33 0.828 0.959 0.934
α

0.6 11.27 0.850 (0.031, 0.943) 0.815 (0.038, 0.893) 0.844 (0.036, 0.959)
0.7 11.73 0.860 (0.024, 0.943) 0.829 (0.046, 0.967) 0.851 (0.031, 0.951)
0.8 12.83 0.873 (0.042, 0.967) 0.848 (0.060, 0.992) 0.875 (0.051, 0.975)
0.9 17.53 0.896 (0.042, 0.951) 0.912 (0.041, 0.967) 0.928 (0.039, 0.992)

LED Display
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
All 24 1.0 1.0 0.895
α

0.6 6.57 0.988 (0.065, 1.0) 0.988 (0.066, 1.0) 0.988 (0.065, 1.0)
0.7 6.57 1.0 (0.0, 1.0) 1.0 (0.0, 1.0) 1.0 (0.0, 1.0)
0.8 6.57 1.0 (0.0, 1.0) 1.0 (0.0, 1.0) 1.0 (0.0, 1.0)
0.9 6.73 0.991 (0.047, 1.0) 0.991 (0.047, 1.0) 0.990 (0.052, 1.0)

Spect
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
All 22 0.809 0.764 0.786
α

0.6 2.8 0.843 (0.0, 0.843) 0.838 (0.018, 0.843) 0.837 (0.022, 0.847)
0.7 12.33 0.796 (0.017, 0.843) 0.771 (0.026, 0.809) 0.778 (0.018, 0.809)
0.8 15.27 0.803 (0.016, 0.832) 0.786 (0.015, 0.809) 0.788 (0.016, 0.843)
0.9 15.3 0.802 (0.019, 0.832) 0.771 (0.019, 0.820) 0.784 (0.022, 0.832)

Soybean
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
All 35 0.819 0.903 0.894
α

0.6 16.9 0.819 (0.028, 0.881) 0.840 (0.037, 0.899) 0.833 (0.046, 0.921)
0.7 19.57 0.796 (0.018, 0.828) 0.835 (0.021, 0.868) 0.811 (0.032, 0.859)
0.8 20.1 0.802 (0.024, 0.850) 0.838 (0.025, 0.894) 0.819 (0.033, 0.886)
0.9 19.73 0.796 (0.029, 0.850) 0.834 (0.027, 0.877) 0.820 (0.030, 0.863)

Waveform
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
All 40 0.748 0.797 0.801
α

0.6 13.6 0.757 (0.021, 0.782) 0.781 (0.025, 0.817) 0.788 (0.029, 0.817)
0.7 13.6 0.757 (0.021, 0.782) 0.781 (0.025, 0.817) 0.788 (0.029, 0.817)
0.8 13.53 0.757 (0.021, 0.782) 0.780 (0.025, 0.817) 0.788 (0.028, 0.816)
0.9 13.53 0.757 (0.021, 0.782) 0.780 (0.025, 0.817) 0.788 (0.028, 0.816)

Mashroom
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
All 22 1.0 0.961 1.0
α

0.6 1.87 0.985 (0.006, 0.994) 0.984 (0.006, 0.993) 0.985 (0.006, 0.994)
0.7 1.57 0.984 (0.006, 0.994) 0.983 (0.006, 0.993) 0.984 (0.006, 0.994)
0.8 2.6 0.986 (0.007, 1.0) 0.980 (0.010, 0.993) 0.986 (0.007, 1.0)
0.9 4.33 0.997 (0.005, 1.0) 0.968 (0.020, 0.993) 0.997 (0.005, 1.0)

than the PSOCP algorithm. This shows that PSOCPC is more
stable and consistent. The PSOCP algorithm has the advantage
with NB and NN learning algorithms in Dermatology dataset
where both average classification rates and standard deviations
are improved. However, these rates are achieved using greater
number of selected features than in PSOCPC.

The PSOCPC algorithm also achieves better results in
feature reduction rates regardless of what the α value is. The
number of features in Mushroom and LED Display datasets
are more than halved compared with PSOCP performance.
In the other datasets, the number of features is considerably
reduced, especially when using lower α values.



TABLE V
RESULTS OF THE PSOCPC ALGORITHM WITH (α,β) = (0.7, 0.25)

Dermatology
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
All 33 0.828 0.959 0.934
γ

0.9 11.27 0.856 (0.025, 0.943) 0.819 (0.038, 0.918) 0.849 (0.027, 0.926)
0.7 11.83 0.854 (0.027, 0.943) 0.823 (0.039, 0.893) 0.848 (0.026, 0.951)
0.5 11.73 0.860 (0.024, 0.943) 0.829 (0.046, 0.967) 0.851 (0.031, 0.951)
0.3 12 0.861 (0.031, 0.943) 0.831 (0.046, 0.967) 0.852 (0.032, 0.951)
0.1 12 0.861 (0.031, 0.943) 0.831 (0.046, 0.967) 0.852 (0.032, 0.951)

LED Display
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
All 24 1.0 1.0 0.895
γ

