VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

T8
School of Engineering and Computer Science
Te Kura Matai Piikaha, Piivorohiko

Eglﬁzxt600 Tel: +64 4 463 5341
gton Fax: +64 4 463 5045
New Zealand

Internet: office@ecs.vuw.ac.nz

Ph.D. Proposal: Particle Swarm
Optimisation for Feature Selection

Bing Xue

Supervisors: Mengjie Zhang and Will Browne

Submitted in partial fulfilment of the requirements for
PhD.

Abstract

Classification problems often have a large number of features in the datasets, but not
all of them are useful for classification. Irrelevant and redundant features may even re-
duce the performance. Feature selection and feature construction can improve classification
accuracy by selecting relevant features and constructing high-level features. However,
feature selection and construction are difficult because of feature interactions and the
large search space. Existing methods, such as greedy search and stochastic search, suffer
from a variety of problems, such as stagnation in local optima and high computational
cost. Therefore, an efficient global search technique is needed to address these problems.
Particle swarm optimisation (PSO) is such a global search technique, which is computation-
ally cheap and can converge fast. PSO has been successfully applied in many areas, but
its potential for feature selection and construction has not been exhaustively explored.
This work proposes to develop a PSO based approach to feature selection and construc-
tion in classification problems. The goal is to increase the classification accuracy, im-
prove the computational efficiency and simplify the learnt algorithms by using only the
selected or constructed features for classification. This will be achieved by developing
new PSO based approaches to feature selection, single feature ranking, multi-objective
feature selection and feature construction. The proposed approaches are expected to
select one or more complementary feature subsets and construct high-level features to
better describe the problem. This work also intends to develop a good evaluation func-
tion that can obtain an optimal feature subset for a given classification algorithm.

Contents

1 Introduction

1.1 Problem Statement
1.2 Motivations e e e e
1.2.1 Challenges of Feature Selection and Feature Construction

122 WhyPSO
1.2.3 Limitations of Current PSO for Feature Selection and Feature Con-
struction e e e

1.3 ResearchGoals e
14 Organisationof Proposal L.

Literature Review

2.1 Machine Learning for Classification
211 Trainingand Testing
212 Classifiers e e

2.2 Feature Selection e
2.2.1 General Feature Selection Process
2.2.2 Filter vs Wrapper Approaches
2.2.3 Classical Methods for Feature Selection
224 Single Feature Ranking
225 Feature Construction

2.3 Particle Swarm Optimisation (PSO)
2.3.1 Evolutionary Computation
2.3.2 Standard Particle Swarm Optimisation (PSO)
2.3.3 Binary Particle Swarm Optimisation (BPSO)
234 Recent WorkonBPSO

2.4 Evolutionary Computation Techniques for Feature Selection
24.1 PSO for Feature Selection
2.4.2 Other Evolutionary Computation Techniques for Feature Selection . .

25 Summary

Preliminary Work

3.1 Comparisons between CPSOand BPSO
3.1.1 Datasets and Parameter Settings
312 ExperimentalResults

3.2 Wrapper Based Single Feature Ranking

3.3 BPSO Based Feature Subset Ranking

3.4 Results: Single Feature Ranking vs Feature Subset Ranking
3.4.1 Datasets and Parameter Settings
34.2 Benchmark Techniques.
343 ExperimentalResults

W W W -

N =~

11
11
12
13
14
15
16
17
19
19
20
20
22
23
24
25
25
27
30

4 Proposed Contributions and Project Plan 45

4.1
4.2
4.3
44
4.5

Proposed Contributions 45
Overview of ProjectPlan 46
Project Timeline 46
ThesisOutline e 46
ResourcesRequired o L L 48
451 ComputingResources 48
452 LibraryResources. 48
453 Conference Travel Grant 49

ii

Chapter 1

Introduction

This chapter introduces this research proposal. It starts with the problem statement, then
outlines the motivations, research goals and the organisation of this proposal.

1.1 Problem Statement

In many fields, such as machine learning, the data space representation of a dataset is de-
fined by a set of features. The quality of the data space representation is one of the most
important factors which influence the performance of a machine learning algorithm [93].
Inductive learning, where an agent learns from a set of observations, is a widely-practiced
paradigm of machine learning. In this paradigm, the quality of the data space representa-
tion can be increased by using feature selection or feature construction to change the search
space of the machine learning algorithm [61].

Feature selection is an important strategy in improving the representation of a problem.
In many situations, which features are relevant is often unknown especially when the do-
main knowledge is unavailable or incomplete. Therefore, a large number of features are
introduced to the input space to better present the problem. However, how well the fea-
tures represent the problem depends mainly on the useful information that they contain, not
on the total number of the introduced features. The presence of irrelevant and redundant
features may mask or obscure the distribution of truly relevant features, and hence reduce
the representational power of the whole feature set [115]. Meanwhile, a large number of
features leads to the curse of dimensionality, which is a major obstacle in many machine
learning tasks like classification [28]. Feature selection is an effective treatment for this situ-
ation. Feature selection (See Figure 1.1) aims to select a subset of relevant features that are
necessary and sufficient to describe the target concept [19]. By reducing the irrelevant and
redundant features, feature selection could decrease the dimensionality of the input space,
reduce the amount of data needed for the learning process, shorten the running time, sim-
plify the structure and/or improve the performance of the learnt models [19]. Naturally,
an optimal feature subset is the smallest feature subset that can obtain the optimal perfor-
mance, which makes feature selection a multi-objective problem [83, 107]. Note that feature
selection algorithms choose a set of features from original features, and do not create new
features.

The existing feature selection methods can be broadly classified into two categories: filter
approaches and wrapper approaches. The search process in filter methods is independent
of a learning algorithm and they are argued to be computationally less expensive and more
general than wrapper approaches [19]. On the other hand, wrapper approaches conduct
a search for the optimal feature subset using the learning algorithm itself as part of the

Original
Features
Feature 1

Feature 2
Feature 3

Selected
Features
Feature x1
Feature Selection | Feature xa

T [eaming
. [v |Algorithm

Feature xm

Feature n-2
Feature n-1
Feature n

Figure 1.1: Feature selection, where m < n and {Feature x; ... Feature x,, } € {Feature 1, ...
Feature n } without replacement.

evaluation function. In a wrapper model, a feature selection algorithm exists as a wrapper
around a learning algorithm and the learning algorithm is used as a “black box” by the
feature selection algorithm. By considering the performance of the selected feature subset
on a particular learning algorithm, wrappers can usually achieve better results than filter
approaches [50].

Feature construction is a means of enhancing the quality of representation by transform-
ing the original representation to a new representation in which the learning capability of
an agent (e.g. a learning algorithm) can be improved [77]. Feature construction is an ef-
fective treatment for problems with epistatic features, which are usually more difficult than
the problems with linearly separable features. Epistasis can be defined as interactions be-
tween features, where groups of several features working together are relevant but not the
individual features alone [68]. Epistasis happens frequently in classification tasks. Feature
construction can usually address such a difficult problem by constructing new high-level
features based on the original features to build a more appropriate representation to de-
scribe the target concept [117]. In feature construction, when the original input space has
a quantitative representative (for example when the features are attribute-value and values
are numerical), the constructed features are a set of mathematical formulas. In case of nom-
inal values in the original input space, the constructed features are a combination of logical
and mathematical expressions.

Both feature selection and construction can individually change the input space repre-
sentation of a dataset. It is also common to see the combined use of these two methods [62].
Feature selection can be used before feature construction to select a group of the original
features that are then used in the feature construction process. Feature selection can also be
applied after feature construction to remove redundancy.

However, both feature selection and construction are NP-hard combinatorial problems
[110, 7] and in most cases the search space is too large to do an exhaustive search. Greedy
feature selection and construction approaches usually suffer from the problem of becoming
stuck in local optima [102]. In order to solve these problems, a heuristic search technique is
needed to address these problems.

Particle swarm optimisation (PSO) is a heuristic search technique proposed by Kennedy
and Eberhart in 1995 [21, 43], which is inspired by social behaviour, such as birds flocking
and fish schooling. As a relatively new evolutionary technique, PSO is based on the idea
of swarm intelligence. The underlying phenomenon of PSO is that knowledge is optimised
by social interactions where the thinking is not only personal but also social. Compared
with other techniques, such as genetic algorithms (GAs) and genetic programming (GP),
PSO is easier to implement, has fewer parameters and can converge more quickly [22]. PSO
is inherently continuous, i.e. it encodes variables into real values. Several discrete PSO

2

algorithms have also been proposed in the literature [17, 85, 65]. Both continuous PSO and
discrete PSO have been shown to be a promising method for feature selection problems
[60, 36,71, 16, 17, 100]. However, PSO has never been used for feature construction.

1.2 Motivations

1.2.1 Challenges of Feature Selection and Feature Construction

Both feature selection and construction are difficult combinatorial problems [110, 7], espe-
cially when the number of the features is large. The task is challenging because:

1. an exhaustive search of the entire feature space is practically impossible in most situ-
ations. The number of possible feature subsets increases exponentially with respect to
the number of original features (2" possible subsets for n features) [32].

2. there can be two-way, three-way or complex multi-way interactions among features.
As a result, a feature, which is weakly relevant or even completely irrelevant to the
target concept by itself, can significantly improve classification accuracy if it is com-
plementary to other features.

3. relevant features may be redundant because of feature interactions. A relevant feature
may become redundant or even noisy when working together with other features.
Therefore, the omission of some of them can remove unnecessary complexity (and
noise) and improve classification accuracy.

4. high feature correlation does not imply absence of feature complementarity. The com-
bination of highly correlated features produces redundancy, but these features could
be complementary to each other because of feature interactions. There can be differ-
ent degrees of redundancy and complementarity between correlated features in the
feature space.

1.2.2 Why PSO

Development of efficient algorithms for feature selection and constructions is an open is-
sue. In order to avoid exhaustive search, greedy algorithms are introduced to solve feature
selection [108, 64] and feature construction [61] problems. However, such greedy feature
selection and construction approaches usually suffer from the problem of becoming stuck in
local optima. Therefore, a heuristic search technique is needed to solve these tasks. PSO is
a heuristic search method. As a powerful search technique, PSO has been successfully im-
plemented in many combinatorial problems, such as process planning and scheduling [30],
vehicle routing problem [2], and electric power systems [6].

In feature selection and construction problems, the size of search space increases expo-
nentially with respect to the number of features, which causes the problem of high compu-
tational cost, especially for wrapper approaches. Due to the advantages of a few parameters
and fast convergence [22], PSO has high potential to solve feature selection and construction
problems efficiently.

For most feature selection and construction tasks, a good feature set is a group of com-
plementary features. Features from the complementary group working with other features
may not achieve good performance. Therefore, standard evolutionary operators, such as
crossover and mutation, may not help the algorithm to produce better solutions when it
reaches a near-optimal solution. The standard PSO does not use any standard evolutionary
operators. In PSO, particles update their positions dimension by dimension to search for the

best solution, which reduces the probability of destructing a good feature combination. The
good feature combination can be saved and the swarm searches for better feature subsets by
adding or deleting one or more features every evaluation.

Feature interactions (epistasis) lead to the second, the third and the fourth difficulties
(discussed above) in feature selection and construction tasks. Interactions between individ-
uals are an important characteristic of the PSO algorithm. Knowledge in PSO is optimised
by social interactions where the thinking is not only personal but also social. Individuals in
PSO interact and share information with each other to search for the optimal solution, which
is one of the main differences between PSO and other evolutionary computation techniques,
such as GAs and GP. Due to feature interaction problems, the interactive nature of PSO is an
advantage of using PSO for feature selection and construction.

1.2.3 Limitations of Current PSO for Feature Selection and Feature Construction
Representation, Topology and Search Mechanism

Most of the PSO applications use continuous PSO, but there are a few applications for dis-
crete optimisation problems. Both feature selection and construction tasks are discrete prob-
lems, thus a discrete PSO is needed to solve these problems.

The most widely used discrete PSO is binary PSO (BPSO) proposed by Kennedy and
Eberhart [44]. BPSO preserves the fundamental concept of the PSO algorithm, that is, the
knowledge is optimised by social interactions within the population. However, not all im-
portant characteristics of the PSO algorithm are completely present in BPSO. This can be
seen from the following aspects.

1. According to the main principles of PSO, the position of the next generation is based
on its current position and velocity. However, in BPSO, each dimension of velocity is
transformed by a sigmoid function, and then the position is updated solely by com-
paring the transformed velocity with a random generated number, which is in interval
[0, 1]. If it is larger than the random number, the position becomes 1. Otherwise, the
position becomes 0. Therefore, the value of the position of a particle in next genera-
tion is only dependent on its current velocity instead of dependent on both its current
value and velocity.

2. Although BPSO also employs the same velocity update equation as continuous PSO,
the sigmoid function and position update equations in BPSO show that a relative large
velocity the probability of adjusting the position will decrease. However, it is usually
expected that higher changing probability as the velocity increases.

3. Alarge maximum velocity in BPSO decreases the range explored by a particle, but it is
expected a large maximum velocity could encourage a particle to search a larger space
[44].

4. In continuous PSO, the velocity of a particle is a linear combination of its previous
velocities. In BPSO, the sigmoid function that is used to limit the velocity between 0
and 1, makes the problem non-linear.

When using BPSO for feature selection, according to the traditional encoding scheme,
the dimensionality of the search space is the number of features. A bit encoded mask
shows whether a feature is selected or not. This encoding scheme makes the task a high-
dimensional complex problem if the number of available features is large. A good encoding
scheme to avoid such a situation needs to be investigated.

4

Topology structure is one of the key elements that influence the performance of PSO
[22]. Research has shown the effects of topology on the performance of CPSO [22], but the
influence of topology on BPSO has not been investigated.

When using BPSO for feature selection and construction, computational efficiency of the
algorithm is important in real-world applications. In PSO based approaches, the majority
of the computational time is used in evaluating the fitness of each individual. PSO shares
many similarities with GA and research shows that GAs spend approximately a third of
the time on evaluating already evaluated candidate solutions [18]. So it is highly likely that
PSO also wastes much time in evaluating the already evaluated solutions. Feature selection
process is computationally expensive mainly because of fitness evaluation, especially in a
wrapper model. Therefore, the computational efficiency of the algorithm can be improved
if it evaluates one candidate solution only once during the evolving process. However, not
much research has been conducted on this topic.

Single Objective vs Multi-objective Feature Selection Approaches

Feature selection has two main objectives in classification problems, which are maximising
the classification accuracy and minimising the number of features needed. Therefore, ac-
cording to the objectives, feature selection approaches can be classified into three different
categories as follows.

1. Feature selection approaches aim to maximise the classification accuracy irrespective
of the number of selected features (See the first and second definitions for feature se-
lection in Section 2.2).

Most of the existing approaches fall into this category [100, 78]. However, when the
number of features is large, these algorithms suffer from a variety of problems, such
as becoming stuck in local optima, being computationally expensive, overfitting and
poor generalisation [28].

2. Feature selection approaches aim to select a certain number of features and maximise
the classification accuracy (See the third definition for feature selection in Section 2.2).

Many existing approaches can select a certain number of features with the goal of
maximising the classification accuracy, such as sequential forward selection (SFS) [108]
and sequential backward selection (SBS) [64]. However, these methods usually suffer
from the problem of becoming stuck in local optima [102].

3. Feature selection approaches aim solve the feature selection problem as a multi-objective
task to maximise the classification accuracy and also minimise the number of selected
features (See the fourth definition for feature selection in Section 2.2).

Solving feature selection tasks as multi-objective problems is more challenging than as
single objective problems. There are rare studies on feature subset selection as a multi-
objective problem [107, 41]. The main reason is that it is very hard to obtain a set of
uniformly distributed optimal solutions. The key challenge is to develop an efficient
multi-objective approach to solving feature selection problems.

Single Feature Ranking for Feature Selection

Single feature ranking is a relaxed version of feature selection, which only requires the com-
putation of the relative importance of the features and subsequently sorting them [32]. Fea-
ture selection can be accomplished by using only the few top-ranked features for classifi-
cation. Many feature selection algorithms include single feature ranking as a principal or

auxiliary selection mechanism because of its simplicity, scalability, capability to avoid over-
fitting and good empirical success [32]. However, in most of the existing single feature
ranking approaches, the ranking criteria, which measures the relative importance of each
feature, is defined for individual features independently of the context of others (the pres-
ence or absence of some other features). In many real-word classification problems, such as
a problem includes interaction features, a feature alone may not show any relevance to the
target class, but it may become relevant in the presence of some other features. Therefore,
a single feature ranking criterion, which takes into account the context of other features to
improve the feature ranking performance needs to be investigated.

