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Abstract—Dimension reduction plays an important role in
many classification tasks. In this work, we propose a new
filter dimension reduction algorithm (PSOPRSE) using binary
particle swarm optimisation and probabilistic rough set theory.
PSOPRSE aims to maximise a classification performance mea-
sure and minimise a newly developed measure reflecting the
number of attributes. Both measures are formed by probabilistic
rough set theory. PSOPRSE is compared with two existing PSO
based algorithms and two traditional filter dimension reduction
algorithms on six discrete datasets of varying difficulty. Five
continues datasets including a large number of attributes are
discretised and used to further examine the performance of
PSOPRSE. Three learning algorithms, namely decision trees,
nearest neighbour algorithms and naive Bayes, are used in the
experiments to examine the generality of PSOPRSE. The results
show that PSOPRSE can significantly decrease the number of
attributes and maintain or improve the classification performance
over using all attributes. In most cases, PSOPRSE outperforms
the first PSO based algorithm and achieves better or much
better classification performance than the second PSO based
algorithm and the two traditional methods, although the number
of attributes is slightly large in some cases. The results also show
that PSOPRSE is general to the three different classification
algorithms.

I. INTRODUCTION

Classification tasks usually include a large number of at-
tributes and suffer from “the curse of dimensionality”, which
refers to the decrease of a known classification method’s
performance caused by the increase of the number of at-
tributes [1, 2]. To solve this problem, dimension reduction
is introduced to remove unnecessary attributes to reduce
the dimensionality while preserving the representation power
of the original high-dimensional attributes to maintain the
classification performance [2]. By removing the unnecessary
attributes, dimension reduction can reduce the training time of
a learning algorithm, facilitate data visualization, simplify the
learnt classifier, and/or increase the classification performance
[2, 3].

Dimension reduction is a challenging task due mainly to two
reasons, which are attribute interaction and the large search
space. Attribute interaction may lead to the phenomenon
that attributes, which are individually relevant (irrelevant or
redundant or) to class labels, may become redundant (relevant)
if they are combined together with other attributes for classifi-
cation. The best group of attributes should be complementary
to each other. The evaluation criterion, which measures the

goodness of the selected attributes, is an important issue
in dimension reduction. Based on the evaluation criteria,
dimension reduction methods are generally classified into two
broad classes: wrapper approaches and filter approaches [2].
Wrapper approaches include a learning/classification method
to evaluate the selected attributes. Therefore, wrappers often
obtain better classification performance than filter approaches,
but they suffer from the high computation cost and the loss of
generality, i.e. specific to a particular classification algorithm.
Filter approaches are independent of any learning algorithm.
Therefore, filter approaches usually need a good evaluation
criterion.

The size of search space in dimension reduction problems
increases exponentially along with the number of attributes.
An exhaustive search is impractical in most situations. Dif-
ferent heuristic search techniques have been applied to di-
mension reduction problems [1], but most of them still have
the limitations of long computation time and being stuck in
local optima [2]. Therefore, a computationally cheap global
search algorithm is needed to better solve dimension reduction
problems. Evolutionary computation (EC) techniques are well-
known global search algorithms, which have been used for
dimension reduction, including genetic programming (GP) [4],
genetic algorithms (GAs) [5], and particle swarm optimisation
(PSO) [3]. PSO is a relatively recent EC algorithm and is
computationally less expensive than GAs and GP. PSO has
been successfully applied to dimension reduction [3, 6, 7].

Most existing EC based dimension reduction algorithms are
wrapper approaches. The use of such algorithms is limited
in real-world applications due to the long computation time.
The development of EC based filter dimension reduction
approaches is still an open issue. Rough set theory [8] is
able to deal with uncertainty, imprecision and vagueness,
which has been successfully used for dimension reduction
[9]. However, standard rough set theory has some limitations
[10]. Therefore, Yao and Zhao [10] developed probabilistic
rough set theory, but this idea has not been implemented for
dimension reduction by other researchers. A filter dimension
reduction algorithm using PSO and probabilistic rough set was
developed in [6] and obtained better performance than using
PSO and standard rough set. However, the proposed algorithm
in [6] needs to define a parameter to balance the relative
importance assigned for the classification performance and the



number of attributes, which is problem-dependent and difficult
to determine in advance. Meanwhile, due to the the constraint
that rough set theory only works on discrete data, the datasets
used in rough set in recent work [9, 11, 6, 12] only have a
small number of attributes.

A. Goals
The overall goal of this research is to develop a filter

dimension reduction approach using PSO and probabilistic
rough set theory to reduce the number of attributes and achieve
similar or even better classification performance than using all
attributes, which is not only for datasets with a small number
of attributes, but also for datasets with a large number of
attributes. To achieve this goal, a new fitness function formed
by probabilistic rough set theory is proposed to maximise the
representation/classification power and minimise the number
of attributes, but does not need to predefine a parameter to
balance the relative importance of these two components.
The proposed algorithm is examined and compared with two
existing PSO based algorithms and two traditional dimension
reduction algorithms on six commonly used discrete datasets
and five continues datasets with a large number of attributes.
Specifically, we will investigate

• whether the newly proposed algorithm can reduce the
number of attributes and maintain or increase the classi-
fication performance over using all the attributes,

• whether the proposed algorithm outperform two existing
PSO based algorithms and two traditional dimension
reduction algorithms,

• whether the proposed filter algorithm is general to differ-
ent classification algorithms, and

• whether the proposed algorithm and the two existing PSO
based algorithms can be used for datasets including a
larger number of attributes.