0.9 6.7 0.983 (0.076, 1.0) 0.983 (0.075, 1.0) 0.983 (0.076, 1.0)
0.7 6.77 0.991 (0.047, 1.0) 0.991 (0.047, 1.0) 0.990 (0.052, 1.0)
0.5 6.57 1.0 (0.0, 1.0) 1.0 (0.0, 1.0) 1.0 (0.0, 1.0)
0.3 6.53 1.0 (0.0, 1.0) 1.0 (0.0, 1.0) 1.0 (0.0, 1.0)
0.1 6.6 1.0 (0.0, 1.0) 1.0 (0.0, 1.0) 1.0 (0.0, 1.0)

Spect
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
All 22 0.809 0.764 0.786
γ

0.9 10.17 0.791 (0.024, 0.843) 0.752 (0.027, 0.843) 0.769 (0.022, 0.843)
0.7 12.53 0.795 (0.016, 0.843) 0.764 (0.026, 0.798) 0.775 (0.018, 0.809)
0.5 12.33 0.796 (0.017, 0.843) 0.771 (0.026, 0.809) 0.778 (0.018, 0.809)
0.3 12.07 0.796 (0.019, 0.843) 0.764 (0.026, 0.809) 0.777 (0.018, 0.809)
0.1 11.97 0.799 (0.018, 0.843) 0.764 (0.025, 0.809) 0.772 (0.017, 0.809)

Soybean
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
All 35 0.819 0.903 0.894
γ

0.9 18.43 0.824 (0.030, 0.872) 0.853 (0.026, 0.890) 0.851 (0.035, 0.916)
0.7 19.2 0.803 (0.029, 0.863) 0.834 (0.032, 0.894) 0.810 (0.044, 0.934)
0.5 19.57 0.796 (0.018, 0.828) 0.835 (0.021, 0.868) 0.811 (0.032, 0.859)
0.3 19.5 0.801 (0.019, 0.833) 0.829 (0.026, 0.868) 0.814 (0.031, 0.859)
0.1 19.37 0.798 (0.020, 0.833) 0.829 (0.028, 0.859) 0.816 (0.034, 0.912)

Waveform
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
All 40 0.748 0.797 0.801
γ

0.9 13.37 0.755 (0.020, 0.782) 0.779 (0.025, 0.817) 0.787 (0.028, 0.801)
0.7 13.43 0.755 (0.021, 0.782) 0.781 (0.025, 0.817) 0.788 (0.028, 0.816)
0.5 13.6 0.757 (0.021, 0.782) 0.781 (0.025, 0.817) 0.788 (0.029, 0.817)
0.3 13.47 0.757 (0.021, 0.782) 0.780 (0.025, 0.817) 0.788 (0.029, 0.817)
0.1 13.57 0.757 (0.020, 0.782) 0.781 (0.025, 0.817) 0.789 (0.028, 0.817)

Mashroom
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
All 22 1.0 0.961 1.0
γ

0.9 1.73 0.984 (0.006, 0.997) 0.983 (0.006, 0.997) 0.984 (0.006, 0.997)
0.7 1.6 0.984 (0.006, 0.994) 0.984 (0.006, 0.993) 0.984 (0.006, 0.994)
0.5 1.57 0.984 (0.006, 0.994) 0.983 (0.006, 0.993) 0.984 (0.006, 0.994)
0.3 1.6 0.984 (0.006, 0.994) 0.983 (0.006, 0.993) 0.984 (0.006, 0.994)
0.1 1.6 0.984 (0.006, 0.994) 0.983 (0.006, 0.993) 0.984 (0.006, 0.994)

D. Comparisons with Existing PSO and Rough Set Based
Algorithms

The results of PSORS and PSOPRS using DT as the
classification algorithm are presented in Table VI. The results
of PSOPRSN using DT, NB and NN as the classification
algorithms are shown in Table VII.

Comparing PSOCP (Table II) with PSORS and PSOPRS, it

TABLE VI
PSORS AND PSOPRS WITH DT AS THE LEARNING ALGORITHM

Dermatology Spect
#Attr Ave (Sd, Best) #Attr Ave (Sd, Best)

All 33 0.828 22 0.809
PSORS 21 0.860 (0.048, 0.975) 21 0.860 (0.048, 0.975)

PSOPRS
α = 0.9 21 0.860 (0.048, 0.975) 17.3 0.806 (0.022, 0.843)
α = 0.8 21 0.860 (0.048, 0.975) 17.5 0.800 (0.020, 0.820)
α = 0.75 21 0.860 (0.048, 0.975) 15.57 0.818 (0.008, 0.820)

Soybean
#Attr Ave (Sd, Best)

All 35 0.819
PSORS 21.53 0.803 (0.046, 0.872)

PSOPRS
α = 0.9 21.6 0.805 (0.044, 0.872)
α = 0.8 21.67 0.805 (0.044, 0.872)
α = 0.75 21.63 0.804 (0.043, 0.872)

can be seen that PSOCP achieves better reduction rates, but
lower classification rates than both PSORS and PSOPRS. The
standard deviations of all three algorithms are comparable.
However, PSORS and PSOPRS can achieve slightly higher
best classification rates. Comparing PSOCPC (Table IV) with
PSORS and PSOPRS, it can be observed that PSOCPC usually
selected a smaller number of features and achieved similar or
better classification performance than PSORS and PSOPRS.