Feature Construction

In classification problems, the feature construction process is using original features to create
new high-level features to improve the classification accuracy[115]. The constructed features
are in fact mathematical expressions of the original features. If the feature construction
function (mathematical expression) is known, feature construction is to select the best group
of features that are used in the function to optimise the quality of the constructed features.
However, a proper feature construction function is usually very difficult to design when
domain knowledge is unknown. In such a situation, a feature construction approach has to
simultaneously evolve a feature construction function and select the best group of features
that are used to create new features. Therefore, a good feature construction approach should
have a feature selection ability to search for the best combination of features for the feature
construction function. For a certain dataset, feature selection methods search for the optimal
feature subset in the feature space and feature construction approaches also search for the
best combination to construct new features in this feature space. PSO is a powerful search
technique for feature selection, but it has never been used for feature construction.

Fitness Evaluation

For both feature selection and construction, algorithms using different fitness evaluation
functions will most likely obtain different results. A feature subset or constructed features
could usually be optimal for one learning algorithm but not for all. For example, if informa-
tion gain is used to evaluate a feature subset in a filter approach in the training process, the
selected feature subset will be optimal for a decision tree algorithm. Therefore, information
gain is the best fitness evaluation criterion for a decision tree classifier, but it is unknown
whether information gain is also optimal for other classifiers. In wrapper approaches, it
is obvious that if a classifier is applied in the training process, the selected feature subset
or constructed features will be optimal for this classifier in unseen data, but it is unknown
whether they are also optimal for other classifiers. If good evaluation functions can be es-
tablished for commonly used classification algorithms, such as K-nearest neighbour (KNN),
naive bayes (NB), decision tree (DT), it would be much more convenient for users.

If the best fitness evaluation function for a classifier is known, users can select the best
fitness evaluation function for the desired classifier to obtain the best classification accu-
racy in unseen data and/or reduce the training time. However, not much work has been
conducted on this topic.

1.3 Research Goals

The overall goal of this research is to investigate a new approach to using PSO for feature
selection in classification problems. The specific research objectives of this work can be

itemised as follows.

1. Developing a new version of discrete PSO for feature selection. The goal is to explore
the potential of discrete PSO for feature selection problems. To achieve this goal, it
is necessary to investigate how a discrete PSO could search the feature subset space
to find the best solution. Due to the limitations of the standard discrete (binary) PSO
and the challenges of feature selection, this research goal leads to three objectives as
follows.

(a)

(b)

(©)

Propose a new scheme to encode the solutions (particles) in discrete PSO for fea-
ture selection.

According to the current encoding scheme in PSO for feature selection, the di-
mensionality of the search space is very high when the number of features is large
and the encoded binary mask only shows whether a feature is selected and/or
not. The new encoding scheme is expected to reduce the dimensionality of the
search space or to show the relationship between features. The performance of
the newly developed encoding scheme will be compared with that of the original
encoding scheme.

Design a new topology for discrete PSO for feature selection and construction
problems.

There are many different available topology structures, which work well in con-
tinuous PSO. This research will start with comparing the performance of com-
monly used topologies in discrete PSO for feature selection and construction.
Based on analysing the results and considering the characteristics of the feature
search space, a new topology for discrete PSO for feature selection problems will
be developed.

Investigate new position and velocity update equations and add search operators
to optimise the performance of discrete PSO.

In order to overcome the limitations of the standard discrete PSO, this objective is
to investigate new velocity and position update equations in discrete PSO or/and
add new search operators. The newly developed equations and search operators
are expected to better present the core concept of the PSO algorithm than the
original binary update equations.

2. Investigate a single objective feature selection algorithm. The goal is to develop a
single objective feature selection algorithm based on the proposed discrete PSO. The
subset of features resulting from this algorithm are expected to be sufficient to reflect
different aspects of the dataset. The performance of discrete PSO will be compared
with that of canonical standard PSO and other relevant benchmark algorithms, such
as SFS and SBS. This research goal leads to the four objectives as follows.

(a)

(b)

Investigate a strategy to improve the computation efficiency (caching strategy) of
discrete PSO for feature selection.

One of the main challenges in the feature selection problem is that the computa-
tional cost is high, especially for wrapper approaches. This research is to develop
a strategy to improve the computation efficiency of discrete PSO for feature se-
lection without compromising its performance.

Use discrete PSO to select a subset of features to maximise the classification accu-
racy irrespective of the number of selected features.

The fitness function is to maximise the classification accuracy irrespective of the
number of selected features. It will be investigated whether discrete PSO can

7

select a good feature subset with which a learning algorithm could achieve better
performance than with all features and feature subsets obtained by other existing
approaches.

(c) Use discrete PSO to select a feature subset with a certain number of features and
maximise the classification accuracy.
Further, discrete PSO will be to select a certain number of features with a fitness
function of maximising the classification accuracy. As there are many combina-
tions for a feature subset with a particular number of features, discrete PSO is
expected to search for the best combination (subset) of features from the possible
combinations.

(d) Use discrete PSO for single feature ranking for feature selection.
In the objective 2(c), when the number of features is one, the best solution should
be the first top-ranked feature in single feature ranking. Therefore, this objec-
tive is to develop a feature selection algorithm based on single feature ranking
and discrete PSO. Due to feature interaction problems (epistasis), the challenge
is to develop a criterion to measure the relative importance of each feature in the
presence or absence of some other features.

3. Investigate multi-objective discrete PSO for feature selection with the objectives of
maximising the classification accuracy and minimising the number of features.

As the objectives of feature selection involve both the classification accuracy and the
number of selected features, the goal is to use discrete PSO to solve the feature selec-
tion task as a multi-objective problem. The challenge is to develop a multi-objective
discrete PSO, which can find a set of uniformly distributed solutions. The perfor-
mance of the proposed multi-objective discrete PSO will be compared with that of
other multi-objective algorithms.

4. Utilise discrete PSO for feature construction.

This objective aims to discover if discrete PSO can be an appropriate approach to con-
structing new high-level features using original features. The new constructed features
are expected to transform the original input space in a way that can enhance the learn-
ing ability of a learning algorithm. The key challenge is to formulate a feature con-
struction function to guide the discrete PSO search. By finding such a solution, PSO is
expected to find the best combinations of features for this function to create high-level
features and the constructed features could improve the classification performance of
the learning algorithm. This research goal can be achieved in two following ways.

(a) Design fixed functions to construct new high-level features and use discrete PSO

to select the original features from feature space to construct new high-level fea-
tures.
Depending on the number of features, instances and classes, it may be needed
to investigate different feature construction functions that will be used in PSO
to construct high-level features. In order to optimise the representational power
of the constructed features, it is needed to discover the relationship between the
feature construction function, the number of original features needed, and the
classification performance.

(b) Use discrete PSO to automatically evolve a function to construct new high-level
features and also select original features.

A good feature construction function should be designed based on domain knowl-
edge, but this is usually incomplete or unavailable. In order to overcome this

situation, the objective here is to use discrete PSO to evolve the feature construc-
tion function and select the original features simultaneously. The key challenge
is how discrete PSO could evolve the feature construction function. New search
operators will be designed for discrete PSO, which could evolve mathematical
and/or logical functions.

5. Predict the fitness evaluation function with which a feature selection algorithm could
obtain the best feature subset for a given learning algorithm.

This research goal is optional depending on the time available and the related re-
search will start after the above four goals are achieved. The goal is to investigate
a good fitness evaluation function used in the training process of a feature selection
approach, which will obtain a good feature subset for a given learning algorithm. This
research will focus on commonly used learning algorithms, such as K-nearest neigh-
bour (KNN), naive bayes (NB), decision tree (DT), support vector machine (SVM) and
learning classifier system (LCS). In filter approaches, entropy, information gain, corre-
lation coefficient and other commonly used fitness evaluation functions will be inves-
tigated to determine which of them is optimal for a given learning algorithm. In wrap-
per approaches, simple learning algorithms will be investigated to determine whether
they can be used in the training process to obtain a feature subset, which is optimal
for the desired learning algorithm. It is necessary to discover the relationship between
the fitness evaluation function and the classification performance of the learning algo-
rithms.

1.4 Organisation of Proposal

The remainder of this proposal is organised as follows. Chapter 2 presents essential back-
ground and related work in PSO, feature selection and feature construction. The review
covers evolutionary computation and machine learning, particularly PSO, feature selection
and construction. It also discusses open questions and current challenges that form the mo-
tivations of this work. Chapter 3 presents preliminary work conducted in single feature
ranking and binary PSO based feature subset ranking for feature selection. Chapter 4 pro-
vides a detailed research plan and a timeline of the tasks in this project.

10

Chapter 2

Literature Review

This chapter reviews the literature on evolutionary computation techniques as main ap-
proaches to solving feature selection problems. This chapter covers essential background
and basic concepts of evolutionary computation and machine learning, particularly PSO,
feature selection and construction. It reviews typical related work in feature selection and
construction problems using conventional methods and evolutionary computation tech-
niques.

2.1 Machine Learning for Classification

Machine learning is a major research area of artificial intelligence. It is concerned with the
design, analysis, implementation, and application of programs that are capable of learning
in their environment [66, 69, 5]. A machine learning system is expected to be able to auto-
matically improve its performance at certain task as it gains more experience [69].

Mitchell [69] provided a widely quoted definition of machine learning:

“computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as mea-
sured by P, improves with experience E” .

Machine learning algorithms use a feedback mechanism to change their behaviour (learn).
Depending on the type of feedback, machine learning algorithms can be classified into three
main categories: supervised, unsupervised and reinforcement learning [93].

e Insupervised learning, the learner is learning with labeled class examples or instances.
The desired outputs for a problem are known in advance, and the goal is to learn a
function that maps inputs to desired outputs. Classification is a typical form of super-
vised learning.

¢ Inunsupervised learning, the learner is learning without labeled class examples, which
means there is no correct answers for the learner to explicitly learn from. It attempts to
find inherent patterns that can then be used to determine clusters for given instances.

¢ In reinforcement learning, desired outputs are not directly provided. Every action of
the learner has some impact to the environment, and the environment provides feed-
back on the goodness of its action in the form of rewards and punishments. The learner
learns based on the rewards and punishments it receives from the environment.

Classification is one of the major tasks in machine learning, which refers to an algorith-
mic procedure for assigning a given piece of input data into one of the given categories [10].

11

During the classification process, a learnt classifier is needed, which takes the values of the
features or attributes of an object as input and the predefined class labels for the object as
output. The classifier is learnt by a learning algorithm, also called a classifier inducer, which
uses a set of examples to learn a classifier that is expected to correctly predict the class label
of unseen (future) instances [10].

A typical classification example is the email spam-catching system, which is important
and necessary in real-world applications. Given a set of emails marked as “spam” and “non-
spam” , the learner will learn the characteristics (features) of the spam emails and then the
learnt classifier is able to process future email messages to mark them as “spam” and “non-
spam”.

2.1.1 Training and Testing

Common to classification problems are the processes of training and testing. The process by
which a learning algorithm (classifier inducer) uses observations to learn a new classifier is
called the training process and the process by which the learning algorithm is tested is called
the testing process [69]. During the training process, the classifier is learnt from a collection
of observations from the problem domain called instances, which is called the training set.
The algorithm learns important knowledge or rules in the training set by building models
and adjusting the corresponding parameters. The performance of the algorithm is then eval-
uated on the test set, which is a collection of instances in the same problem domain, except
that these are not used and remain unseen in the training process.

The learning ability of algorithms is usually examined by applying them to a set of
benchmark problems. Benchmark problems are usually chosen from datasets that are pub-
licly accessible to researchers (e.g. UCI Machine Learning Repository [26]) so that results
can be verified and the performance can be checked. A dataset usually has a training set
and a test set. In such problems, the learning algorithm then becomes two-fold: to discover
or learn different kinds of knowledge or rules from the training set, and apply these rules to
the test set to measure the learnt model. However, many benchmark problems do not have
a specific test set or some of them only have a small number of available instances in the
dataset. To evaluate the performance of a classifier on these problem:s, it is necessary to use
some resampling methods, such as n-fold cross-validation [72].

In n-fold cross-validation, the dataset is randomly partitioned into n folds (partitions)
and the folds are near-equal size. In stratified n-fold cross-validation, the folds are selected
so that the proportion of instances from different classes, remains the same in all folds. Sub-
sequently, a single fold of the n folds is retained as the test set for testing the model, and the
remaining n — 1 folds are used as training set. The cross-validation process is then repeated
n times, with each of the n folds used exactly once as the test set. The n results from the
n experiments can then be averaged to produce a single estimate of classification perfor-
mance. The advantage of such a method is that all observations are used for both training
and testing, and each observation is used for testing exactly once. Generally, a larger n will
produce an estimate with smaller bias because of the higher proportion of observations in
the training set, but potentially higher variance (on top of being computationally expensive)
[72]. Leave-one-out cross-validation (LOOCYV) is an extreme case of n-fold cross-validation,
which uses a single observation from the dataset as the test set, and the remaining observa-
tions as the training set. This is the same with a n-fold cross-validation with n being equal to
the number of observations in the dataset. Note that n-fold cross-validation is usually used
when the number of examples in the entire dataset is small.

12

2.1.2 Classifiers

Many different learning algorithms (classifiers) have been proposed in machine learning.
Most commonly used classifiers, which will be used in this research, are reviewed in this
section, such as K-nearest neighbour (KNN), bayesian classifiers, support vector machines
(SVMs), and decision tree classifiers (DT).

2.1.2.1 K-nearest Neighbour Classifier (KNN)

KNN is a type of instance-based learning approach to classification. When using KNN for
classification, it calculates the distances between the test instance and every instances in
the training set, then assigns the test instance to the class that is the most common in the k
nearest neighbours, where k is a positive integer, typically small. Euclidean distance, man-
hattean distance and other distance measures can be used to measure the distance between
objects in KNN [5].

In KNN, there is no explicit training phase or it is very minimal. In other words, KNN
does not use the training data points to do any generalisation. The training data in KNN is
needed during the testing process, which is in contrast to other techniques like SVM where
the training set and all non support vectors (hyperplanes) can be safely discarded. KNN is a
simple learning algorithm, but works well in practice. KNN does not make any assumptions
on the underlying data distribution. This is because in real-world applications, most of the
datasets do not obey the typical theoretical assumptions (e.g. gaussian mixtures, linearly
separable) which are needed in certain classifiers[5]. However, for a large training set, KNN
requires large memory and is very time-consuming to make a decision [25].

2.1.2.2 Decision Tree Classifiers (DT)

DT learning is an approach to approximating discrete-valued functions [69]. DT classifiers
partition the input training data into smaller subsets by producing optimal rules or deci-
sions, also called nodes, which maximise the information gained [69]. The learnt decision
tree is a hierarchy of nodes, where leaves represent class labels and branches represent con-
junctions of features that lead to those class labels. Instances are classified by sorting them
down the tree from the root to certain label nodes. For a given instance, the classification
process starts at the root node by testing the value of the feature at the root node and then
moves to one of the child nodes. Then the process is repeated for the subtree rooted at the
new node.

The main problem in learning a decision tree is to determine which feature should be
tested at each node of the tree. Most decision tree learning algorithms employ a top-down
greedy search through the space of possible decision trees, such as the iterative dichotomiser
3 algorithm (ID3) [90], the C4.5 algorithm [89] and its Java version, the J48 algorithm [109].
These algorithms use an entropy function to measure the homogeneity of examples and
choose the best node at each stage. The developed model can be expressed as a set of ‘if-
then’ decision rules to improve human readability. Meanwhile, decision trees are easy to
modify. A disadvantage of decision trees is that they are weak in separating non-rectangular
areas in the input space [89], which creates two-way or multi-way feature interactions (See
the second challenge discussed in feature selection and construction in the first paragraph
in Section 1.2).

13

2.1.2.3 Support Vector Machines (SVMs)

SVMs are supervised learning methods based on the statistical learning theory. SVMs re-
quire that each data instance is represented as a vector of real numbers. The main idea of
SVMs is to map the input data to high dimensional space, where SVMs could construct a
hyperplane or a set of hyperplanes which are used to create a decision boundaries for classi-
fication [35]. SVMs aim to maximise the distances between the hyperplanes and the nearest
training data points of any class (so-called functional margin), since in general the larger the
margin the lower the generalisation error of the classifier [35]. Instances are classified based
on what side of these hyperplanes they fall on.

A particular advantage of SVMs over other learning algorithms is that they can be anal-
ysed theoretically using concepts from the computational learning theory, and at the same
time can achieve good performance when applied to real-world problems [34]. From a prac-
tical point of view, the most serious disadvantage of SVMs is the high algorithmic complex-
ity and extensive memory requirements in large-scale tasks [103].