II. BACKGROUND

A. Binay Particle Swarm Optimisation (BPSO)
Particle swarm optimisation (PSO) [13, 14] is inspired by

social behaviours, such as fish schooling and birds flocking.
In PSO, each solution of the target problem is represented by
a particle. A swarm of particles move (“fly”) together in the
search space to find the best solutions. For any particle i, a
vector xi = (xi1, xi2, ..., xiD) is used to represent its position
and a vector vi = (vi1, vi2, ..., viD) is used to represent its
velocity, where D means the dimension of the target problem.
During the evolutionary process, each particle can remember
its best position visited so far called personal best (denoted
by pbest), and the best previous position visited so far by the
whole swarm called global best (denoted by gbest). Based on
personal best and global best, PSO iteratively updates xi and
vi of each particle to search for the optimal solutions.

Originally, PSO was proposed to address problems/tasks
with a continuous search space. To extend PSO to address
discrete problems, a binary PSO (BPSO) was developed in
[15], where xi, pbest and gbest are limited to 0 or 1. vi
in BPSO represents the probability of an element in the

position updating to 1. BPSO updates v and x of each particle
according to Formulae 1 and 2.

vt+1
id = w ∗ vtid + c1 ∗ ri1 ∗ (pid − xt

id) + c2 ∗ ri2 ∗ (pgd − xt
id) (1)

xid =

{
1, if rand() < 1

1+e−vid

0, otherwise
(2)

where vt+1
id shows the velocity of particle i in the dth dimen-

sion in the t + 1th iteration. w is the inertia weight, which
indicates the influence of the previous velocity. c1 and c2 are
acceleration constants. ri1, ri2 and rand() are random valuess,
which are uniformly distributed in [0, 1]. pid and pgd shows the
values of personal best and global best in the dth dimension.
A predefined maximum velocity, vmax, is to limit vt+1

id to
[−vmax, vmax].

B. Probabilistic Rough Set Theory

Rough set theory was developed by Pawlak [8] to deal
with uncertainty and imprecision. One of its advantages is
that rough set does not need prior knowledge or additional
information about data.

In rough set theory, the data of a problem is organised in
a table called decision table. In the decision table, one row
shows an object and one column corresponds to attributes in
the dataset. Here, the decision table is denoted as I = (U,A),
where U is the universe of objects in the dataset and A is the
collection of attributes that describe the objects. A = C ∪D,
where C is the decision attribute indicating the class to which
each object belongs and D shows all the other attributes which
are called conditional attributes.

Partitions are the knowledge base of rough set theory, which
are obtained according to equivalence relation defined in the
universe. For any P ⊆ A and X ⊆ U , the equivalence relation
is defined as IND(P ) = {(x, y) ∈ U |∀a ∈ P, a(x) = a(y)}.
The equivalence class of IND(P ) is denoted as [x]P , which
means that with regards to P , ∀y ∈ [x]P , (x, y) are indis-
cernible to each other. Based on the equivalence classes, rough
set theory defines the lower approximation (denoted by PX)
and the upper approximation (denoted by PX) of the set target
X with regards to P [8], which are shown as follows:

PX = {x ∈ U |[x]P ⊆ X} (3)

PX = {x ∈ U |[x]P ∩X ̸= ∅} (4)

Regarding the relationships between the target set X and
an equivalence class, PX and PX in the standard rough set
were defined in two extreme cases. The objects in PX can
be definitely classified to the target set X . PX includes the
objects, which probably or definitely belong to the target set
X . A pair of (PX,PX) is called a rough set.

In standard rough set theory, the degree of the overlap
between the target set X and an equivalence class is not taken
into account. This will limit the application of standard rough
set theory on many problems. Probabilistic rough set theory
was proposed to avoid this limitation, where the definitions
of the lower and upper approximation can be relaxed [10]. In



probabilistic rough set theory, µP [x] defines the probability of
the equivalence class [x]P also included in the target set A,
which can be seen in Equation 5. Equation 6 defines the lower
approximation, where α can be adjusted to restrict or relax the
lower approximation.

µP [x] =
|[x]P ∩X|

|[x]P |
(5)

apr
P
X = {x|µP [x] ≥ α} (6)

Note that probabilistic rough set is based essentially on the
majority rule. If the majority of an object x’s equivalent objects
in [x]P are in the target set X , the object x is put in the
lower approximation of the target set X . apr

P
X = PX when

α = 1. apr
P
X loosens the boundaries of the rough set if

α < 1.
In rough set theory, a reduct (related to a subset of condi-

tional attributes) is the essential part of a decision table. The
approximation power of a reduct should be similar to that of
A, which includes all the original attributes. There could be
many different reducts in a rough set system and dimension
reduction aims to obtain the smallest reduct.