Results in Table VII show that PSOPRSN is able to produce
the lowest average number of selected features, though the
classification rates suffer in most cases. In comparison, the
second proposed algorithm PSOCPC, according to Table IV,
is not able to achieve such high feature reduction rates, but the
average classification rates and standard deviations are better
than PSOPRSN. Also between the two algorithms, the best
classifications rates are higher in most datasets using PSOCPC.

As a result of PSOCPC considering the overall quality
of a reduct as well as the quality of individual features
within a reduct, it seems that it is able to strike a balance
between reducing number of features and maintaining good
classification rates.

TABLE VII
RESULTS OF PSOPRSN WITH α = 0.75

Dermatology
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
γ

0.9 8.17 0.757 (0.068, 0.918) 0.816 (0.056, 0.943) 0.787 (0.058, 0.877)
0.8 8.07 0.775 (0.078, 0.967) 0.799 (0.056, 0.959) 0.784 (0.060, 0.918)
0.75 7.73 0.743 (0.085, 0.926) 0.786 (0.064, 0.910) 0.766 (0.073, 0.893)
0.5 6.43 0.752 (0.093, 0.951) 0.783 (0.075, 0.959) 0.725 (0.083, 0.943)

Spect
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
γ

0.9 13.97 0.820 (0.0, 0.820) 0.767 (0.010, 0.775) 0.818 (0.010, 0.831)
0.8 8.97 0.799 (0.017, 0.820) 0.783 (0.024, 0.820) 0.834 (0.021, 0.843)
0.75 7.07 0.798 (0.012, 0.831) 0.797 (0.029, 0.843) 0.805 (0.040, 0.843)
0.5 4.63 0.786 (0.026, 0.843) 0.796 (0.025, 0.843) 0.739 (0.248, 0.843)

Soybean
DT NB NN

#Attr Ave (Sd, Best) Ave (Sd, Best) Ave (Sd, Best)
γ

0.9 9.7 0.714 (0.031, 0.767) 0.756 (0.036, 0.824) 0.675 (0.037, 0.749)
0.8 9 0.705 (0.038, 0.780) 0.745 (0.041, 0.846) 0.665 (0.039, 0.749)
0.75 8.77 0.713 (0.043, 0.775) 0.747 (0.031, 0.811) 0.668 (0.033, 0.749)
0.5 7.47 0.713 (0.039, 0.802) 0.761 (0.042, 0.833) 0.670 (0.033, 0.727)



TABLE VIII
RESULTS OF CFSF AND CFSB WITH DT AS THE LEARNING ALGORITHM

Dermatology LED Display Spect Soybean
Method Size Accuracy Size Accuracy Size Accuracy Size Accuracy

CfsF 17 0.873 13 1.0 4 0.70 12 0.805
CfsB 17 0.873 13 1.0 4 0.70 14 0.854

E. Comparisons with Two Traditional Algorithms
Table VIII shows the performance of CfsF and CfsB algo-

rithms for feature selection and DT as the learning algorithm.
Due to the page limit, the results of four datasets are presented.

Compared with PSOCP, CfsF and CfsB obtain better clas-
sification rates in most datasets as well as achieve a smaller
number of selected features in all datasets, but the best clas-
sification rate of PSOCP is better than CfsF and CfsB. When
comparing PSOCPC with CfsF and CfsB, different α values
lead to different observations. When looking at the higher α
values, classification rates are similar or better in the case
of Spect dataset although the number of selected features is
slightly greater in PSOCPC than in both CfsF and CfsB. With
the lowest α value, PSOCPC achieves better classification
rates than both traditional algorithms. Furthermore, it selects
a smaller subset of features in most cases.

VI. CONCLUSIONS

Two new methods using a probabilistic rough set model
named DTRS and PSO are proposed for feature selection
problems. The two methods, which are both based on decision-
theoretic rough set, differ in the structure of their fitness
functions. The first method, PSOCP, evaluates reducts based
on their ability to preserve decision rules and the costs of those
rules. The second method, PSOCPC, extends the first one by
introducing the measure of individual confidence of features
in a reduct. The methods are examined with various parameter
values and compared with each other, with the three existing
PSO and rough set based methods and with two traditional
feature selection algorithms.

The results indicate that both methods are able to reduce the
number of features while maintaining good classification rates
or even improving them. PSOCPC can outperform PSOCP in
terms of feature reduction rates and at the same time achieve
better classification rates in half of the datasets. Compared
with the three existing PSO based methods (PSORS, PSOPRS
and PSOPRSN) and two traditional feature selection meth-
ods, PSOCP achieved competitive results with other methods,
which is either with better classification performance or with
better feature reduction rates. PSOCPC with proper parameter
settings can outperform the all the other methods mentioned
above. Meanwhile, the results show that PSOCP and PSOCPC
as filter approaches are general to the three different classifi-
cation algorithms (DT, NB and NN ).
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