2.1.2.4 Bayesian Classifiers

Bayesian classifiers are probabilistic methods for classification. Their assumptions are that
the behaviour of data (input-output relationships) can be captured in probability distribu-
tions and features or attributes of the problem are statistically independent [69]. A Bayesian
algorithm stores a simple probabilistic summary for each class and this summary contains
the conditional probability of each feature or attribute value given the class, as well as the
probability (or base rate) of the class [58].

Naive bayes (NB) classifiers are the most common and straightforward bayesian classi-
fiers. It has been shown that NB classifiers are quite competitive with other classifiers, such
as DT and neural networks (NN) [67]. NB classifiers make significant use of the assumption
that all input features are conditionally independent. This assumption can not be applied
to many real-world problems where there are interdependency between the input features,
which causes two-way or multi-way feature interactions (See the second challenge in feature
selection and construction discussed in the first paragraph in Section 1.2).

2.2 Feature Selection

Feature selection, also known as variable selection or attribute selection, is an important
data preprocessing technique. Feature selection is defined by many researchers according to
different criteria, but most of them are similar in intuition and /or content [19]. The following
lists those that are conceptually different and cover a range of definitions.

e Improving predictive accuracy: feature selection is to choose a subset of features for
improving the predictive performance or reducing the complexity of the model with-
out significantly decreasing prediction accuracy of the classifier built using only the
selected features [51].

e Approximating original class distribution: feature selection is to select a subset of fea-
tures such that the resulting class distribution, given only the values of the selected
features, is as close as possible to the original class distribution given all features [51].

o Classical: feature selection is to select m features from n original features, m < n, such
that the value of a criterion function is optimised over all subsets of size m [76].

14

o | Subset Subset Subset

Discovery Evaluation

Initialisation|

Goodness of
the Subset

Stopping
Criterion

No Yes > Results

Validation

Figure 2.1: General feature selection process [19].

e Idealised: feature selection is to find the minimally sized feature subset that is neces-
sary and sufficient to describe the target concept [49].

Note that the second definition emphasises the class distribution of the training set, whereas
the third definition emphasises on selecting the best combination of m features based on a
certain criterion.

Overall, feature selection is the process of finding a minimal subset of features that is
necessary and sufficient to solve a classification problem. Naturally, the optimal feature
subset is the smallest subset that can obtain the highest classification performance, which
makes feature selection a multi-objective problem [83, 107].

Feature selection leads to dimensionality reduction by eliminating irrelevant and redun-
dant features from the dataset, which in turn improves the classification performance and
makes the learning and execution processes faster. Models constructed using a smaller num-
ber of features are also easier to interpret.

The search space of a feature selection problem has 2" points where n is the number
of available features. A feature selection algorithm explores the search space of different
feature combinations to find the best feature subset. As the search space grows exponentially
along with the number of features, it is impractical to search the whole space exhaustively
[50] in most situations.

2.2.1 General Feature Selection Process

Generally, there are five basic steps in a typical feature selection approach [19] (see Figure
2.1).

1. A feature selection algorithm starts with a initialisation procedure.

The initalisation procedure is the first step of a feature selection algorithm and it is
based on all the original features in the problem. For example, in a PSO based feature
selection algorithm, the dimensionality of the search space is usually set as the number
of all features in this procedure.

2. A discovery procedure to generate candidate subsets.

It is a search procedure [57], which can start with no features, all features, or a random
subset of features. Many search techniques, including conventional methods and evo-
lutionary techniques, are applied in this generation step to search for the best subset
of features.

15

Training Set . | Feature Feature
raining Se 7| Selection "1 Subset

n| Learning o | Estimated
Test Set o Algorithm " Accuracy

Figure 2.2: A filter feature selection approach in which the features are filtered indepen-
dently the learning algorithm.

3. An evaluation function to measure the subset.

Feature subsets produced by the generation procedure will be measured by a fitness
evaluation function to determine their goodness. Fitness evaluation function plays an
important role in a feature selection approach, because it helps guide the algorithm to
search for the optimal feature subset.

4. Based on given criteria to decide when to stop.

Stopping criteria can be based on the generation procedure and evaluation function.
Criteria based on the generation procedure can be whether a predefined number of
features are selected and whether a predetermined maximum number of iterations
have been reached. Evaluation based criteria include whether addition or deletion of
any feature does not produce a better subset and whether the optimal subset accord-
ing to certain evaluation functions has been obtained. The loop continues until the
stopping criterion is satisfied.

5. A validation procedure to check whether the subset is valid.

The validation procedure is not part of the feature selection process itself, but a feature
selection approach must be validated. The selected feature subset will be validated on
the test set. The results will be compared with previously established results or the
results of predefined benchmark techniques.

2.2.2 Filter vs Wrapper Approaches

For a feature selection problem, the optimal feature subset is always relative to a certain
fitness evaluation function. The optimal feature subset chosen using one fitness evaluation
function is usually not the same feature subset chosen using another fitness evaluation func-
tion. Based on whether a learning algorithm is used in the fitness evaluation function or not,
the existing feature selection methods can be broadly classified into two categories: filter ap-
proaches and wrapper approaches [57]. A filter feature selection approach is independent
of a learning algorithm whereas wrappers use a learning algorithm in the fitness evaluation
function.

Figure 2.2 shows the diagram of a feature selection system taking a filter approach. In
filter approaches, the search process is independent of learning algorithms. The goodness of
feature subsets are evaluated based on a certain criterion like distance measure, information
measure and consistency measure [19]. Filter approaches are argued to be computationally
less expensive and more general than wrappers [111, 40], but filter approaches totally ignore
the performance of the selected feature subset on the learning algorithm, which usually

16

Feature Subset Search

/
Training Set ‘ Subset Evaluation ‘ Feature
Subset
A
‘ Learning Algorithm ‘
».| Learning » | Estimated
Test Set o Algorithm " Accuracy

Figure 2.3: A wrapper feature selection approach which exists as a wrapper around the
learning algorithm.

leads to lower performance than wrapper approaches on a particular learning algorithm
[40].

Figure 2.3 shows the diagram of a wrapper feature selection approach. In a wrapper
model, the feature selection algorithm exists as a wrapper around a learning algorithm and
the learning algorithm is used as a “black box” by the feature selection algorithm [40]. The
performance of the learning algorithm is used to guide the search by evaluating the good-
ness of feature subsets. Compared with filter approaches, wrappers usually produce better
performance because of the interaction between the learning algorithm and the training set
in the subset searching process [50]. However, wrapper feature selection approaches are
usually computationally more expensive than filters because each evaluation of a candidate
solution needs a learning algorithm to be trained and tested [38].

2.2.3 Classical Methods for Feature Selection
2.2.3.1 Filter Feature Selection Approaches

A filter feature selection approach searches for the optimal feature subset from the search
space based on a certain evaluation criterion, which is independent of the learning algo-
rithms. There are many filter feature selection algorithms that have been proposed and
typical algorithms are reviewed in this section.

Many filters have been proposed based on different criteria, including distance measures
[56], dependency measures [112], consistency measures [113], and information measures
[24]. Besides the evaluation criterion, how to search for the best feature subset is another
important factor in feature selection methods. The FOCUS algorithm is a classical filter
feature selection algorithm, which was originally defined for noise-free Boolean domains [4].
It starts with an empty feature subset and exhaustively examines all subsets of features and
then selects the minimal subset of features that is sufficient to determine the class label for all
instances in the training set. This preference for a small subset of features is referred to as the
MIN-FEATURES bias. This bias may lead to poor generalisation performance of the learning
algorithm with the selected features [50]. Meanwhile, the FOCUS algorithm performs an
exhaustive search to determine the best feature subset, which is computationally expensive.

The Relief algorithm is another popular filter feature selection method that assigns a
relevance weight to each feature [48]. The weight is intended to denote the relevance of
the feature to the target concept. Relief samples instances randomly from the training set

17

and updates the relevance values based on the difference between the selected instance and
the two nearest instances of the same and opposite class (the “near-hit” and “near-miss”).
However, the Relief algorithm does not deal with redundant features, because it attempts to
find all relevant features regardless of the redundancy between them [52], which is the third
challenge in feature selection and construction as discussed in Section 1.2.

Decision trees use only relevant features that are required to completely classify the train-
ing set and remove all other features. Cardie [11] proposed a filter based feature selection
algorithm that used a decision tree algorithm to select a subset of features for a nearest
neighbourhood algorithm. Experiments showed that the subset generated by a decision tree
helped the nearest neighbour algorithm to reduce its prediction error. However, the features
that are good (or not good) for the decision tree are not necessary useful (or not useful) for
the nearest neighbour algorithm, which will lead to poor feature selection performance.

Yu and Liu [112] claimed that feature relevance alone was insufficient for efficient fea-
ture selection of high-dimensional data. They proposed a feature selection algorithm that
took both relevance and redundancy into account. The algorithm, however, is limited to
problems that only have discrete features.

Recently, different evolutionary computation techniques have been applied in filter fea-
ture selection approaches, such as PSO [106], GAs [13], GP [79], and ant colony optimisation
(ACO) [39]. Typical approaches will be reviewed in Section 2.4.

2.2.3.2 Wrapper Feature Selection Approaches

Generally, wrapper feature selection approaches are usually computationally more expen-
sive than filters because each evaluation involves training and testing the learning algorithm
[88]. As the search space of a feature selection problem has 2" possible points where 7 is the
number of available features in the dataset, it is impossible to search the whole search space
exhaustively in most cases. Therefore, most of existing wrappers employ greedy or stochas-
tic search strategies [28].

Sequential forward selection (SFS) [108] and sequential backward selection (SBS) [64]
are two commonly used wrapper feature selection approaches. Both of them use a greedy
hill-climbing search strategy to search for the optimal feature subset. SFS starts with an
empty set of features and iteratively adds one feature at one time until no improvement
in classification accuracy can be achieved. By contrast, SBS sequentially removes features
from a full candidate feature subset until the removal of further features does not increase
the classification accuracy. Both SFS and SBS suffer from the so-called nesting effect, which
means once a feature is selected (discarded) it cannot be discarded (selected) later. Therefore,
both SFS and SBS are easily trapped in local optima [50]. In addition, both SFS and SBS
require long computational time when the the number of features is large [50].

In order to avoid nesting effect, Stearns [97] proposed a “plus-I-take away-r” method
in which SFS was applied [times forward and then SBS was applied for r back tracking
steps. However, determining the best values of (I,) was a challenge. In order to solve this
problem, Pudil et al. [87] proposed floating selection methods, sequential backward floating
selection (SBFS) and sequential forward floating selection (SFFS) to automatically determine
the values of (I,). In addition, the values of (I, r) in SBFS and SFFS that denotes the number
of forward and backtracking steps are dynamically controlled instead of being fixed in the
“plus-I-take away-r” method. Although the floating methods are regarded to be at least as
good as the best sequential method, they are still likely to become trapped in a local optimal
solution even the criterion function is monotonic and the scale of the problem is quite small
[114].

Based on the best-first algorithm and SFFS, Gutlein et al. [31] proposed a linear forward

18

selection (LFS) in which the number of features considered in each step was restricted. Be-
cause of the small number of evaluations in each step, LFS improves the computational
efficiency of sequential forward methods while maintaining comparable accuracy of the se-
lected feature subset. However, LSF starts with ranking all the individual features without
considering the presence or absence of some other features, which in turn limits the perfor-
mance of the LSF algorithm in problems where there are interactions between features.

Recently, evolutionary computation techniques have been applied in wrapper feature
selection models, such as PSO [60], GAs [83], GP [74], and ACO [95]. Typical methods will
be reviewed in Section 2.4.

2.24 Single Feature Ranking

Single feature ranking is a relaxed version of feature selection [32]. Single feature ranking is
computationally cheap, because it only requires the computation of the relative importance
of the features and subsequently sorting them.

In single feature ranking, a score denotes the relative importance of a single feature,
which is measured by a predefined criterion. All the features are ranked according to the
score and then feature selection can be accomplished by selecting a small number of top-
ranked features. Normally, users specify the number of top-ranked features they need ac-
cording to their requirements. There are also analytical methods to determine the best num-
ber of features [98].

Most single feature ranking methods fall into the filter approach category and not much
work has been conducted on wrapper based single feature ranking [80]. Many measures
have been proposed to evaluate the relative importance of each feature in single feature
ranking approaches, including information gain, gain ratio, mutual information and so forth
[59].

Most of existing single feature ranking approaches only measure the goodness of a single
feature, not taking into account the interaction between groups of features [32, 92]. Nesha-
tian et al. [82] proposed a feature ranking approach in which the importance of each feature
was evaluated in a group of features. In the proposed method, GP was applied to evalu-
ate the importance of a set of features by incorporating them into the construction of GP
programs. Each feature was scored based on the frequency of appearance in a collection
of GP programs and the fitness of those programs. Experiments showed that with a few of
top-ranked features a variety of different classifiers could achieve better classification perfor-
mance than with all features. However, the proposed method has not been compared with
other feature ranking approaches, and whether the combination of the top-ranked features
is redundant or not has not been investigated either.

In many classification problems, groups of several features working together are rele-
vant but not the individual features alone. If any feature in the group is absent, the rest
features become irrelevant to the problem. This phenomenon is known in evolution theory
as epistasis [68]. If there are epistatic features included in the problem, most of existing ap-
proaches might not obtain good feature ranking performance (e.g. the combination of the
top-ranked features is a redundant subset). An effective single feature evaluation criterion
which considers epistasis phenomenon can potentially improve the performance of single
feature ranking, but this needs to be further investigated.

2.2.5 Feature Construction

Many classification algorithms, particularly those based on symbolic learning (e.g. decision
trees), cannot achieve adequate classification performance when facing difficult real-world

19

problems [55]. As one of the feature transformation methods, feature construction could
significantly improve the performance of the classification algorithms by constructing new
features, which could improve the quality of representation of the problem and reduce its
complexity [101]. Based on whether a learning algorithm is included in the feature construc-
tion process or not, feature construction approaches (like feature selection methods) can be
roughly divided into two categories, which are wrapper approaches and filter approaches
[61].

In wrapper approaches, feature construction and induction are integrated into one single
algorithm, where new features are constructed within the induction process of the learning
algorithm. Murthy et al. [75] proposed a system which constructed new features by linearly
combining the original features in the process of inducting an decision tree. Zheng [116]
studied the effects on decision tree learning of constructing different types of attributes and
proposed a single tree learning algorithm to reduce effects of factors, such as new attribute
search strategies, evaluation functions, and stopping criteria. The proposed approach could
outperform the standard decision tree approaches. However, wrapper feature construction
approaches have a disadvantage of losing the generality and increasing the processing time
in general [84].

In filter approaches, the process of feature construction is a separate, independent pre-
processing stage and the new features are constructed before the classification algorithm is
applied to build the model. Recently, more feature construction methods fall into this cat-
egory than wrapper category because of computational efficiency and generality of filter
approaches [84, 73, 96]. Due to the capability of GP in building programs and expression, it
has been used as an efficient technique for feature construction. Otero et al. [84] used GP to
construct new features with information gain ratio as the fitness function. C4.5 classifier was
applied for classification and its performance was improved by using the newly constructed
features together with the original features. This improvement may be because both C4.5
classifier and GP use information gain ratio as fitness function and it is unknown whether
a different classifier still could benefit as much as C4.5. Muharram and Smith [73] used the
same method in [84] for feature construction and evaluated the performance of the newly
constructed features using four different classifiers. Adding the newly constructed features
into the feature space could not improve the performance of four classifiers in two of the five
datasets. Most of the feature construction approaches increase the number of features be-
cause of adding newly constructed feature(s) into the feature space, which in turn increases
the dimensionality of the problem [62]. Smith and Bull [96] proposed an approach using
GP to construct features and then using a GA for feature selection to reduce the number of
features. Krawiec [54] developed a GP based feature construction approach to constructing
a fixed number of new features to replace the original features. Neshatian et al. [81] used GP
to construct multiple features with which the classifier could achieve higher classification
accuracy than using constructed features together with original features.

As a powerful evolutionary computation technique, PSO is easy to implement, has a few
parameters and can converge fast [22]. However, the potential of PSO in feature construction
has not been investigated.

2.3 Particle Swarm Optimisation (PSO)

2.3.1 Evolutionary Computation

Evolutionary computation (EC) is an area of artificial intelligence that covers the majority
of the techniques inspired by principles of biological evolution. EC techniques have been
applied successfully to solve a variety of real-world problems [22]. In general, EC consists

20

of evolutionary algorithms (EAs), swarm intelligence (SI) and other techniques.