C. Related Work on Dimension Reduction
In recent years, a number of dimension reduction methods

have been developed [2, 16]. Typical algorithms are briefly
reviewed in this section.

1) Traditional Dimension Reduction Methods: Based on
greedy search, two sequential methods, i.e. sequential forward
selection (SFS) [17] and sequential backward selection (SBS)
[18], are developed, which are typical wrapper dimension
reduction methods. The starting point of SFS is an empty set
of attributes while SBS starts with all the available attributes.
Candidate attributes are sequentially selected (removed from)
the attribute set until the next selection (removal) decreases
or does not improve the classification performance. SFS and
SBS suffer from the problem of nesting effect. Stearns [19]
proposed the “plus-l-take away-r” method to address this
problem. The proposed algorithm conducts l times forward
selection and then r times backward elimination. However, it
is difficult to determine the best values of (l, r).

Hall [20] proposes a filter correlation based dimension
reduction method (Cfs), which employs the correlation be-
tween attributes and class labels as the evaluation criterion.
Almuallim and Dietterich [21] propose a filter algorithm which
performs an exhaustive search of all possible combinations
of attributes, and selects the smallest subset. However, per-
forming an exhaustive search is computationally expensive.
Relief [22] is a filter algorithm in which each attribute has
a score showing its relevance to the class labels and all the
relevant attributes are selected. However, the attributes selected
by Relief may still have redundancy, because the redundancy
between relevant attributes is not taken into account.

2) EC Algorithms for Dimension Reduction: In recent
years, EC algorithms have been used to address dimension
reduction problems, such as GAs, GP, ant colony optimisation
(ACO) and PSO.

Zhu et al. [5] propose a dimension reduction method using
a memetic algorithm that combines local search and a GA.
Individual attributes are firstly ranked according to a filter
measure and GA adds or deletes an attribute according to
the ranking results. Experiments indicate that the proposed
algorithm obtains better results than GA and other algorithms.
The results also suggest that the performance and efficiency
can be improved by setting a proper balance between genetic
algorithm and local search. Based on GP, Kourosh and Zhang
[4] propose a relevance measure named GPRM, which is used
to evaluate and rank attribute subsets in binary classification
problems. Dimension reduction can be achieved by using a
top-ranked subset that has a smaller number of attributes for
classification. Ming [11] proposes a filter dimension reduction
algorithm using ACO and rough set, which starts with the core
attributes evaluated by rough set theory. Experiments indicate
that the proposed method outperforms a C4.5 based dimension
reduction algorithm in terms of both the number of attributes
and the classification accuracy. However, it is not compared
with any other EC based dimension reduction approaches.

As an EC algorithm, PSO has gained attention for address-
ing dimension reduction problems. Based on BPSO, Iswandy
and Koenig [23] develop a filter based dimension reduction
algorithm. The proposed algorithm employs different weights
to linearly combine three objectives, which are evaluated
by three filter criteria, into a single fitness function. The
results indicate that this algorithm outperforms other methods
on several benchmark problems. Wang et al. [9] develop a
filter dimension reduction method using an improved BPSO
and rough set model. However, the classification performance
of the reduct is only tested on one learning algorithm, the
LEM2 algorithm, which originally is specific used for rough
set theory and have some bias for the proposed rough set
theory based algorithm. Meanwhile, only using one learning
algorithm to evaluate the classification performance can not
show the advantage that filter algorithms are more general.
Marinakis et al. [24] propose a wrapper dimension reduction
approach based on BPSO and KNN for a real-world medical
diagnosis problem, which is called Pap-smear cell classifica-
tion problem. The proposed algorithm can remove around half
of the features and achieves good classification performance.

Based on a filter measure and PSO, a filter-wrapper dimen-
sion reduction algorithm is proposed in [25], with the goal
of integrating their advantages. The filter measure is used
to encode the position of each particle and the classification
performance is used in the fitness function. Experiments show
that the proposed method slightly outperforms a BPSO based
filter method. However, it has not been compared with any
wrapper algorithm, which usually can obtain higher classifi-
cation performance than a filter algorithm. Lin and Chen [3]
propose a wrapper dimension reduction algorithm (PSOLDA)
based on PSO and a linear discrimination analysis algorithm
(LDA), which aims to maximise the classification performance
evaluated by LDA. Different parameters are tuned to obtain
the best settings for PSOLDA. Experimental results show
that PSOLDA outperforms LDA using all attributes, LDA



with principal components analysis (PCA), and LDA with
forward and backward selection in almost all cases. However,
PSOLDA is sensitive to parameter setting and the datasets in
the experiments have a small number of attributes.

A dynamic quantum-inspired PSO algorithm is developed
for dimension reduction and at the same time for parameter
optimisation in neural networks [26]. Compared with two other
standard PSO and quantum information based algorithms, the
proposed method is computationally cheaper and obtains better
classification accuracy. Bae et al. [12] applied an intelligent
dynamic swarm based BPSO for dimension reduction, where
rough set theory is employed as the evaluation criterion in
the fitness function. K-mean algorithm is used to help the
proposed algorithm to handle continuous data. The results
suggest that the proposed method can overcome the prema-
ture convergence problem and shorten the computation time.
However, the number of attributes in the datasets is small.

In summary, PSO has been successfully applied to dimen-
sion reduction problems. However, most existing dimension
reduction algorithms are wrapper approaches, which are less
general than filter algorithms and computational inefficiency.
Therefore, it is an open issue to use PSO to develop a filter
dimension reduction approach.

III. PROPOSED APPROACH
In this section, two existing dimension reduction algorithms

[6] using PSO and probabilistic rough set are briefly described.
They are used to compare with the performance of the pro-
posed algorithm. Then we use probabilistic rough set theory
to develop a new measure to reduce the number of attributes
based on which a new algorithm is proposed.

A. Existing Algorithms: PSORS and PRORSN
In classification problems, the information of the data can be

represented using the decision table in rough set theory. Each
instance can be regarded as an object. The class label in the
dataset is the decision attribute D and other attributes/features
are the conditional attributes C and A = C ∪ D. Therefore,
based on the equivalence relation defined by A, U (all the
instances in the dataset) can be partitioned to different target
set or classes, U1, U2, U3, ..., Un, where n is the number
of classes. Dimension reduction is to remove some of the
attributes so that the remaining set P ⊆ A contains a small
number of attributes and maintains the information described
by all the original attributes. The goodness of P can be
measured by how well P represent each class (Ui) in the
dataset (U ).

a) PSORS: Since standard rough set theory has some
limitations because of the definitions of lower approximation
and upper approximation [10], probabilistic rough set theory
was used in [6] to propose a dimension reduction algorithm
(PSORS), where PSO was used as the search technique. In
PSORS, for the target set U1 in U in probabilistic rough set
theory, µP [x] =

|[x]P∩U1|
|[x]P | . µP [x] quantifies the proportion of

instances in the equivalence class [x]P also included in U1.
apr

P
U1 = {x|µP [x] ≥ α} defines the lower approximation of

U1 with regards to P , which is how well P describes the target
set U1. According to probabilistic rough set theory, [x]P does
not have to be completely contained in U1. α can be adjusted
to restrict or relax the definition of apr

P
U1. How well P

describes the universe U can be calculated by summing how
well P describes each target set, which is shown by Equation
7. Therefore, Equation 7 is used as the fitness function of
PSORS, which essentially measures the number of instances
that P correctly makes distinguishable from other instances in
the datasets. Fitness(P ) = 1 means that all the instances are
correctly identified to the true classes.

Fit1 =

∑n

i=1
|apr

P
Ui|

|U | (7)

b) PSORSN: PSORS using probabilistic rough set theory
can avoid the limitations of standard rough set, but PSORS
does not consider the number of attributes. During the evolu-
tionary process, if there are two or more reducts that have the
same fitness value, PSORS does not prefer the smaller ones.
Therefore, the number of attributes was added into the fitness
function to form another algorithm (PSORSN) in [6], which
aims to maximise the representation power of the attribute
subset and minimise the number of attributes at the same time,
as shown in Equation 8.

Fit2 = γ∗
∑n

i=1
|apr

P
Ui|

|U | +(1−γ)∗(1− #attributes

#totalFeatures
) (8)

where γ ∈ (0, 1] is the importance of the representation power
of the attribute subset while (1− γ) indicates the importance
of the number of attributes. When γ = 1.0, PSORSN is the
same as PSORS.

B. New Algorithm: PSORSE
PSORSN considers the number of attributes in the fitness

function, which is a typical way to combine two objectives
into one single fitness function. However, in the situation of
using probabilistic rough set theory, it might not work well
for some problems/datasets. The main reason is that a very
small number of attributes can describe a very large number
of equivalence classes, which attempt to extract patterns in
the dataset. However, each equivalence class may have a very
small number of instances. For example, 20 binary attributes
can describe 1048576 (220) equivalence classes. There could
be thousands of small equivalence classes, which only contain
one or two instances. If there is another equivalence class,
which has slightly more instances, this class will dominate
others and the obtained reduct will only contain information
that can identify this particular class. Therefore, without con-
sidering the size of the equivalence classes, Fit2 may obtain
a small reduct, but may loss generality and not perform well
on unseen test data.