2.3.1.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) is a subset of evolutionary computation, which are popula-
tion based metaheuristic optimisation algorithms. An EA uses some mechanisms inspired
by biological evolution: reproduction, mutation, recombination, and selection. In EAs, each
candidate solution of the optimisation problem is represented as an individual in the pop-
ulation. The fitness function determines the goodness of each individual. Evolution of the
population then takes place after the repeated application of the above operators. Two im-
portant EAs, genetic algorithms and genetic programming, are reviewed as follow.

Genetic Algorithms. Genetic algorithms (GAs) are evolutionary algorithms that use the
principle of natural selection [29]. In GAs, candidate solutions of the problem are encoded
as a population of chromosomes and the population is evolved to search for the optimal
solution by applying genetic operators. Compared to analytical optimisation methods like
gradient based optimisation, GAs are less likely to be trapped in local optima. They, how-
ever, tend to be computationally expensive.

Genetic Programming. Genetic programming (GP) is a sophisticated EA which is used
to evolve a computer program that performs a user-defined task [53]. In GP, each individual
is a computer program and a population of computer programs is optimised according to a
fitness landscape determined by a program’s ability to perform a given task. GP has been
successful as a technique for getting computers to automatically solve problems without
having to tell them explicitly how.

2.3.1.2 Swarm Intelligence

Swarm Intelligence (SI) algorithms are inspired by the collective intelligence of social insects.
A swarm is a population of interacting individuals that is able to optimise global objectives
through collaborative search of the space and the intelligence lies in the networks of interac-
tions among individuals, and between individuals and the environment. There is a general
stochastic (or chaotic) tendency in a swarm for individuals to move toward a centre of mass
in the population on critical dimensions, resulting in convergence on an optimum [46]. Two
main techniques in SI are particle swarm optimisation and ant colony optimisation.

Particle Swarm Optimisation. Particle swarm optimisation (PSO) is a SI algorithm in-
spired by social behaviour of birds flocking or fish schooling [43]. In PSO, each candidate
solution of the problem is encoded as a particle moving in the search space and each par-
ticle can remember its best experience. The whole swarm searches for the optimal solution
by updating the position of each particle based on the best experience of its own and its
neighbouring particles [46]. PSO is a simple but powerful search technique, which has been
applied successfully in a variety range of areas [22].

Ant Colony Optimisation. Ant colony optimisation (ACO) takes inspiration from the
behaviour of real ants seeking the shortest path between their colony and a source of food
[20]. Candidate solutions of the problem are represented as ants in the population. These
ants deposit pheromone on the ground in order to mark their favourable path that should be
followed by other members of the colony. The best solution is the “path” that has the most
pheromone. This mechanism allows the algorithms explicitly use the elements of previous
solutions, which is the characteristic of ACO algorithms.

21

Initialise the swarm with
random position and velocity

N
Y

No Evaluate fitness of each
particle

]

If fitness of a particle is better than
Pbest, update the Pbest

]

If fitness of any Pbest is better than
Gbest, update the Gbest

Return the best l
solution
5 Update the velocity of each
Yes particle

Update the position of each
particle

Figure 2.4: The flowchart of PSO

2.3.2 Standard Particle Swarm Optimisation (PSO)

PSO is an evolutionary computation technique proposed by Kennedy and Eberhart in 1995
[43]. In PSO, each solution can be represented as a particle in the search space. A vector x; =
(xi1, X2, ..., Xip) presents the position of particle i, where D is the dimensionality of the search
space. The velocity of particle i is represented as v; = (vj1,vs, ..., vip). The best previous
position of each particle is recorded as the personal best called Pbest and the best position
obtained thus far is called Gbest. The swarm is initialised with a population of random
solutions and searches for the best solution by updating the velocity and the position of
each particle according to the following equations:

t+1 ot t+1
Xig = Xig + Uy (2.1)
1
v = wxvjgtcrxrx (pia — Xjg)
+ k12 k (pga — xjg) (2.2)

where t denotes iteration ¢ in the search process. c; and ¢, are acceleration constants. r; and
ry are random values uniformly distributed in [0, 1]. pjs presents the Pbest and pg, stands for
the Gbest. w is inertia weight, which can make a balance between the global search and the
local search to improve the performance of PSO. The velocity v!, is limited by a predefined
maximum velocity, Oy and v}, € [—Vpmax, Vmax)-

PSO was originall proposed in a continuous version. In order to distinguish with the
discrete version PSO, the standard PSO in this work is also called continuous PSO (CPSO).
Algorithm 1 and Figure 2.4 show the pseudo-code and the flowchart of continuous CPSO,
in which each particle is assumed to take the entire population as its topological neigh-
bours. First, each particle is initialised with a random velocity and a random position in
a D-dimensional search space. Second, the fitness of each particle is evaluated by the pre-
defined fitness function, and then based on Pbest and Gbest, the velocity and the position
of each particle are updated according to Equation 2.2 and 2.1 to search the possible best
solution. During the search process, if the fitness of the particle is better than that of Pbest,

22

Algorithm 1: CPSO

Input :w: inertia weight; 1, cp: acceleration constants
Umax: maximum velocity; D: dimension of search space
P: the population size
T: maximum iterations
Output: Gbest
best fitness value

1 begin
2 randomly initialise the position and velocity of each particle;
3 while T or the stopping criterion is not met do
4 evaluate fitness of each particle;
5 for p=1to P do
6 if fitness of x, is better than that of Pbest, then
7 ‘ Pbest, = x; ; // Update the Pbest of particle p
8 end
9 if fitness of Pbest, is better than that of Gbest then
10 ‘ Gbest = Pbest, ; // Update the Gbest of particle p
11 end
12 end
13 for p=1to P do
14 for d=1to D do
15 update the velocity of particle p according to Equation 2.2;
16 update the position of particle p according to Equation 2.1;
17 end
18 end
19 end
20 return Gbest and its fitness value;
21 end

then its position will be saved to replace the Pbest. If the fitness of any Pbest is better than
Gbest, the Gbest will be replaced by Pbest. The algorithm is terminated until the predefined
maximum number of iterations or another stopping criterion is met.

2.3.3 Binary Particle Swarm Optimisation (BPSO)

PSO was originally introduced as an optimisation technique for real-number search spaces.
However, many optimisation problems occur in a space featuring discrete, qualitative dis-
tinctions between variables and between levels of variables. To extend the implementation
of the original PSO, Kennedy and Eberhart [44] developed a binary particle swarm opti-
misation (BPSO) for discrete problems. The velocity in BPSO represents the probability of
element in the particle taking value 1 or 0. Equation (2.2) is still applied to update the ve-
locity while x4, pig and pg, are integers of 1 or 0. A sigmoid function s(vjy) is introduced to
transform v;; to the range of (0, 1). BPSO updates the position of each particle according to
the following formulae:

o 1, if rand() < s(viy)
Xid = { 0, otherwise (2:3)

23

where
1

T+e 24

s(vig) =
where s(v;;) is a sigmoid limiting transformation. rand() is a random number selected from
a uniform distribution in [0,1].

2.3.4 Recent Work on BPSO

Since PSO was proposed by Kennedy and Eberhart in 1995, it has been analysed and im-
proved for many problems [46, 22]. Most of the improvements are proposed for CPSO, in-
cluding changing parameters, update equations, topology and introducing ideas from other
algorithm (See [46, 22]). Recently, researchers propose different modified versions of BPSO
to improve its performance in solving discrete problems. Modified BPSO algorithms are
reviewed in this section.

Huang and Dun [36] showed that both binary and continuous values for elements in the
position vector of particles in PSO could be used simultaneously. Therefore, problems with
both binary and continuous variables could be optimised by PSO in a single algorithm.

Khanesar et al. [47] discussed two main concerns about BPSO. The first one was the pa-
rameters in BPSO, which produced opposite effects in BPSO compared with those in CPSO
[22]. For example, a large maximum velocity encourages exploration in CPSO while a small
maximum velocity promotes exploration in BPSO. The second concern about BPSO was that
the position of a particle was updated solely using the velocity while the position in CPSO
was updated based on both velocity and current position. Based on the analysis on these
two concerns, Khanesar et al. defined a new interpretation for the velocity in BPSO and pro-
posed two variables to represent the velocity which denoted the probability of the position
changing from 0 to 1 and from 1 to 0. The proposed BPSO outperformed the basic BPSO on
certain benchmark functions.

Modiri and Kiasaleh [70] investigated the influence of Pbest and velocity values in BPSO.
By initialising the velocity with the predefined maximum or minimum velocity, the perfor-
mance of BPSO could be improved on certain benchmark functions. It was also shown that
if the range of parameter values (e.g. number of iteration, maximum or minimum velocity)
in BPSO was large, the effect of Pbest was intrinsically encompassed by that of Gbest. How-
ever, Pbest contains some useful information and totally ignoring it also may lead to poor
performance in real-world problems.

Wang et al. [105] introduced two operators called mutation and dissipation, concepts of
natural evolutionary theory into BPSO, and developed a mutation-dissipation based BPSO.
Menbhas et al. [65] proposed a hybrid binary PSO (HBPSO) by introducing crossover and
mutation operators into BPSO to accelerate the convergence speed and ensure the diversity
of the swarm. HBPSO outperformed the modified BPSO algorithm proposed by Wang et al.
[105].

Sadri and Suen [94] introduced two concepts, birth and mortality rates into standard
BPSO. Population size in the proposed BPSO was changed by the birth operator and the
death operator during the search process. The proposed BPSO increased the exploration
power of BPSO.

Pampara et al. [85] proposed another version of BPSO in which a trigonometric function
was utilised to generate a bit string from continuous numbers. In the proposed algorithm, a
large binary search space could be presented by a small continuous number. Therefore, the
optimisation process could be performed in a short time.

Topology that defines how particles are connected to each other as an information shar-
ing or exchanging mechanism, is one of the key elements that influence the performance of

24

PSO [45, 42, 22]. Many different types of topologies have been proposed and widely used in
CPSO, such as ring topology, star topology, and wheel topology [22]. Research has shown
the effects of topology on the performance of CPSO [22], but the influence of topology on
BPSO has not been investigated.

2.4 Evolutionary Computation Techniques for Feature Selection

2.4.1 PSO for Feature Selection
2.4.1.1 Continuous PSO (CPSO) for Feature Selection

Generally, when a CPSO algorithm is applied for feature selection problems, the dimension-
ality of the search space is n, where 7 is the number of the available features in the dataset.
Each particle in the swarm is formed by a vector of n real numbers. The position of particle
i in dth dimension, x;; is usually in interval [0, 1]. In order to determine whether a feature
will be selected or not, a threshold 0 < 8 < 1is needed to compare with the real numbers in
the position vector. If x;; > 6, then the corresponding feature d will be selected. Otherwise,
teature d will be abandoned. Recently, CPSO has been applied in both filter and wrapper
feature selection approaches.

Azevedo et al. [8] proposed a wrapper feature selection approach using CPSO and SVM
for personal identification in keystroke dynamic system. This research also investigated the
parameter settings in CPSO, including population size p, acceleration factor ci, c; and the
threshold 6. It was shown that CPSO with p = 100 particles, c; = c; = 1.5, and 0 = 0.7
performed best. Experiments showed that the proposed approach produces better perfor-
mance than a GA with SVM model. However, the proposed algorithm obtained a relatively
high false acceptance rate, which should be low in most identification systems.

Later, Lin et al. [60] proposed a wrapper feature selection approach (PSO+SVM) using
CPSO and SVM. The difference from the method in [8] was that PSO+SVM could optimise
the parameters in SVM and search for the best feature subset simultaneously. Mohemmed
et al. [71] proposed a hybrid method (PSOAdaBoost), which incorporated PSO with an
AdaBoost framework for face detection. The proposed PSOAdaBoost algorithm aimed to
search for the best feature subset and determine the decision thresholds of AdaBoost simul-
taneously, which would also speed up the process of the training and increase the accuracy
of weak classifiers in AdaBoost. Both PSO+SVM and PSOAdaBoost could optimise the fea-
ture subset and parameters in one process. More work like this could be conducted to im-
prove the performance of feature selection using PSO with other learning algorithms in a
wrapper model.

Feature selection was also considered a multi-objective problem [83, 107], which aimed
to select the smallest subset that could obtain the highest classification performance. Al-
though using PSO to feature selection as a single objective problem could obtain good fea-
ture selection results, it can only produce one subset of features. Feature selection as a multi-
objective problem producing several good feature subsets can meet different requirements
in real-world applications [107]. Therefore, Paoli et al. [86] developed a filter feature se-
lection method for clustering hyperspectral images based on multi-objective PSO. It could
solve clustering, feature selection and class number estimation simultaneously. In order
to handle these three different issues, three different optimisation criteria were applied to
guide the search process, which were log-likelihood function, Bhattacharyya statistical dis-
tance [86] between classes, and the minimum description length. Experiments showed that
the proposed approach could obtain satisfactory classification accuracy while reduce the
number of features needed. A good guess of class number was also achieved. However, the

25

computational time may reach several hours, depending on the image size.

Esseghir et al. [23] proposed a filter-wrapper feature selection model based on CPSO,
which aimed to integrate the strengths of both filters and wrappers. The proposed filter-
wrapper scheme encoded the position of each particle in CPSO with filter scores of features,
which reflected feature-class dependency levels, and then CPSO was applied to adjust the
scores to search for the best feature subset. The positive score meant the corresponding fea-
ture was selected, otherwise it was abandoned. The fitness of each particle was the classifi-
cation accuracy achieved by a KNN classifier with the selected features. The results showed
that the proposed method could achieve slightly better performance than BPSO based fil-
ter approach. However, the performance of the proposed approach has not been compared
with that of a wrapper approach.

2.4.1.2 BPSO for Feature Selection

Generally, when using BPSO to solve feature selection problems [100, 110], the representa-
tion of a particle is a n-bit binary string, where n is the number of features and the dimen-
sionality of the search space. The feature mask is in Boolean that “1” represents the feature
will be selected and “0” otherwise. Many BPSO based filter and wrapper feature selection
approaches have been proposed in recent years.

Chakraborty [14] compared the performance of BPSO with that of GA in a filter feature
selection approach with fuzzy sets based fitness function. The results showed that BPSO
performs better than GA in terms of classification accuracy.

Inertia weight can improve the performance of BPSO by properly balancing its local
search and global search. Yang et al. [111] proposed two strategies to determine the inertia
weight of BPSO. Experiments on a wrapper feature selection model suggested that the two
proposed BPSOs outperformed other methods, including SFS, “plus-I-take away-r” method,
SFFS, sequential GA and different hybrid GAs.

In order to avoid the particles converging at local optima, Yang et al. [110] proposed a
strategy to renew the Gbest during the search process to keep the diversity of the population
in BPSO. In the proposed algorithm, when Gbest was identical after three generations, a
Boolean operator ‘and(.)’ would ‘and’ each bit of the Pbest of all particles in an attempt
to create a new Gbest. Experimental results illustrated that the proposed method usually
achieved higher classification accuracy with fewer features than GA and standard BPSO.

Chuang et al. [16] also developed a strategy for Gbest in BPSO for feature selection in
which Gbest would be reset to zero if it maintained the same value after several iterations.
Experiments with cancer-related human gene expression datasets showed that the proposed
BPSO outperformed the algorithm proposed by Yang et al. [110] in most cases.

Wang et al. [106] proposed an improved BPSO by defining the velocity as the number of
elements that should be changed. The performance of the improved BPSO was compared
with that of GA in a filter feature selection model based on rough sets theories. Experimental
results showed that the improved BPSO was computationally less expensive than GA in
terms of both memory and running time. They also concluded that most of the running
time was consumed by the computation of the rough sets, which was a drawback of using
rough sets to solve the feature selection problems.

Unler and Murat [100] modified the standard BPSO by extending social learning to up-
date the velocity of the particles. Meanwhile, an adaptive feature subset selection strategy
was developed, where the features were selected not only according to the likelihood cal-
culated by BPSO, but also according to their contribution to the subset of features already
selected. The improved BPSO was applied to a wrapper feature selection model for binary
classification problems. Experimental results indicated that the proposed BPSO method out-

26

performed the tabu search and scatter search algorithms.

Alba et al. [3] combined a geometric BPSO with a SVM algorithm for feature selection,
where the current position, Pbest and Gbest of a particle were used as three parents in a
three-parent mask-based crossover operator to create a new position for the particle instead
of using the position update equation. Experiments on high dimensional microarray prob-
lems showed that the proposed algorithm could achieve slightly higher accuracy than GA
with SVM in most cases. Meanwhile, experiments also showed that the initialisation of the
BPSO had a great influence in the performance since it introduced an early subset of accept-
able solutions in the evolution process.