In order to address the problem, we use probabilistic rough
set theory to develop a new measure to minimise the number
of attributes in the reduct, which aims to minimise the number
of equivalence classes and maximise the number of instances



Algorithm 1: Pseudo-code of PSORSE, PSORS and
PSORSN

begin
split the instances into a Training and a Test set;
initialise x and v of each particle;
while Maximum Iterations has been not met do

calculate the fitness value each particle on the Training
set according to Equation 7 for PSORS, Equation 8 for
PSORSN and Equation 9 for PSORS;
for i=1 to Swarm Size do

update the personal best (pbest) of particle i;
update the global best (gbest) of particle i;

for i=1 to Swarm Size do
for d=1 to Dimensionality do

calculate vi according to Equation 1
calculate xi according to Equation 2

calculate the classification performance of the selected
attributes on the test set using DT, NB or 5NN as the
classification algorithm;
return the position of gbest (the selected attributes);
return the training and testing classification performance;

in each equivalence class. Based on this new measure, we
propose a new PSO based dimension reduction algorithm
(PSORSE), where Equation 9 is used as the fitness function.

Fit3 =

∑n

x=1
|apr

P
Xi|

|U | +

∑
x∈{equivalence classes}

|x|
|U|

# of equivalence classes
(9)

The pseudo-code of PSORSE, PSORS and PSORSN is
shown in Algorithm 1. In all the three algorithms, each particle
is represented by a binary string, whose length is the total
number of attributes in the dataset, which also represents
the dimension of the solution space. “0” in the binary string
indicates that the corresponding attribute is removed and “1”
indicates that this attribute is not removed.

IV. DESIGN OF EXPERIMENTS

To examine the performance of the new approach, a set
of experiments have been conducted on six datasets (listed
in Table I), which are chosen from UCI machine learning
repository [27]. These six datasets have different numbers of
instances, attributes, and classes. They are used as representa-
tive examples of the tasks that the proposed method will test
on. As rough set theory only works on discrete values, all the
six datasets are categorical data. In each dataset, two thirds
of the instances are chosen as the training set while others
are used as the test set. The filter algorithms first run on the
training set in order to select a set of attributes. The training
process is independent of any classification algorithm. The
performance of the selected attributes is then evaluated by a
learning/classification algorithm on the unseen test set. Almost
all learning algorithms that are able to deal with discrete
data can be used here. Three different learning algorithms,
decision trees (DT), naive Bayes (NB) and K-nearest neighbor
algorithms with K=5 (5NN), are used in the experiments to test
the claim that filter dimension reduction methods are general.

TABLE I
DATASETS

Dataset # Attributes # Classes # Instances
Lymphography (Lymph) 18 4 148

Dermatology 33 6 366
Soybean Large 35 19 307

Chess 36 2 3196
Waveform 40 3 5000

Statlog 36 6 6435

All the α values should be larger than 0.5 because the
lower approximation in probabilistic rough set theory defines
the that the majority (at least have half) of the instances in
each equivalence class should belong to the target set. Based
on our previous work [6], α = 0.8 can be a good value
in the experiments in all methods. In all these methods, the
swarm size is 30, the fully connected topology is used in PSO.
w = 0.7298, vmax = 6.0, c1 = c2 = 1.49618 [14]. The
maximum iteration is 200. In PSOPRSN, γ is set as 0.9, 0.8
and 0.7 to show the different importance of the classification
performance and the number of attributes. Each method are
conducted for 50 independent runs on each dataset.

To further examine the performance of PSOPRSE, two con-
ventional filter dimension reduction methods (CfsF and CfsB)
in Waikato Environment for Knowledge Analysis (Weka) [28]
are used for comparison purposes. CfsF and CfsB are based
on the correlation measure (Cfs) proposed by Hall [20], which
measures the correlation between attributes and class labels.
Cfs is implemented in Weka and it needs a search technique.
Greedy search in Weka is selected as the search technique to
perform both forward selection (CfsF) and backward selec-
tion (CfsB). The classification performance of the attributes
obtained by CfsF and CfsB is calculated by DT.

V. RESULTS AND DISCUSSIONS

Tables II shows the results of PSORS, PSORSN, and
PSORSE. As the results of using 5NN are similar to that of
DT and NB, they are not presented here due to the page limit.
In the table, “PSORSN-0.9 , PSORSN-0.8 and PSORSN-0.7”
show the results of PSORSN with γ values of 0.9, 0.8 and
0.7, respectively.

The classification performance of the selected attributes
were evaluated by DT and NB on the test set of each dataset.
In Table II, “All” means that all of the available attributes are
used for classification. “Size” means the average number of
attributes selected in the 50 independent runs. “Best” “Mean”
and “StdDev” represent the best value, the average value and
the standard deviation of the testing classification accuracies
achieved by each algorithm in the 50 independent runs.

A. Results of PSORS

As shown in Table II, in almost all cases, PSORS reduced
around one thirds of the available attributes in the datasets
and obtained similar or even higher classification accuracies
than using all attributes. In some cases, the classification
performance of using all attributes is slightly better than the
average classification performance of the selected attributes,
but in most cases, the best classification performance is better



TABLE II
PSORS, PSORSN (WITH γ VALUES OF 0.9, 0.8 AND 0.7), AND PSORSE.