Talbi et al. [99] proposed also a geometric BPSO and compare it with GA using SVM for
the feature selection in high dimensional microarray data. They concluded that the perfor-
mance of the proposed BPSO was superior to GA in terms of accuracy.

Liu et al. [63] proposed a multiple swarm BPSO (MSPSO) to search for the best feature
subset and optimise the parameters of SVM. Experimental results showed that the proposed
feature selection methods could achieve higher classification accuracy with a smaller subset
of features than grid search, standard BPSO and GA. However, the proposed MSPSO was
computationally more expensive than other three methods because of the large population
size and complicated communication rules between different subswarms.

Huang and Dun [36] developed a wrapper feature selection method based on BPSO and
SVM, which used BPSO to search for the best feature subset and CPSO to simultaneously
optimise the parameters in the kernel function of SVM, respectively. Experiments showed
that the proposed algorithm could determine the parameters, search for the optimal feature
subset simultaneously and also achieve high classification accuracy:.

2.4.2 Other Evolutionary Computation Techniques for Feature Selection

Besides PSO, many other evolutionary algorithms also have been applied in feature selection
problems such as GAs, GP, and ACO.

2.4.2.1 Genetic Algorithms (GAs) for Feature Selection

Generally, in a GA based feature selection approach, each individual (chromosome) in the
population represents a subset of features. For a n-dimensional feature search space, each
chromosome is encoded by a n-bit binary string. The bit with value ‘1’ indicates the feature
is selected in the subset, and ‘0’ otherwise. Crossover, mutation and reproduction opera-
tors are applied in the algorithm to search for the optimal subset of features [37]. GAs have
been applied to both filter and wrapper models for feature selection as a single objective and
also a multi-objective problem.

Before developing the feature selection method based on fuzzy sets and BPSO [14],
Chakraborty [13] proposed a GA with fuzzy sets based fitness function to build a filter ap-
proach for feature selection. This method had the same fitness function as BPSO based
method [14]. The GA based feature selection method was robust but the computational
time was usually long. The proposed method adopted the computationally light fuzzy fit-
ness function to shorten the running time. However, the performance of proposed method
was worse than that of CPSO based feature selection method in [14] in terms of classification
accuracy, number of selected features and computation time.

Banerjee et al. [9] proposed a filter feature selection method for microarray gene expres-
sion data based on NSGA-II and rough set. Since the data typically consisted of a large
number of redundant features, an initial redundancy reduction was performed to enable
faster convergence and also reduce the computational complexity.

27

Yuan et al. [113] proposed a two-phase feature selection approach using both filter and
wrapper, which aimed to take advantages of both models. The proposed method started
with a filter model to remove irrelevant features, and then a wrapper approach was applied
to remove the redundant features. In the filter phase, GA was employed for feature selection
with inconsistency criterion to evaluate the fitness of solutions. The wrapper phase started
with a feedforward neural network whose input nodes were features in the optimal feature
subset obtained in the first phase. The proposed approach intended to reduce the compu-
tation cost in the wrapper approach in the second phase by deleting irrelevant features in
the first phase. However, because of feature interactions (epistasis), the proposed algorithm
may remove the features in the first phase, which are elements in the best feature subset.

GAs are also applied to the wrapper model as multi-objective methods in feature selec-
tion problems. For example, Oliveira et al. [83] developed a modified wrapper model using
a multi-objective GA based on the Pareto approach to generating the Pareto optimal front
for handwritten digit recognition. Sensitivity analysis and neural networks were employed
to evaluate the fitness. Experiments on the NIST database illustrated the effectiveness of the
proposed strategy.

Wagas et al. [107] also developed a wrapper approach to feature selection using a multi-
objective GA. In this method, a subset that was irrelevant with one class and might be rel-
evant with another one was regarded as a non-dominated or pareto-optimal solution. 1D3
was employed to evaluate the fitness of each individual. Experiments showed that selected
subsets of features could achieve high classification accuracy.

These two multi-objective approaches are more powerful in applications than single ob-
jective approaches to feature selection. However, more benchmarks datasets should be ap-
plied to illustrate the performance and the generalisation of these two techniques.

2.4.2.2 Genetic Programming (GP) for Feature Selection

GP is an evolutionary computation technique inspired by biological evolution to find com-
puter programs that perform a user-defined task. GP evolves computer programs, tradition-
ally represented in memory as tree structures [53]. Basically, in a GP based feature selection
method, there are a function set F and a terminal set T including the original features and
randomly generated constants. Each tree for each individual (classifier) is initialised with a
subset of features using F and T. The population evolves to search for the optimal feature
subset using genetic operations iteratively. GP based approaches have been proposed in
recent years, including both filter and wrapper models for feature selection.

Muni et al. [74] developed a wrapper feature selection model based on multi-tree GP
(GPmtfs), which simultaneously searched for a good feature subset and designed a classifier
using the selected features. In GPmtfs, each individual in a c-class problem had c trees and
each tree was initialised with a random feature subset. In GPmtfs, two new crossover op-
erations: homogeneous crossover and heterogeneous crossover were introduced to suit the
feature selection process. Comparisons with other results available in the literature showed
that this method produced consistently better results.

Based on the two crossover operations introduced by Muni et al. [74], Purohit et al.
[88] introduced another crossover operator to GP to reduce its randomness when used in
a feature selection model. The crossover operator intended to select a subtree from the first
parent and find its best place in the second parent. GP with multi-trees was used to de-
sign classifiers with feature selection for a multi-class classification problem. Experiments
showed that proposed GP performed better than GPmtfs [74].

Ramirez and Puiggros [91] applied multi-tree GP to solve a multi-class problem, which
was to classify the instantaneous cognitive state of a person. The performance measure,

28

the fitness function and initialisation of the classifiers were similar with [88]. Experiments
showed the proposed method could accurately classify different cognitive states.

Chien and Yang [15] proposed a feature selection algorithm based on GP and rough
sets. Rough membership was used to transform nominal data into numerical values. After
transformation, new features and training sets were produced, and then GP was applied to
search for the optimal feature subset and learn classification functions. Experiments showed
that the proposed method outperformed other different features selection approaches in
terms of the number of selected features and the classification accuracy.

Neshatian and Zhang [78] proposed a feature selection approach based on GP and a
variation of NB. Bit-mask representation was used for feature subsets and a set of set opera-
tors were used as primitive functions. GP combined these feature subsets and set operators
together to find the optimal subset of features. Experiment on a highly unbalanced face de-
tection problem showed that the proposed algorithm could achieve a significant reduction
in dimensionality and processing time.

Neshatian and Zhang [79] proposed a GP based filter model as a multi-objective ap-
proach for feature selection in binary classification problems. Unlike most filter methods
that usually could only measure the relevance of single features to the class variables [59],
the proposed algorithm could discover the hidden relationships between subsets of features
and the target classes. In this method, an inexpensive binary relevance fitness function was
defined to measure the relevance of a GP program tree (a subset of features) to the classifica-
tion task. In order to explore large feature subsets and at the same time avoid overfitting and
bloating, the standard GP was modified by adopting a run-time mechanism for depth con-
trol along with an overfit monitoring system. Moreover, a Pareto front archive was proposed
as a multi-objective approach to maximising the relevance of subsets while minimising their
sizes. So the result of the proposed method was a vector of Pareto front points serving as
a trade-off matrix. Experiments showed that an inexpensive linear search over this vector
could improve the classification performance of classifiers while decrease their complexity.
However, the proposed method might not be quite appropriate for the problems where the
best feature subset was expected to have a very large number of features.

Based on [79], Neshatian and Zhang [80] proposed a GP relevance measure (GPRM) to
evaluate and rank feature subsets in binary classification tasks. GPRM extended the concept
of a feature relevance measure function by proposing a virtual structure for GP program
trees. Through case studies, it was found that the proposed method could detect relevant
subsets of features in different situations including multimodal class distributions and mu-
tually correlated features, where other methods had difficulties.

2.4.2.3 Ant Colony Optimisation (ACO) for Feature Selection

Ant colony optimisation (ACO) as an evolutionary computation technique has also been
applied to feature selection problems. Typically, in an ACO based feature selection model,
features are represented as nodes in the graph. Edges between the nodes indicate the possi-
ble choices of the next feature. Ants traverse through this graph to add nodes (features) until
the stopping criterion has been satisfied. Feature selection problem is thus transformed to
the problem of ant finding the best path on the graph [27].

Gao et al. [27] proposed an ACO based wrapper feature selection approach to network
intrusion detection. In this wrapper model, least square based SVM was applied as the
classifier to evaluate the feature subset generated by ants. Fisher discrimination rate was
adopted as the heuristic information for ACO. Experiments on three datasets showed that
the proposed method could be an effective approach to intrusion feature selection and de-
tection.

29

Jensen [39] proposed a filter feature selection model based on ACO and fuzzy-rough
theory. The proposed approach was examined on classification of web content and complex
systems monitoring and good results were achieved. Experiments compared the proposed
method with other five benchmark techniques. Results illustrated that hill-climbing feature
selection approaches often failed to find minimal subsets even in small and medium-sized
datasets. The proposed approach and a simulated annealing (SA) based feature selection
algorithm achieved similar results and both of them outperformed other three benchmark
techniques. However, the performance of the proposed approach has not been compared
with that other evolutionary computation technique based feature selection methods, such
as PSO or GAs based feature selection approaches.

Ke et al. [41] developed a Pareto-based multi-objective ACO for feature selection based
on rough set theory. It adopted elite strategy to speed up the convergence performance, used
the non-dominated solutions to add pheromone so as to reinforce the exploitation and ap-
plied crowding comparison operator to maintain the diversity of the constructed solutions.
In addition, it intended to avoid premature convergence by imposing limits on pheromone
values. Compared with a modified non-dominated sorting GA, the proposed method could
obtain competitive solutions for rough feature selection. However, only three datasets were
used in the experiments, which could not confirm the generalisation of the proposed ap-
proach.

2.5 Summary

This chapter reviewed the main concepts of machine learning and classification. The chal-
lenges in feature selection and construction were discussed in detail. Evolutionary com-
putation techniques were also reviewed in this chapter, especially PSO. PSO is a heuristic
search technique, which searches for the optimal solution of the problem based on social in-
teractions between individuals in the population. Compared with other evolutionary com-
putation techniques such as GAs and GP, PSO is computationally less expensive, easier to
implement, has fewer parameters and can converge more quickly.

This chapter reviewed different modified versions of BPSO, and the related work of us-
ing conventional methods and evolutionary computation approaches to feature selection,
single feature ranking and feature construction. The limitations of the existing work that
form the motivations of this research were also discussed, which can be summarised as fol-
lows.

e Not all important characteristics of the PSO algorithm are completely present in BPSO,
so improving the performance of BPSO is still an open issue. Research needs to be
conducted to propose a novel encoding scheme, a new topology and effective update
equations.

e In feature selection problems, neither conventional methods nor evolutionary com-
putation approaches could address all the challenges discussed in Section 1.2. For
example, the Relief algorithm does not deal with redundant features, hill-climbing
approaches easily become stuck in local optima, and most of these approaches are
computationally expensive. Meanwhile, not much work has been conducted solving a
feature selection task as a multi-objective problem. Therefore, although BPSO has been
applied successfully to feature selection problems, development of a highly accurate
and efficient feature selection algorithm using BPSO is still an open issue.

¢ In single feature ranking, most of existing approaches rank features without consider-
ing the absence or presence of other features, which would not achieve good results in

30

problems with feature interactions (the second challenge in Section 1.2). Meanwhile,
PSO has never been applied to single feature ranking problems. Therefore, develop-
ment of a criterion dealing with feature interactions (e.g. epistasis) using BPSO to deal
with single feature ranking problems is an open issue.

e In feature construction problems, GP has been widely used to solve the tasks, but GP
based approaches usually suffer from expensive computation. As a powerful tech-
nique, the potential of BPSO for feature construction has not been explored.

e There has not been research conducted in predicting the best fitness evaluation func-
tion for a given learning algorithm in feature selection problems, which is an open
issue.

This research aims to address the above-mentioned issues. The next chapter will focus
on the initial work conducted in investigating PSO for feature selection.

31

32

Chapter 3

Preliminary Work

This chapter presents the initial work conducted in investigating PSO for feature selection.
A set of experiments have been conducted to compare the performance of continuous PSO
(CPSO) with that of binary PSO (BPSO) for feature selection. Two wrapper based feature se-
lection approaches are proposed, which are single feature ranking and BPSO based feature
subset ranking. In the first approach, individual features are ranked according to their clas-
sification accuracy so that feature selection can be achieved by using only a few top-ranked
features for classification. In the second approach, BPSO is applied to feature subset ranking
to search for optimal feature subsets. The two proposed approaches are compared with two
conventional feature selection approaches, which are linear forward selection (LFS) [31] and
greedy stepwise backward selection (GSBS) [12].

3.1 Comparisons between CPSO and BPSO

Both two versions of PSO (CPSO and BPSO) have been applied previously in feature selec-
tion problems [60, 36, 110, 100]. In order to compare the performance of CPSO and BPSO,
a set of experiments have been conducted using both of them to search for optimal feature
subsets in a wrapper feature selection model. The goal here is to investigate which version
of PSO is better appropriate to feature selection problems so that it can be chosen for further
development for this work.

3.1.1 Datasets and Parameter Settings
3.1.1.1 Datasets

This research will assume that the datasets are balanced datasets. Twelve datasets chosen
from the UCI machine learning repository [26] are used in this research. Table 3.1 sum-
marises the main characteristics of these datasets. The twelve datasets were selected to have
different numbers of features, classes and instances as the representative samples of differ-
ent kinds of classification problems that could be addressed by this research.

Eight of the twelve datasets in Table 3.1 were selected when conducting the preliminary
works, which were Vowel, Wine, Australian, Zoo, Vehicle, German, WBCD, and Sonar. The
other four datasets were selected recently, which will be used in subsequent works. Arti-
ficial datasets will be produced as the representative samples of the problems to test the
performance of the methods that will be proposed in this work.

These datasets were chosen with an increasing number of features/dimensions. Tasks
(datasets) with more than 500 features would not be preferred, as they belong to a different

33

Table 3.1: Datasets, representative samples of the classification tasks which are expected to
be addressed by this research

Dataset Number of Number of Number of
features classes instances
Vowel 10 11 990
Wine 13 3 178
Australian 14 2 690
Letter 16 26 20,000
Z00 17 7 101
Vehicle 18 4 846
Segmentation 19 7 2310
German 24 2 1000
World Breast Cancer 30 2 569
-Diagnostic (WBCD)
Ionosphere 34 2 351
Satellite 36 6 6435
Sonar 60 2 208
Table 3.2: Parameter settings

Parameter Value Parameter Value

c1 1.49618 | Population size 30

o)) 1.49618 | Maximum iterations 100

w 0.768 Topology Star

Umax 6.0 Runs 30

type of problem classification, i.e. large scale, which is which is beyond the scope of this
work.

Eight datasets in Table 3.1, which are Vowel, Wine, Australian, Zoo, Vehicle, German,
WBCD, and Sonar, were used in the experiments. The eight datasets were selected to have
different numbers of features, classes and instances as the representative samples of the
problems that the two proposed approaches could address.

3.1.1.2 Parameter Settings

A wrapper feature selection model needs a learning algorithm to evaluate the classification
accuracy of the selected features. There are many learning algorithms that can be used here,
such as K-nearest neighbour (KNN), naive bayes (NB), and decision tree (DT). One of the
simplest learning algorithms, KNN, was selected as the learning algorithm in the wrapper
model in this research and 5 nearest neighbours are used in KNN (K=5). 5NN with 10-fold
cross-validation implemented in Java machine learning library (Java-ML) [1] is employed
to calculate the classification error rate on both the training set and the test set. A detailed
discussion of why and how n-fold cross-validation is applied in this way is given by Kohavi
[50].

The parameter settings of BPSO are shown in Table 3.2. These values are chosen based
on the common settings in the literature [104]. For both CPSO and BPSO, in each dataset,
the instances are divided into two sets: 70% as the training set and 30% as the test set.
The encoding scheme in CPSO is the same as the scheme described in Section 2.4.1 and the
encoding scheme in BPSO is the same as the scheme described in Section 2.4.1.2.

34

During the search process of CPSO and BPSO on the training set, the fitness function is
to minimise the classification error rate of the selected feature subset, which is evaluated by
Java-ML according to Equation 3.1:

FP+FN
TP+ TN+ FP+FN

Error Rate = 1 — accuracy = (3.1)

where TP, TN, FP and FN stand for true positives, true negatives, false positives and false
negatives, respectively.

3.1.2 Experimental Results

This research aims to compare the search ability of CPSO with BPSO on feature selection
problems. Therefore, only the results that show the difference in fitness (classification error
rate) of the search ability are shown in this section.

Figure 3.1 shows the change of average fitness during the search process of CPSO and
BPSO on the training set in eight datasets. Each plot in the figures corresponds to one of the
eight datasets used in the experiments. In each plot, the horizontal axis shows the iterations
in the search process. The vertical axis shows the average fitness values in each generation
over the 30 runs, which is also the training error rate. Therefore, the plots actually show the
decrease of the training error rate during the search process.

According to Figure 3.1, both CPSO and BPSO could converge in a small number of
generations, which is 60 in most cases. BPSO could achieve better performance (lower clas-
sification error rate) than CPSO. Therefore, this PhD thesis will investigate research on BPSO
as a potentially appropriate search technique to solve feature selection problems.

3.2 Wrapper Based Single Feature Ranking

A wrapper based single feature ranking approach is now proposed, where the relative im-
portance of each feature is measured by its classification accuracy. The goal is to investigate
whether the combination of top-ranked features generated by this algorithm can achieve
better performance than using all features and can outperform conventional approaches.

Algorithm 2 shows the pseudo-code of the proposed wrapper based single feature rank-
ing approach. In this approach, each dataset is divided into two sets: a training set and a test
set. In both the training set and the test set, KNN with n-fold cross-validation is employed
to evaluate the classification accuracy [50]. In this algorithm, firstly, in order to make sure
n-fold cross-validation is always performed on the n fixed folds, both the training set and
the test set are divided into n folds when the algorithms starts. Secondly, every feature is
used for classification in the training set individually and its classification accuracy is calcu-
lated by a loop of n-fold cross-validation on the fixed 7 folds of training data (from Line 4 to
Line 7 in Algorithm 2). Thirdly, the features are ranked according to the classification accu-
racies they achieve. Finally, based on the order of the ranked features, successive numbers
of the top-ranked features are selected for classification to show the utility of single feature
ranking in feature selection and the classification accuracy is calculated by KNN with n-fold
cross-validation on the fixed n folds of the test data (from Line 9 to Line 12 in Algorithm 2).

In each dataset, the aim of this algorithm is to determine the number of successive top-
ranked features that can achieve classification accuracy close to or even better than the clas-
sifier with all features as input.

35

Vowel

Wine
2.55- 404 °
o —°- CPsO —e— CPSO
I A BPSO 4 BPSO
25073 N
& j & 354
& ° BC) :
& 2454 4 & \
5 | 5]
L0 A (0 3.01 ¢
240 | e 1
2.351 2.5
0 40 60 80 100 0 20 40 60 80 100
Iterations Iterations
Australian 700
o 2.4
20+ CPSO ° —— CPSO
BPSO \ BPSO
S 187 | g 201 |
2 | 2 Iy
© ©
= 164] . @
£ i o e
i % o 167 L
144 ks
121 1.2
0 20 40 60 80 100 0 20 40 60 80 100
Iterations Iterations
Vehicle German
16.07 2754 %
o —— CPSO \ —— CPSO
J 2~ BPSO i BPSO
15.5 \ 2704 °
g 1 g
P 15.0 1 Ir o 265
o !]
S 1454 | S 2601
I i m
14.04 ‘i 25.51
13.51 25.01
0 40 60 80 100 0 20 40 60 80 100
Iterations Iterations
WBCD Sonar
R 244,
561 —e— CPSO l —e— CPSO
: BPSO A BPSO
;\o
S ! SR
@ 5.41 J @ Le
g ! g :
S j S
T PIR i 181
Ao
5.0 121
[} 40 60 80 100 0 20 40 60 80 100
Iterations Iterations

Figure 3.1: Comparisons between CPSO and BPSO: the difference in fitness (classification
error rate) of the search ability.

36

Algorithm 2: The wrapper based single feature ranking algorithm

1 begin
2 divide the training set to n folds; // n-fold cross-validation
3 divide the test set to n folds;
4 for d=1 to number of features do
5 keep feature d and remove all the other features from training set ;
// training set only contains feature d
6 use KNN with n-fold cross-validation to evaluate the classification accuracy of
feature d for the training set;
7 end
8 rank the features according to the classification accuracy;
9 for d=1 to number of features do
10 keep d top-ranked features and remove the others from the test set;
11 use KNN with n-fold cross-validation to evaluate the classification accuracy of
d top-ranked features for the test set;
12 end
13 return classification accuracy achieved by each feature;
14 return the order of features;
15 return the classification accuracies achieved by the successive numbers of the
top-ranked features;
16_end

3.3 BPSO Based Feature Subset Ranking

The top-ranked feature set resulting from the single feature ranking algorithm might contain
potential redundancy. For example, the combination of the two top-ranked features might
not perform as well as the combination of one top-ranked feature and a low-ranked feature
if the two top-ranked features are highly dependent. To overcome this problem, a feature
subset ranking algorithm is proposed based on BPSO. Different feature subsets are evolved
and ranked according to the classification accuracy on the training set. The goal is to inves-
tigate whether this algorithm can outperform the method of using all features, conventional
approaches and the single feature ranking algorithm (Section 3.2).

If a dataset includes D features, the possible number of features that a feature subset
contains will be in [1, D]. Therefore, according to the number of features they contain, all
the possible feature subsets can be categorised into D groups. Each group includes many
feature subsets that contain the same number of features and this algorithm aims to evolve
the best feature subset from each group. So, for a dataset including D features, D feature
subsets will be evolved and ranked. The dth feature subset is saved to contain the best
feature subset that includes d features in this method, where d is a positive integer from 1 to
D.

Algorithm 3 shows the pseudo-code of BPSO for feature subset ranking. In this ap-
proach, each dataset is firstly divided into two sets: a training set and a test set. KNN with
n-fold cross-validation is employed to evaluate the classification accuracy [50] in both of the
training set and the test set, which are divided into n folds, respectively. The feature subset
search process starts from finding the best subset including one feature and ends with the
feature subset with D features.

The process of selecting a certain feature subset is one step in this approach. For a dataset
including D features, D feature subsets will be evolved and D steps are needed. Each step
can be regarded as a process of using BPSO to select a certain number of the most relevant

37

Algorithm 3: The BPSO based feature subset ranking algorithm

1
2
3
4
5
6
7

(e}

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27

28
29
30
31

32
33

begin

divide the training set to n folds // n-fold cross-validation
divide the test set to n folds;
initialise a feature subset S by randomly selecting 1 feature;
for d=1 to number of features do
initialise half of the swarm in BPSO with S;
initialise the other half of the swarm with a subset randomly selecting d
features;
while maximum iteration or fitness=1 is not met do
for p=1 to number of particles do
calculate sum (number of the selected features by particle p);
if sum > d then

‘ randomly exclude (sum — d) features;
end
else if sum < d then

‘ randomly include (d — sum) features;
end
use KNN with n-fold cross-validation to evaluate the fitness of particle
p // classification accuracy of d features selected by
particle p for the training set
end
for p=1 to number of particles do

| update Pbest, and Gbest;
end
for p=1 to number of particles do

update the velocity of particle p (Equation 2.2);
update the position of particle p (Equations 2.3 and 2.4);

end
end
record the evolved feature subset and the corresponding classification
accuracy;
S < the recorded feature subset in Line 27;
end
rank the learnt feature subsets;
use KNN with n-fold cross-validation to calculate the classification accuracy of the
ranked feature subsets for the test set;
return the order of feature subsets with classification accuracies;

end

features (from Line 8 to Line 26 in Algorithm 3). The dth step is actually the process of using

BPSO to search d most relevant features and the fitness function of BPSO is to maximise

the classification accuracy. During the search process of BPSO, if a particle selects more
than d features, a deletion strategy is employed to randomly exclude features to reduce the
number of features to d. On the other hand, if the number of selected features is smaller
than d, an addition strategy is applied to randomly include features to increase the number
of the selected features to d.

During the search process, when searching for the dth feature subset, half of the pop-

38

ulation in BPSO is initialised with the (d — 1)th feature subset achieved in the (d — 1)th
step. This is due to the expection that some of the features in the (4 — 1)th subset are useful
and should be retained in the dth subset. Meanwhile, each particle in the other half of the
population is initialised with a feature subset that randomly selects d features to ensure the
diversity of the swarm.

All the evolved feature subsets are ranked according to the classification accuracy on
the training set and then their classification performance is evaluated by KNN with n-fold
cross-validation on the test set. In each dataset, the aim is to determine the number of top-
ranked feature subsets that can achieve classification accuracy close to or even better than
the classifier with all features.

3.4 Results: Single Feature Ranking vs Feature Subset Ranking

3.4.1 Datasets and Parameter Settings

Eight datasets in Table 3.1, which are Vowel, Wine, Australian, Zoo, Vehicle, German, WBCD,
and Sonar, were used in the experiments. The eight datasets were selected to have different
numbers of features, classes and instances as the representative samples of the problems that
the two proposed approaches could address. For two proposed approaches, in each dataset,
the instances are divided into two sets: 70% as training set and 30% as test set. Classification
accuracy is evaluated by 5NN with 10-fold cross-validation implemented in Java-ML. The
classification accuracy is determined according to Equation 3.2:

TP+ TN

TP+TN+FP+FN (32)

Accuracy =

where TP, TN, FP and FN have the same meaning with that in Equation 3.1.

The parameter settings of BPSO are shown in Table 3.2.

For BPSO based feature subset ranking, the experiment has been conducted for 30 inde-
pendent runs. The results achieved in different runs are similar to each other in terms of the
classification accuracy of the evolved feature subsets. Therefore, the results from a typical
run and the best results from 30 independent runs are shown in Section 3.4.3.

3.4.2 Benchmark Techniques

Two conventional wrapper feature selection methods, linear forward selection (LFS) and
greedy stepwise backward selection (GSBS), are used as benchmark techniques to examine
the performance of the two novel proposed approaches. LFS was derived from on SFS and
GSBS was derived from SBS.

LFS [31] is an extension of best first algorithm. The search direction can be forward,
or floating forward selection (with optional backward search steps). In LFS, the number
of features considered in each step is restricted so that it does not exceed a certain user-
specified constant. More details can be seen in the literature [31].

Greedy stepwise [12] implemented in Waikato Environment for Knowledge Analysis
(Weka) [33] is a steepest ascent search. It can move through the search space either in for-
ward direction or in backward direction. Given that LFS performs a forward selection, a
backward search is chosen in greedy stepwise to conduct a greedy stepwise backward selec-
tion. GSBS begins with all features and stops when the deletion of any remaining attribute
results in a decrease in evaluation, i.e. the accuracy of classification.

Weka is used to run the experiments when using LFS and GSBS for feature selection.
During the feature selection process, 5NN with 10-fold cross-validation in Weka is employed

39

to evaluate the classification accuracy. In order to make fair comparisons, all the feature
subsets selected by LFS, GSBS and two proposed methods are tested by 5NN with 10-fold
cross-validation in Java-ML on the test sets.

When using Weka to run the experiments, all the settings are kept to the defaults except
that backward search is chosen in the greedy stepwise approach to performing GSBS for fea-
ture selection and 5NN with 10-fold cross-validation is selected to evaluate the classification
accuracy in both LFS and GSBS.

3.4.3 Experimental Results

Figure 3.2 shows the classification accuracy of each feature achieved by the wrapper based
single feature ranking on the training set. The eight charts correspond to the eight datasets
used in the experiments. In each chart, the horizontal axis shows the feature index in the
corresponding dataset. The vertical axis shows the classification accuracy.

Figure 3.3 compares the classification performance of the two proposed methods, LFS
and GSBS on the test set. Each plot corresponds to one of the eight datasets. In each plot,
the horizontal axis shows the number of features used for classification and the vertical axis
shows the classification accuracy. “SFR” in the figure stands for the results achieved by the
successive numbers of top-ranked features in the wrapper based single feature ranking. For
the BPSO based feature subset ranking, “FSR-Best” shows the best results in 30 independent
runs and “FSR” shows the results achieved in a typical run. Both LFS and GSBS produce
a unique feature subset, so have a single result for each test set. The red star denotes the
classification accuracy achieved by LFS and the blue dot presents the result of GSBS. In
addition, the red star and the blue dot in the plot of the Vowel dataset are in the same
position, which means both methods selected the same number of features and achieved
the same classification accuracy:.

3.4.3.1 Results of Wrapper Based Single Feature Ranking

According to Figure 3.2, the classification accuracy achieved by each feature varies consid-
erably, which means that each feature is not equally important for classification. In most
cases, the difference between the highest classification accuracy and the lowest one is more
than 20%, but it varies with the datasets. For example, the difference in the WBCD dataset
is around 50% while the difference is only about 3% in the Vowel dataset. This is caused by
the different characteristics of the different datasets.

According to the results denoted by “SFR” in Figure 3.3, selection of a small number of
top-ranked features achieves better results than using all features in all the datasets. In al-
most all cases, using more top-ranked features, not only does not increase the performance,
but actually causes a deterioration, especially for the Wine and Zoo datasets. The results
suggest that there are interactions between some features such that the relevance of a fea-
ture changes in the presence or absence of some the other features.

3.4.3.2 Results of BPSO based Feature Subset Ranking

According to the results (“FSR” and “FSR-Best”) in Figure 3.3, in all the eight datasets, with
many of the feature subsets evolved by BPSO the classifier can achieve higher classification
accuracy than with all features. In most cases, the feature subset with which the classifier
achieves the best performance contains a small number of features. For example, in the Aus-
tralian dataset, the second feature subset evolved by BPSO only includes two features, but
achieves the highest classification accuracy. This suggests that BPSO can select the relevant
features and eliminate some noisy and irrelevant ones.

40

Vowel Wine

g7, * 851 a
4 A
a
—_ 861 —_ a a A
S X 754 a
g = a a
Q Q
g 85 | a I
=} o~ 4 =}
Q (5]
g © s ! g o5 ?
844 a
N
a
a a
831 554
1 2 3 4 5 6 7 8 9 10 i 3 5 7 9 11 13
Feature i Feature i
Australian Zoo
851 A 85 - A
A an
751 801
S A 4 9 a
= = 754 .
ié 65 A A A § . |
< 55 A < 4
a 65 a i
'y A
'y 'y
45 A 601
i 4 6 8 10 12 14 i 3 5 7 9 "11 713715 " 17
Feature i Feature i
Vehicle German
751 . A“ TO{aaa 4o 4o 4o Anaaa a A
r'y a A A A
a N a
. A 1 604
£ 70 &
> A A A >
g 1 A A § 50
A
< 659 $ <
404
A
a 'y 'y
60’ 307 A A
i3 6 9 12 15 18 13 6 9§ 12 15 18 21 24
Feature i Feature i
WBCD Sonar
MV, Las 70+ IR
A + A
A A A A
80 a At a
—_ a 1 —_ 601, . 4 “
S\O/ A g\o, Al N A A RN
> 701 A A, A 4 > - Ao A A A a4
8 R A A AA % A
S A = 507 a A 4 A 4 “ A
3 3 A A
Qo 60+ Q - A A
Q Q 4 A
< 'y < A
50+ N 407
A
a N
40 301
i 5 10 15 20 25 30 i 10 20 30 40 50 60
Feature i Feature i

Figure 3.2: Results of single feature ranking: the classification accuracy of each feature.
3.4.3.3 Observations from the Two Proposed Methods

Comparing the two proposed methods for feature selection leads to the following obser-
vations. Firstly, using all features could not achieve the best performance in all the eight
datasets. The two proposed methods could select a relatively small number of features with
which the classifier could achieve higher classification accuracy than with all features. Sec-
ondly, in most cases, combing top-ranked features could not achieve the best performance

41

Wine

Vowel
95 100 - N RPN
ﬁl/# At \ T
J R /
93 A // Fot—s /
—~ + Y > 1/
S . / N o 4 g J
g 97 + g
> /’ 3
Q / (5]
Q / o
< / <
89 | + SFR
/ —4- FSR *
/ ~o- FSR-Best
/ * LFS +
& e GSBS
871
i 2 3 4 5 6 7 8 9§ 10 7 9 11 13
Number of features Number of features
Australian Zoo
SFR
A FSR
©-- FSR-Best
LFS \“
GSBS |
g g £ ‘ﬂ
< e 754 \
> > |
%) [5) |
e IS |
3 =} |
3 g 65 x
< < |
2 +- SFR \
VN |- Fsr |
/ \\\ 55 -©-- FSR-Best \
\b\ * LFS |
T S Y 457°GSBS " B R S SN ¥
12 14 173757779 1113715717
Number of features Number of features
Vehicle German
834 801
81+
S S
2y)
o 79 1
3 >
Q Q
Q Q
< < |
774 * f 4 SFR ks .t \
/ \ —4— FSR N + +++3¥
"’ L o FSR-Best ‘f = E§§ Best
/ [e .
I - S
754 T 65 | ¢ GSBS
13 6 $ 12 15 18 13 6 ¢ 12 15 18 21 24
Number of features Number of features
WBCD Sonar
98 1 + SFR
—4- FSR
-©-- FSR-Best
LFS
GsBS
g %] g
5\ || Aaa ADOBOLLOLLLOE E
g [+t \ g
3 s VA 3
2 941 T T e B B N S S N g
/ + + SFR 701 s
J —£— FSR Hot +i HH HHE
| - FSR-Best +
l * LFS + + +
| e GsBS
92 651 i
i 5 10 15 20 25 3o 1 10 20 30 40 50 60

Number of features Number of features

Figure 3.3: Comparisons between single feature ranking (SFR), feature subset ranking (FSR),
the best results of FSR in 30 runs, linear forward selection (LFS) and greedy stepwise back-

ward selection (GSBS).