Dataset Method Size DT NB
Best Mean±StdDev Best Mean±StdDev

Chess

All 36 98.5 87.89
PSORS 30.57 98.69 98.41±20.4E-2 91.17 88.67±1.61E0

PSORSN-0.9 17.03 98.5 98.03±31.5E-2 94.55 92.25±1.22E0
PSORSN-0.8 11.37 97.75 97.28±1.13E0 93.99 92.68±66.2E-2
PSORSN-0.7 8.83 97.65 95.32±1.84E0 94.08 93.13±74.2E-2

PSORSE 29.3 98.69 98.44±21.7E-2 91.46 88.61±1.6E0

Dermatology

All 34 82.79 95.9
PSORS 20.97 97.54 86.09±4.72E0 98.36 93.52±3.17E0

PSORSN-0.9 8.83 96.72 74.86±7.89E0 95.08 80.93±5.85E0
PSORSN-0.8 8.63 87.7 76.12±6.52E0 88.52 81.75±4.55E0
PSORSN-0.7 7.83 95.08 76.89±6.93E0 90.16 80.44±5.88E0

PSORSE 11.5 97.54 92.03±3.21E0 96.72 92.67±2.38E0

Lymph

All 18 75.51 87.76
PSORS 11.43 79.59 72.38±6.89E0 91.84 84.83±3.68E0

PSORSN-0.9 5.17 71.43 65.78±5.69E0 83.67 78.16±1.68E0
PSORSN-0.8 5.07 67.35 66.12±4.58E0 83.67 77.96±1.53E0
PSORSN-0.7 5 67.35 67.35±31E-4 77.55 77.55±10E-4

PSORSE 6.56 75.51 70.12±8.54E0 85.71 81.76±1.38E0

Soybeanlarge

All 35 81.94 90.31
PSORS 21.3 87.67 79.71±3.82E0 92.07 84.39±3.46E0

PSORSN-0.9 10.37 80.18 72.36±3.91E0 81.94 76.8±3.47E0
PSORSN-0.8 9.77 80.18 71.92±4.02E0 82.38 76.23±3.69E0
PSORSN-0.7 9.43 79.74 72.28±4.1E0 85.9 76.04±4.47E0

PSORSE 19.12 85.46 80.9±2.67E0 85.46 81.22±2.46E0

Waveform

All 40 74.79 79.71
PSORS 24.47 77.37 74.81±1.91E0 81.27 77.72±1.99E0

PSORSN-0.9 8.23 76.71 68.8±2.87E0 75.75 69.86±3.52E0
PSORSN-0.8 8 76.29 69.91±4.17E0 78.75 71.12±4.1E0
PSORSN-0.7 7.97 73.29 68.38±4.65E0 75.03 69.59±4.51E0

PSORSE 18.6 77.19 72.5±4.14E0 81.27 74.87±4.84E0

Statlog

All 36 86.39 82.61
PSORS 25.37 86.57 85.47±57.7E-2 82.61 82.06±27.9E-2

PSORSN-0.9 13.8 86.57 84.9±73.3E-2 82.24 81.41±42.3E-2
PSORSN-0.8 11.3 85.55 84.4±63.2E-2 82.24 80.45±1.23E0
PSORSN-0.7 9.97 86.06 84.23±1.02E0 81.77 80.24±1.41E0

PSORSE 20.04 86.81 85.42±76.8E-2 83.12 81.92±52.4E-2

than using all attributes. The results suggest that PSORS
based on BPSO and probabilistic rough set theory can be
successfully used to reduce the number of attributes needed
for classification.

B. Results of PSORSN

According to Table II, by adding the number of attributes
into the fitness function, PSORSN further reduced the number
of attributes selected. PSORSN with a small γ selected a
smaller number of attributes than with a relatively large γ.
The reason is that a small γ in PSORSN means the number
of attributes in the PSORSN is more important than a relatively
large γ, and the classification performance is less important
than with a large γ. Therefore, the fitness function (Fit2)
will lead PSORSN to search for the solution space with a
smaller number of attributes. The results also show when the
number of attributes decreases, the classification performance
decreases in most cases. When PSORSN-0.8 or PSORSN-0.7,
PSORSN could not achieve higher accuracies than using all
attributes in most cases. This is consistent with our hypothesis
in Section III-B. Without considering the size of the equiva-
lence class, PSORSN could reduce the number of attributes in
the reduct, but also reduce the generality of the reduct.

C. Results of PSORSE

According to Table II, in most cases, PSORSE selected
less than half of the available attributes and obtained similar
or higher even better accuracy than using all attributes. Al-
though in some cases, the average classification performance
of the selected attributes is slightly worse than using all
attributes, their best classification accuracy is higher than using
all attributes. The results suggest that PSORSE considering
both the classification performance/representation power of the
selected attributes and the number of equivalence classes can
successfully reduce the number of attributes and maintain or
achieve higher classification accuracy than using all attributes.