42

because this combination still has redundancy. Thirdly, feature subset ranking provides an
effective way for feature selection. Using the same number of features, BPSO based feature
subset ranking can achieve higher classification accuracy than wrapper based single feature
ranking. This suggests that BPSO could find a subset of complementary features to improve
the classification performance.

3.4.3.4 Further Analysis

Results in Figure 3.3 show that in almost all cases, the feature subset evolved by BPSO is not
the combination of the top-ranked features, but a subset of complementary ones.

Considering the Australian dataset as an example, as can be seen in Figure 3.2, the order
of the ranked features is F8, F10, F9, F14, F13, F5, F7, F3, F6, F2, F11, F12, F1, F4, where Fi
denotes the ith feature in the dataset. The second feature subset evolved by BPSO includes
F8 and F12, which are not the two top-ranked features (F8 and F10). According to Figure
3.3, although with F8 and F10 the classifier can achieve higher classification accuracy than
with all features, with F8 and F12 it can obtain better results than with F8 and F10. This
suggests that the combination of the two top-ranked features contains redundancy while
the combination of a top-ranked feature (F8) and a low-ranked feature (F12) is a subset of
complementary features. Meanwhile, the other 11 (from the 3th to the 13th) feature subsets
evolved by BPSO are not the combinations of the top-ranked features either. These results
suggest that the BPSO based subset ranking algorithm has great potential to avoid redun-
dant and/or noisy features and thus reduce the dimensionality of the classifier.

3.4.3.5 Comparisons Between Proposed Methods and Benchmark Techniques

The red stars and blue dots in Figure 3.3 show that the number of features selected by LFS
is smaller than that of GSBS, but the classification accuracy achieved by LFS is close to or
better than that of GSBS in most cases. This suggests that LFS starting with an empty feature
subset is more likely to obtain some optimality of the small feature subsets than backward
selection methods, but does not guarantee finding the larger feature subsets. GSBS starts
with all features and a feature is removed only when its removal can improve the classifica-
tion performance. The redundant features that do not influence the classification accuracy
will not be removed. Therefore, the feature subset selected by GSBS is usually larger than
the feature subset selected by LFS because of the redundant features.

Comparing the proposed wrapper based single feature ranking with the two conven-
tional techniques, it can be observed that using the same number of features, LFS and GSBS
could achieve higher classification accuracy than single feature ranking in most cases. This
suggests that the combination of top-ranked features could not achieve the best performance
because it contains redundancy or noise. However, in most cases, combing a relatively small
number of top-ranked features could obtain higher accuracy than LFS and GSBS. The resea-
son might be that the feature subsets selected by LFS and GSBS still have redundancy.

Figure 3.3 shows that BPSO based feature subset ranking outperforms LFS and GSBS. In
seven of the eight datasets, feature subsets obtained by feature subset ranking can achieve
higher classification accuracy than the subsets obtained by LFS and GSBS (in the eighth one,
the Vowel dataset, the results are almost the same). This suggests that BPSO could find
subsets of complementary features that could achieve better classification performance than
other combinations of features.

43

44

Chapter 4

Proposed Contributions and Project
Plan

4.1

Proposed Contributions

This work will contribute to the fields PSO and feature selection. The proposed contribu-
tions are listed follows.

1.

This work will present a novel version of discrete PSO with a new particle encoding
scheme, a new topology structure and new update equations. This novel version of
discrete PSO is expected to improve the performance of the PSO algorithm.

. This work will present a new PSO based feature selection approach to solving feature

selection as a single objective problem. This will be accomplished by developing a
feature selection algorithm based on PSO and developing a strategy to improve its
computational efficiency. The new PSO based feature selection approach is expected
to achieve better performance than existing feature selection algorithms in terms of
computational efficiency.

This work will present a PSO based single feature ranking algorithm for feature se-
lection. A new criterion will be developed to evaluate the relative importance of each
feature in the presence or absence of other features and then a PSO based single feature
ranking approach will be proposed. This single feature ranking algorithm is expected
to achieve better performance than existing single feature ranking approaches in terms
of the classification accuracy of the successive top-ranked features.

. This work will show how PSO can be used to solve feature selection tasks as a multi-

objective problem. A multi-objective feature selection approach will be developed by
proposing a multi-objective discrete PSO to maximise the classification accuracy and
minimise the number of selected features. The proposed multi-objective feature selec-
tion approach is expected to achieve better performance than existing multi-objective
feature selection algorithms and PSO based single objective approaches.

This work will show how PSO can be used for feature construction problems by util-
ising discrete PSO to select original features that are used to construct new high-level
features. PSO has never been applied to feature construction problems because it does
not have the construction function. In this work, new search operators will be intro-
duced to discrete PSO thus it could evolve feature construction functions. The pro-
posed feature construction approach is expected to automatically construct high-level

45

Table 4.1: Phases of project plan (Phase 6 will be conducted if time allowed).

Phase | Task Duration (Months)

1 Reviewing literature, overall design, selection of datasets 12 (Complete)
and writing the proposal

2 Developing a new version of discrete PSO for feature selection | 5

3 Using discrete PSO to select a single subset of features 4 (Partly)

4 Investigating multi-objective discrete PSO for feature selection | 4

5 Utilising discrete PSO for feature construction 5

6* Predicting the best fitness evaluation function with which a 3*
feature selection algorithm could obtain the best feature
subset for a given learning algorithm

7 Writing the thesis 6

features which could improve the quality of the search space and achieve better per-
formance than existing feature construction algorithms.

6. The performance of feature selection is bound to the classification algorithm in wrap-
per based approaches, but this link has not been throughly investigated. This work
intends to present a method to predict the fitness evaluation function with which a
feature selection algorithm could obtain the best feature subset for a given learning
algorithm. This is expected to help users select the best fitness evaluation function for
a desired learning algorithm to obtain the best classification accuracy in unseen data
and/or reduce the training time.

4.2 Overview of Project Plan

The initial plan for this project includes eight overall phases of research as shown in Table
4.1. The first step has been completed and part of the rest of the steps have been done partly
during the provisional registration period (12 months). Phases two to six will cover the
major research objectives addressed by this project. Work in phase six is optional, which
will be conducted if one of phases two to five (one of the first four objectives) can not be
completed, or there is still enough time available when other work (except phase seven) is
completed. The last phase involves writing the final thesis.

4.3 Project Timeline

An estimation of the approximate timetable for the remaining phases of the work for the
next 24 months of research is presented in Table 4.2. The first column shows the research
phase from Table 4.1, the second column the detailed research tasks, and the next subsequent
columns represent two-month periods. Note that phase six is not included in the timetable
because it is optional and three months may be needed to complete it if possible.

4.4 Thesis Outline

This thesis plans to have nine chapters, where chapter 7 is optional work. The outline of the
final thesis will be written as follows.

o Chapter 1: Introduction

46

Table 4.2: Project timeline for the next 24 months

Time in Months
Phase | Task 2 4 6|8 10 12|14 16 18|20 22 24
n/a | Updating the literature review X X X|x X X |x x X |XxX X X
2 Developing a new encoding scheme for || x x
discrete PSO
2 Designing a new topology for discrete X
PSO
2 Investigating new update equations and X
add search operators to discrete PSO
3 Developing a strategy to improve the X | X
computation efficiency of discrete PSO
for feature selection
3 Using discrete PSO to select a single X
subset of features
3 Using discrete PSO for single feature X
ranking for feature selection
4 Investigating multi-objective discrete X X | X
PSO for feature selection
5 Utilising discrete PSO for feature con- X X X
struction
7 Writing the first draft of the thesis X X
7 Editing the final draft X X

This chapter will introduce the academic thesis. It will outline the problems, the moti-
vations, research goals, contributions and organisation of the thesis.

Chapter 2: Literature Review

This chapter will present a review of the literature on evolutionary computation tech-
niques as main approaches to solving feature selection problems. It will cover essential
background and basics concepts of evolutionary computation and machine learning,
particularly PSO, feature selection and construction, and then it will review typical
related work in feature selection and construction problems using conventional meth-
ods and evolutionary computation techniques. It thus highlights the main limitations
of these algorithms and current challenges that form the motivations of the thesis.

Chapter 3: Improved Discrete PSO

In this chapter, a new version of discrete PSO will be proposed, which is based on a
new encoding scheme, a new topology structure, new update equations and newly
introduced search operators. The performance of the proposed PSO will be compared
with that of BPSO with a standard encoding scheme, commonly used topology struc-
tures and standard update equations on feature selection problems.

Chapter 4: Discrete PSO for Feature Selection and Single Feature Ranking

In this chapter, a strategy will be proposed to improve the computational efficiency of
discrete PSO. A feature selection approach will then be developed based on discrete
PSO, which is a single objective technique aiming to maximise the classification accu-
racy. Meanwhile, a new criterion will be proposed to evaluate the relative importance
of each feature in the presence or absence of other features. Then a discrete PSO based

47

single feature ranking approach will be developed for feature selection problems. The
performance of the proposed algorithms will be compared with that of conventional
approaches and standard PSO based feature selection methods.

Chapter 5: Multi-objective Discrete PSO for Feature Selection

In this chapter, a multi-objective discrete PSO will be proposed based on which a fea-
ture selection approach will be developed with the objectives of maximising the clas-
sification accuracy and minimising the number of features. The performance of the
developed approach will be compared with that of existing multi-objective feature se-
lection algorithms and the single objective PSO developed in the previous chapter.

Chapter 6: Discrete PSO for Feature Construction

In this chapter, a feature construction approach will be developed. Discrete PSO will
be utilised to select original features for constructing new high-level features. New
search operators will be introduced to discrete PSO to evolve a feature construction
function. The performance of the proposed approach will be compared with that of
benchmark feature construction algorithms.

Chapter 7*: Prediction of a Good Fitness Evaluation Function for Given Classification Algo-
rithms

This chapter will investigate the best fitness evaluation function that can be used in
the training process of a feature selection approach, which will obtain the best feature
subset for a given learning algorithm. Some commonly used learning algorithms will
be covered, such as KNN, NB, DT, SVM and LCS. Experiments will be conducted to
test the predictions.

Chapter 8: Discussions
In this chapter, relevance and impact of the novel work in the PSO and feature selection
tields will be discussed in detail.

Chapter 9: Conclusions and Future Work

In this chapter, the conclusions and findings from the experiments in each phase will
be presented and summarised. It will also describe the main future research directions
arising from the contributions of this work.

4.5 Resources Required

4.5.1 Computing Resources

This research will need to run large computational experiments, which consume much
memory space and processing power. The School’s grid computing facilities can meet the
requirement. Other IT resources are also available in the School’s system.

4.5.2 Library Resources

Access to the respective publications in this area is expected. Most of the required literature
is already subscribed by the university library and also available on-line.

48

4.5.3 Conference Travel Grant

Publications to the respective conference (i.e. CEC and GECCO) in this area are expected.
Therefore a travel grant from the university is needed to support important conference trav-
els.

49

50

Bibliography

[1] T. Abeel, Y. V. de Peer, and Y. Saeys. Java-ml: A machine learning library. Journal of
Machine Learning Research, 10:931-934, 2009.

[2] T.J. Aiand V. Kachitvichyanukul. Particle swarm optimization and two solution rep-
resentations for solving the capacitated vehicle routing problem. Computers and Indus-
trial Engineering, 56(1):380— 387, 2009.

[3] E. Alba, J. Garcia-Nieto, L. Jourdan, and E. Talbi. Gene selection in cancer classifica-
tion using pso/svm and ga/svm hybrid algorithms. In IEEE Congress on Evolutionary
Computation (CEC’07), pages 284-290, 2007.

[4] H. Almuallim and T. G. Dietterich. Learning boolean concepts in the presence of many
irrelevant features. Artificial Intelligence, 69:279-305, 1994.

[5] E. Alpaydin. Introduction to machine learning. The MIT Press, 2004.

[6] M. AlRashidi and M. El-Hawary. A survey of particle swarm optimization applica-
tions in electric power systems. IEEE Transactions on Evolutionary Computation, 13(4):
913-918, 2009.

[7] E. Amaldi and V. Kann. On the approximability of minimizing nonzero variables or
unsatisfied relations in linear systems. Theoretical Computer Science, 209:237-260, 1998.

[8] G. Azevedo, G. Cavalcanti, and E. Filho. An approach to feature selection for
keystroke dynamics systems based on pso and feature weighting. In IEEE Congress
on Evolutionary Computation (CEC’07), pages 3577-3584, 2007.

[9] M. Banerjee, S. Mitra, and H. Banka. Evolutionary rough feature selection in gene
expression data. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews, 37(4):622-632, 2007.

[10] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and regression trees.
Wadsworth International Group, 1984. BREIMANS4.

[11] C.Cardie. Using decision trees to improve case-based learning. In In Proceedings of the
Tenth International Conference on Machine Learning (ICML), pages 25-32, 1993.

[12] R. Caruana and D. Freitag. Greedy attribute selection. In International Conference on
Machine Learning (ICML'94), pages 28-36, 1994.

[13] B. Chakraborty. Genetic algorithm with fuzzy fitness function for feature selection. In
IEEE International Symposium on Industrial Electronics (ISIE'02), volume 1, pages 315—
319, 2002.

51

[14] B. Chakraborty. Feature subset selection by particle swarm optimization with fuzzy
fitness function. In 3rd International Conference on Intelligent System and Knowledge En-
gineering (ISKE’08), volume 1, pages 1038-1042, 2008.

[15] B. C. Chien and J. H. Yang. Features selection based on rough membership and ge-
netic programming. In IEEE International Conference on Systems, Man and Cybernetics
(SMC’06), volume 5, pages 4124—4129, 2006.

[16] L.Y. Chuang, H. W. Chang, C.J. Tu, and C. H. Yang. Improved binary pso for feature
selection using gene expression data. Computational Biology and Chemistry, 32(29):29-
38, 2008.

[17] L. Y. Chuang, S. W. Tsai, and C. H. Yang. Improved binary particle swarm optimiza-
tion using catfish effect for feature selection. Expert Systems with Applications, 38:12699—
12707, 2011.

[18] J. Cooper and C. Hinde. Improving genetic algorithms’ efficiency using intelligent
fitness functions. In Developments in Applied Artificial Intelligence, volume 2718, pages
636-643. Springer Berlin / Heidelberg, 2003.

[19] M. Dash and H. Liu. Feature selection for classification. Intelligent Data Analysis, 1(4):
131-156, 1997.

[20] M. Dorigo, M. Birattari, and T. Stutzle. Ant colony optimization. IEEE Computational
Intelligence Magazine, 1(4):28 -39, 2006.

[21] R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In Sixth
International Symposium on Micro Machine and Human Science (MHS'95), pages 39-43,
1995.

[22] A.P. Engelbrecht. Computational intelligence: an introduction (2. ed.). Wiley, 2007.

[23] M. A. Esseghir, G. Goncalves, and Y. Slimani. Adaptive particle swarm optimizer for
feature selection. In international conference on Intelligent data engineering and automated
learning (IDEAL’10), pages 226-233, Berlin, Heidelberg, 2010. Springer Verlag.

[24] P. Estevez, M. Tesmer, C. Perez, and J. Zurada. Normalized mutual information fea-
ture selection. IEEE Transactions on Neural Networks, 20(2):189-201, 2009.

[25] A. O. Finley and R. E. McRoberts. Efficient k-nearest neighbor searches for multi-
source forest attribute mapping. Remote Sensing of Environment, 112(5):2203 — 2211,
2008.