D. Comparisons Between PSORS and PSORSE

Comparing the results of PSORSE with those of PSORS,
PSORSE achieved similar or higher classification accuracy
than PSORS, but the number of attributes in PSORSE is
always smaller or much smaller than in PSORS. For example,
in the Dermatology dataset using DT as the classification
algorithm, PSORS selected around 21 attributes from the
34 available attributes and its average classification accuracy
is 86.09%. PSORSE further reduced around 50% of the
attributes and improved the average classification performance
to 92.03%. The main reason is that PSORSE considers the
number of equivalence classes in the fitness function, which
can further reduce/remove redundant or irrelevant attributes
but keep the representation/classification power of the re-
maining attributes to achieve similar or higher classification
accuracy than PSORS.

E. Comparisons Between PSORSN and PSORSE

In both PSORSN and PSORSE, the fitness functions con-
sider both the classification power and the size of the attribute
subset. By using different γ values, PSORSN usually obtained
a smaller number of attributes, but for all the three learning
algorithms (DT, NB and 5NN), PSORSE achieved higher or
much higher classification accuracy than PSORSN, especially
when PSORSN-0.7. The main reason is that PSORSN ob-
tained a small number of attributes by directly considering
the number of attributes, but without considering the size
of the equivalence classes, the obtained attributes lost the
generality and could not achieve good performance on unseen
test data. Since the classification performance/representation
power is usually considered more important than the number
of attributes in dimension reduction problems, PSORSE can
be regarded as a better dimension reduction approach than
PSORSN.

Another advantage of PSORSE over PSORSN is that
PSORSE does not need to predefine the parameter γ, which
is typically difficult to determine. A larger γ means the
classification performance is more important than a smaller
γ, but the results in Table II show that the classification
performance of PSORSN-0.8 is not always better than that
of PSORSN-0.7, such as in the Lymph dataset. A possible
reason is that PSORSN with PSORSN-0.7 further remove
some redundant attributes, which reduce the complexity of the



TABLE III
RESULTS OF CFSF AND CFSB WITH DT AS THE LEARNING ALGORITHM

Chess Dermatology Lymph
Size Accuracy Size Accuracy Size Accuracy

CfsF 5 78.1 17 87.3 8 73.3
CfsB 5 78.1 17 87.3 8 73.3

Soybeanlarge Waveform Statlog
Size Accuracy Size Accuracy Size Accuracy

CfsF 12 80.5 32 72 5 71.62
CfsB 14 85.4 32 72 5 71.62

TABLE IV
CONTINUOUS DATASETS

Dataset # Attributes # Classes # Instances
German 24 2 1000

World Breast Cancer 30 2 569
-Diagnostic (WBCD)

Musk Version 1 166 2 476
(Musk1)
Semeion 256 2 1593
Madelon 500 2 4400

classification algorithms and slightly increase the classification
performance. This suggests that the parameter γ, which is to
balance the relative importance of the number of attributes
and the classification performance, is problem-dependent and
difficult to determine in advance.

F. Comparisons With Two Traditional Algorithms

Experiments using two traditional algorithms (CfsF and
CfsB) for dimension reduction have been conducted using
Weka. Experimental results are shown in Table III, where
DT was used for classification. Comparing the experimental
results of PSORS, PSORSN and PSORSE in Tables II with
the results in Table III, we can observe that in almost all cases,
PSORS, PSORSN and PSORSE achieved better or much
higher classification accuracy than CfsF and CfsB, although
CfsF and CfsB selected a smaller number of attributes.

Additionally, experimental results also show that using DT,
NB and 5NN as the classification algorithms, the performance
of PSORS, PSORSN or PSORSE show similar patterns. In
most cases, the attributes selected by PSORS, PSORSN or
PSORSE achieved similar or higher classification accuracy
than using all attributes. This suggests that all the three filter
methods based on PSO and probabilistic rough set are general
to the three classification algorithms.

VI. FURTHER EXPERIMENTS ON CONTINUOUS DATASETS

Since all the discrete datasets we can find in UCI and other
rough set related papers [9, 12, 11] have a small number of
attributes, we use the data discretisation technique in Weka
to pre-process the continuous data to discrete data. Five
continuous datasets listed in Table IV were chosen from UCI
and discretized. The five datasets were selected to have a large
number of attributes (up to 500) and different numbers of
classes and instances.

According to Table V, we can observe that all the three PSO
and rough set based dimension reduction algorithms (PSORS,
PSORSN and PSORSE) can be successfully used for the
discretized continuous datasets, which have a large number

TABLE V
PSORS, PSORSN (WITH γ VALUES OF 0.9, 0.8 AND 0.7), AND PSORSE.

Dataset Method Size DT NB
Best Mean±StdDev Best Mean±StdDev

German

All 24 72.97 72.97
PSORS 16.9 74.17 71.79±1.29E0 79.28 76.49±1.94E0

PSORSN-0.9 8.82 75.98 72.54±1.62E0 78.98 75.27±1.23E0
PSORSN-0.8 8.08 75.98 72.49±1.13E0 78.38 75.39±1.09E0
PSORSN-0.7 7.46 75.98 72.19±1.73E0 78.38 75.37±1.34E0

PSORSE 13.24 75.68 71.72±1.65E0 78.98 75.11±1.31E0

WBCD

All 30 92.59 93.65
PSORS 18.74 96.83 93.82±1.38E0 97.88 95.72±1.36E0

PSORSN-0.9 5.9 96.3 93.54±1.77E0 97.88 94±2.71E0
PSORSN-0.8 5.22 96.83 94.02±1.56E0 98.94 94.22±2.68E0
PSORSN-0.7 4.96 96.3 93.71±1.73E0 97.88 94.22±2.54E0

PSORSE 8.98 96.3 93.04±1.59E0 96.83 92.85±1.56E0

Musk1

All 166 70.25 81.65
PSORS 100.32 80.38 71.63±3.72E0 80.38 75.47±1.92E0

PSORSN-0.9 44.54 77.22 70.9±3.69E0 81.65 75.62±2.56E0
PSORSN-0.8 44.54 77.22 70.9±3.69E0 81.65 75.62±2.56E0
PSORSN-0.7 44.54 77.22 70.9±3.69E0 81.65 75.62±2.56E0

PSORSE 80.98 79.11 70.9±3.83E0 79.11 75.67±1.92E0

Semeion

All 256 94.35 92.28
PSORS 158.9 94.35 92.61±80.6E-2 95.1 93.42±78.7E-2

PSORSN-0.9 84.04 95.1 92.29±1.03E0 95.29 92.28±1.56E0
PSORSN-0.8 84.04 95.1 92.29±1.03E0 95.29 92.28±1.56E0
PSORSN-0.7 84.04 95.1 92.29±1.03E0 95.29 92.28±1.56E0

PSORSE 143.08 94.35 92.43±91.7E-2 95.1 93.12±98.6E-2

Madelon

All 500 62.36 50.35
PSORS 299.78 83.37 75.18±7.26E0 61.89 57.44±2.16E0

PSORSN-0.9 183.16 82.68 67.46±7.52E0 61.09 55.91±2.65E0
PSORSN-0.8 183.16 82.68 67.46±7.52E0 61.09 55.91±2.65E0
PSORSN-0.7 183.16 82.68 67.46±7.52E0 61.09 55.91±2.65E0

PSORSE 299.78 83.37 75.18±7.26E0 61.89 57.44±2.16E0

of attributes. In all datasets, the number of attributes were
significantly reduced. In most cases, by using the remaining
small number of attributes, DT, NB and 5NN can achieve
similar or higher classification accuracy than using all the
original attributes.

Comparing the performance of PSORS, PSORSN with
PSORSE, we can observe that their performance on the
continuous datasets are generally similar to that on the dis-
crete datasets. PSORS and PSORSE usually chose a larger
number of attributes, but obtained higer classification accuracy
than PSORSN. In most cases, PSORSE obtained a smaller
number of attributes than PSORS and achieved similar or
higher accuracy than PSORS. The attributes selected by the
three algorithms are also general to the three classification
algorithms (DT, KNN and NB) on the continuous datasets.

VII. CONCLUSIONS AND FUTURE WORK

This work aimed to propose a filter dimension reduction
approach to classification problems with the expectation of
reducing the number of attributes and maintaining or improv-
ing the classification performance over using all attributes. The
goal was achieved by developing a new dimension reduction
algorithm (PSOPRSE) based on PSO and probabilistic rough
set. PSOPRSE aims to maximise the classification perfor-
mance and minimise the number of attributes, where the clas-
sification performance is reflected by a probabilistic rough set
theory measure and the number of attributes is reflected by the
number of equivalence classes in probabilistic rough set theory.
The performance of PSOPRSE was examined and compared



with PSOPRS which maximises the classification performance
only, PSOPRSN by adding the number of attributes in the
fitness function, and two traditional filter dimension reduction
algorithms. Experiments were conducted on six datasets of
varying difficulty. Three classification algorithms, DT, NB and
5NN were used to test the generality of PSOPRSE. The results
show that PSOPRSE outperformed PSOPRS in terms of both
the number of attributes and the classification performance.
Although the number of attributes in PSOPRSE is slightly
larger than PSOPRSN and two traditional methods, PSOPRSE
achieved better or much better classification performance than
other methods mentioned above. Moreover, compared with
PSOPRSN, PSOPRSE does not need to predefine a parameter
to balance the relative importance of the number of attributes
and the classification performance. Experimental results also
show that PSOPRSE as a filter dimension reduction algorithm
is general to the three different classification algorithms. As
the discrete datasets include a small number of attributes,
the performance of PSOPRSE, PSOPRS and PSOPRSN are
further demonstrated on continuous datasets with a large
number of attributes.

In the future, we will investigate ways to further reduce the
number of attributes selected by PSOPRSE while maintaining
its classification performance. We also intend to investigate
multi-objective PSO and rough set theory for filter dimension
reduction to search for the Pareto front of non-dominated solu-
tions (attribute subsets) to provide more informative solutions
to meet different requirements in real-world applications.
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