[26] A.Frank and A. Asuncion. UCI machine learning repository, 2010.

[27] H. H. Gao, H. H. Yang, and X. Y. Wang. Ant colony optimization based network in-
trusion feature selection and detection. In International Conference on Machine Learning
and Cybernetics, volume 6, pages 3871-3875, 2005.

[28] I. A. Gheyas and L. S. Smith. Feature subset selection in large dimensionality domains.
Pattern Recognition, 43(1):5-13, 2010.

[29] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Reading, MA, 1989.

52

[30] Y. Guo, W. Li, A. Mileham, and G. Owen. Applications of particle swarm optimisa-
tion in integrated process planning and scheduling. Robotics and Computer-Integrated
Manufacturing, 25(2):280-288, 2009.

[31] M. Gutlein, E. Frank, M. Hall, and A. Karwath. Large-scale attribute selection using
wrappers. In IEEE Symposium on Computational Intelligence and Data Mining (CIDM
'09), pages 332-339, 2009.

[32] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. The Journal
of Machine Learning Research, 3:1157-1182, 2003.

[33] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The weka
data mining software: An update. SIGKDD Explorations, 11:931-934, 2009.

[34] M. Hearst, S. Dumais, E. Osman, J. Platt, and B. Scholkopf. Support vector machines.
IEEE Intelligent Systems and their Applications, 13(4):18 —28, 1998.

[35] C.W.Hsu, C.C.Chang, and C.]. Lin. A practical guide to support vector classification,
2003.

[36] C.L.Huangand]. F. Dun. A distributed pso-svm hybrid system with feature selection
and parameter optimization. Application on Soft Computing, 8:1381-1391, 2008.

[37] C.L.Huangand C.]. Wang. A ga-based feature selection and parameters optimization
for support vector machines. Expert Systems with Applications, 31(2):231- 240, 2006.

[38] A.Jain and D. Zongker. Feature selection: evaluation, application, and small sample
performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(2):153—
158, 1997.

[39] R. Jensen. Performing feature selection with aco. In Swarm Intelligence in Data Min-
ing, volume 34 of Studies in Computational Intelligence, pages 45-73. Springer Berlin /
Heidelberg, 2006.

[40] G.H.John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset selection prob-
lem. In Machine Learning: Proceedings of the Eleventh International Conference (ICCCS’11),
pages 121-129. Morgan Kaufmann Publishers, 1994.

[41] L. Ke, Z. Feng, Z. Xu, K. Shang, and Y. Wang. A multiobjective aco algorithm for
rough feature selection. In Second Pacific-Asia Conference on Circuits,Communications
and System (PACCS), volume 1, pages 207-210, 2010.

[42]]. Kennedy. Small worlds and mega-minds: effects of neighborhood topology on par-
ticle swarm performance. In IEEE Congress on Evolutionary Computation (CEC’99), vol-
ume 3, pages 1931-1938, 1999.

[43]]. Kennedy and R. Eberhart. Particle swarm optimization. In IEEE International Con-
ference on Neural Networks, volume 4, pages 1942-1948, 1995.

[44]]. Kennedy and R. Eberhart. A discrete binary version of the particle swarm algorithm.
In IEEE International Conference on Systems, Man, and Cybernetics, 1997. Computational
Cybernetics and Simulation., volume 5, pages 4104-4108, 1997.

[45]]. Kennedy and R. Mendes. Population structure and particle swarm performance. In
IEEE Congress on Evolutionary Computation (CEC’02), volume 2, pages 1671-1676, 2002.

53

[46]]J. Kennedy, R. C. Eberhart, and Y. Shi. Swarm Intelligence. Evolutionary Computation
Series. Morgan Kaufman, San Francisco, 2001.

[47] M. Khanesar, M. Teshnehlab, and M. Shoorehdeli. A novel binary particle swarm
optimization. In Mediterranean Conference on Control Automation (MED'07), pages 1-6,
2007.

[48] K. Kira and L. A. Rendell. A practical approach to feature selection. Assorted Confer-
ences and Workshops, pages 249-256, 1992.

[49] K. Kira and L. A. Rendell. The feature selection problem: Traditional methods and a
new algorithm. In AAAI, pages 129-134, 1992.

[50] R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence,
97:273-324, 1997.

[51] D. Koller and M. Sahami. Toward optimal feature selection. In International Workshop
And Conference on Machine Learning, pages 284-292. Morgan Kaufmann, 1996.

[52] I. Kononenko. Estimating attributes: Analysis and extensions of relief. Lecture Notes
in Computer Science, 784:171, 1994.

[53] J. R. Koza. Introduction to genetic programming. In Annual conference on Genetic and
evolutionary computation (GECCQO’07), volume 5, pages 3323-3365, 2007.

[54] K. Krawiec. Genetic programming-based construction of features for machine learn-
ing and knowledge discovery tasks. Genetic Programming and Evolvable Machines, 3:
329-343, 2002.

[55] K. Krawiec. Ewvolutionary Feature Programming: Cooperative learning for knowledge dis-
covery and computer vision. Number 385 in . Wydawnictwo Politechniki Poznanskiej,
Poznan University of Technology, Poznan, Poland, 2004.

[56] N. Kwak and C. H. Choi. Input feature selection for classification problems. IEEE
Transactions on Neural Networks, 13(1):143-159, 2002.

[57] P. Langley. Selection of relevant features in machine learning. In In Proceedings of the
AAAI Fall symposium on relevance, pages 127-131. AAAI Press, 1994.

[58] P. Langley, W. Iba, and K. Thompson. An analysis of bayesian classifiers. In IN
PROCEEDINGS OF THE TENTH NATIONAL CONFERENCE ON ARTI CIAL INTEL-
LIGENCE, pages 223-228. MIT Press, 1992.

[59] M. Last, A. Kandel, and O. Maimon. Information-theoretic algorithm for feature se-
lection. Pattern Recognition Letters, 22:799-811, 2001.

[60] S. W. Lin, K. C.Ying, S. C. Chen, and Z.]. Lee. Particle swarm optimization for param-
eter determination and feature selection of support vector machines. Expert Systems
with Applications, 35(4):1817-1824, 2008.

[61] H. Liu and H. Motada, editors. Feature extraction, construction and selection: A data
mining perspective. Kluwer Academic Publishers, Norwell, MA, 1998.

[62] H. Liu and H. Motoda. Feature transformation and subset selection. IEEE Intelligent
Systems and Their Applications, 13(2):26— 28, 1998.

54

[63] Y.Liu, G. Wang, H. Chen, H. Dong, X. Zhu, and S. Wang. An improved particle swarm
optimization for feature selection. Journal of Bionic Engineering, 8(2):191-200, 2011.

[64] T.Marill and D. Green. On the effectiveness of receptors in recognition systems. IEEE
Transactions on Information Theory, 9(1):11-17, 1963.

[65] M. Menhas, M. Fei, L. Wang, and X. Fu. A novel hybrid binary pso algorithm. Advances
in Swarm Intelligence, Lecture Notes in Computer Science, 6728:93-100, 2011.

[66] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors. Machine Learning: An
Artificial Intelligence Approach. Tioga, 1983.

[67] D. Michie, D. J. Spiegelhalter, and C. Taylor. Machine learning, neural and statistical
classification, 1994.

[68] M. Mitchell. An Introduction to Genetic Algorithms. The MIT Press, 1996.
[69] T. Mitchell. Machine Learning. McGraw-Hill, 1997.

[70] A. Modiri and K. Kiasaleh. Modification of real-number and binary pso algorithms
for accelerated convergence. Antennas and Propagation, IEEE Transactions on, 59(1):214—
224, 2011.

[71] A. Mohemmed, M. Zhang, and M. Johnston. Particle swarm optimization based ad-
aboost for face detection. In IEEE Congress on Evolutionary Computation (CEC’09), pages
2494-2501, 2009.

[72] A. M. Molinaro, R. Simon, and R. M. Pfeiffer. Prediction error estimation: a compari-
son of resampling methods. Bioinformatics, 21(15):3301-3307, 2005.

[73] M. A. Muharram and G. D. Smith. The effect of evolved attributes on classification
algorithms. In Australian Conference on Artificial Intelligence (AI'03), volume 2903 of
Lecture Notes in Computer Science, pages 933-941. Springer, 2003.

[74] D. Muni, N. Pal, and J. Das. Genetic programming for simultaneous feature selection
and classifier design. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transac-
tions on, 36(1):106-117, 2006.

[75] S. K. Murthy, S. Kasif, and S. Salzberg. A system for induction of oblique decision
trees. Journal of Artificial Intelligence Research, 2:1-32, 1994.

[76] P. Narendra and K. Fukunaga. A branch and bound algorithm for feature subset se-
lection. IEEE Transactions on Computers, 26(9):917-922, 1977.

[77] K. Neshatian and M. Zhang. Genetic programming for performance improvement and
dimensionality reduction of classification problems. In IEEE Congress on Evolutionary
Computation (CEC’08), pages 2811-2818, 2008.

[78] K. Neshatian and M. Zhang. Dimensionality reduction in face detection: A genetic
programming approach. In 24th International Conference Image and Vision Computing
New Zealand (IVCNZ'09), pages 391-396, 2009.

[79] K. Neshatian and M. Zhang. Pareto front feature selection: using genetic program-
ming to explore feature space. In Proceedings of the 11th Annual conference on Genetic
and evolutionary computation (GECCO’09), pages 1027-1034, New York, NY, USA, 2009.

55

[80] K. Neshatian and M. Zhang. Genetic programming for feature subset ranking in bi-
nary classification problems. In European Conference on Genetic Programming, pages
121-132, 2009.

[81] K. Neshatian, M. Zhang, and M. Johnston. Feature construction and dimension re-
duction using genetic programming. In Australian Conference on Artificial Intelligence
(AI'07), volume 4830 of Lecture Notes in Computer Science, pages 160-170. Springer,
2007.

[82] K. Neshatian, M. Zhang, and P. Andreae. Genetic programming for feature ranking
in classification problems. In Simulated Evolution and Learning, volume 5361 of Lecture
Notes in Computer Science, pages 544-554. Springer Berlin / Heidelberg, 2008.

[83] L. Oliveira, R. Sabourin, F. Bortolozzi, and C. Suen. Feature selection using multi-
objective genetic algorithms for handwritten digit recognition. In 16th International
Conference on Pattern Recognition (ICPR’02), volume 1, pages 568— 571, 2002.

[84] F. Otero, M. Silva, A. Freitas, and]J. Nievola. Genetic programming for attribute con-
struction in data mining. In Genetic Programming, volume 2610 of Lecture Notes in
Computer Science, pages 101-121. Springer Berlin/Heidelberg, 2003.

[85] G.Pampara, N. Franken, and A. P. Engelbrecht. Combining particle swarm optimisa-
tion with angle modulation to solve binary problems. In IEEE Congress on Evolutionary
Computation (CEC’05), pages 89-96, 2005.

[86] A. Paoli, F. Melgani, and E. Pasolli. Clustering of hyperspectral images based on
multiobjective particle swarm optimization. IEEE Transactions on Geoscience and Remote
Sensing, 47(12):4175-4188, 2009.

[87] P. Pudil, J. Novovicova, and J. V. Kittler. Floating search methods in feature selection.
Pattern Recognition Letters, 15(11):1119-1125, 1994.

[88] A. Purohit, N. Chaudhari, and A. Tiwari. Construction of classifier with feature se-
lection based on genetic programming. In IEEE Congress on Evolutionary Computation
(CEC’10), pages 1-5, 2010.

[89] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo,
CA, 1993.

[90] R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.

[91] R. Ramirez and M. Puiggros. An evolutionary computation approach to cognitive
states classification. In IEEE Congress on Evolutionary Computation (CEC'07), pages
1793-1799, 2007.

[92] R. Ruiz,]. C. R. Santos, and J. S. Aguilar-Ruiz. Fast feature ranking algorithm. In
Knowledge-Based Intelligent Information and Engineering Systems (KES'03), volume 2773
of Lecture Notes in Computer Science, pages 325-331. Springer, 2003.

[93] S.]. Russell and P. Norvig. Artificial Intelligence: A Modern Approach (Second Edition).
Pearson Education, 2003.

[94] J. Sadri and C. Suen. A genetic binary particle swarm optimization model. In IEEE
Congress on Evolutionary Computation (CEC’06), pages 656—663, 2006.

56

[95] R. K. Sivagaminathan and S. Ramakrishnan. A hybrid approach for feature subset
selection using neural networks and ant colony optimization. Expert Systems with
Applications, 33(1):49- 60, 2007.

[96] M. G. Smith and L. Bull. Genetic programming with a genetic algorithm for feature
construction and selection. Genetic Programming and Evolvable Machines, 6(3):265-281,
2005.

[97] S. Stearns. On selecting features for pattern classifier. In In Proceedings of the 3rd Inter-
national Conference on Pattern Recognition, pages 71-75, Coronado, CA, 1976.

[98] H. Stoppiglia, G. Dreyfus, R. Dubois, and Y. Oussar. Ranking a random feature for
variable and feature selection. Journal of Machine Learning Research, 3:1399-1414, 2003.

[99] E. G. Talbj, L. Jourdan, J. Garcia-Nieto, and E. Alba. Comparison of population based
metaheuristics for feature selection: Application to microarray data classification. In
IEEE/ACS International Conference on Computer Systems and Applications (AICCSA’08),
pages 45-52, 2008.

[100] A. Unler and A. Murat. A discrete particle swarm optimization method for feature
selection in binary classification problems. European Journal of Operational Research,
206(3):528-539, 2010.

[101] H. Vafaie and K. DeJong. Feature space transformation using genetic algorithms. IEEE
Intelligent Systems, 13(2):57-65, 1998.

[102] H. Vafaie and I. Imam. Feature selection methods: Genetic algorithms vs. greedy-like
search. In International Conference on Fuzzy Systems and Intelligent Control Conference,
volume 1, pages 217-220, 1994.

[103] J. Valyon and G. Horvath. A WEIGHTED GENERALIZED LS-SVM, 2003.

[104] F. Van Den Bergh. An analysis of particle swarm optimizers. PhD thesis, Pretoria, South
Africa, 2002.

[105] L. Wang, X. Wang, and M. Fei. An adaptive mutation-dissipation binary particle
swarm optimisation for multidimensional knapsack problem. Journal of Modelling,
Identification and Control, 8(4):259-269, 2009.

[106] X. Wang,]. Yang, X. Teng, W. Xia, and R. Jensen. Feature selection based on rough sets
and particle swarm optimization. Pattern Recognition Letters, 28(4):459—-471, 2007.

[107] K. Wagqas, R. Baig, and S. Ali. Feature subset selection using multi-objective genetic
algorithms. In IEEE 13th International Conference on Multitopic Conference (INMIC’09),
pages 1-6, 2009.

[108] A. Whitney. A direct method of nonparametric measurement selection. IEEE Transac-
tions on Computers, C-20(9):1100-1103, 1971.

[109] 1. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Technigues
(Second Edition). Morgan Kaufmann, 2005.

[110] C.S. Yang, L. Y. Chuang, C. H. Ke, and C. H. Yang. Boolean binary particle swarm op-
timization for feature selection. In IEEE Congress on Evolutionary Computation (CEC’08),
pages 2093-2098, 2008.

57

[111] C.S. Yang, L. Y. Chuang, J. C. Li, and C. H. Yang. Chaotic maps in binary particle
swarm optimization for feature selection. In IEEE Conference on Soft Computing in
Industrial Applications(SMCIA "08), pages 107-112, 2008.

[112] L. Yu and H. Liu. Efficient feature selection via analysis of relevance and redundancy.
Journal of Machine Learning Research, 5:1205-1224, 2004.

[113] H. Yuan, S. S. Tseng, W. Gangshan, and Z. Fuyan. A two-phase feature selection
method using both filter and wrapper. In IEEE International Conference on Systems,
Man, and Cybernetics (SMC’99), volume 2, pages 132-136, 1999.

[114] S. C. Yusta. Different metaheuristic strategies to solve the feature selection problem.
Pattern Recognition Letters, 30:525-534, 2009.

[115] H. M. Zhao, A. P. Sinha, and W. Ge. Effects of feature construction on classification
performance: An empirical study in bank failure prediction. Expert Systems with Ap-
plications, 36(2):2633-2644, 2009.

[116] Z. Zheng. Effects of different types of new attribute on constructive induction. In
IEEE International Conference on Tools with Artificial Intelligence (ICTAI'96), pages 254—
257, 1996.

[117] Z. Zheng. Constructing x-of-n attributes for decision tree learning. Machine Learning,
40:35-75, 2000.

58

