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Engineering and Computer Science, Victoria University of Wellington (VUW), 
New Zealand. His research is mainly focused on evolutionary computation, 
particularly genetic programming, particle swarm optimization and learning 
classifier systems with application areas of image analysis, multi-objective 
optimization, classification with unbalanced data, feature selection and 
reduction, and job shop scheduling. He has published over 400 academic 
papers in refereed international journals and conferences. He has been 
serving as an associated editor or editorial board member for five 
international journals (including IEEE Transactions on Evolutionary 
Computation and the Evolutionary Computation Journal) and as a reviewer of 
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committee member and a program committee member for over eighty 
international conferences.
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Evolutionary Computation Research Group at VUW, and her research 
focuses mainly on evolutionary computation, machine learning and data 
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• Feature Selection and Feature Construction

• Evolutionary Computation (EC) for Feature 

Selection

• Feature Selection Methods

• Feature Construction Methods

• Application on Images

• Application on Biology

• Issues and Challenges 

4

Outline
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• Monkeys performing 
classification task:
- Diagnostic features:
‣ Eye separation

‣ Eye height
- Non-Diagnostic features:
‣ Mouth height

‣ Nose length

5

Feature Selection: Example from Biology

[Acknowledgement: Nathasha Sigala, Nikos Logothetis: Visual categorization shapes feature selectivity in the primate visual cortex. 
Nature Vol. 415(2002)]
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• Monkeys performing 
classification task
- Diagnostic features:
‣ Eye separation

‣ Eye height
- Non-Diagnostic features:
‣ Mouth height

‣ Nose length

- After Training: 72% 
(32/44) were selective 
to one or both of the 
diagnostic features (and 
not for the non-
diagnostic features)

6

Feature Selection: Example from Biology

??

[Acknowledgement: Nathasha Sigala, Nikos Logothetis: Visual categorization shapes feature selectivity in the primate visual cortex. 
Nature Vol. 415(2002)]

“The data from the present study indicate that neuronal 
selectivity was shaped by the most relevant subset of 

features during the categorisation training.”
—Nathasha Sigala, Nikos Logothetis



GECCO,Dever, 
Colorado, USA. 20-24 
July 2016

Credit card application:

• 7 applicants (examples/instances/observations)
• 2 classes: Approve, Reject 
• 3 features/variables/attributes

7

Data set (Classification) — Example 1

Job Saving Family Class
Applicant 1 true high single Approve
Applicant 2 false high couple Approve
Applicant 3 true low couple Reject
Applicant 4 true low couple Approve
Applicant 5 true high children Reject
Applicant 6 false low single Reject
Applicant 7 true high single Approve
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Cancer Diagnosis— Example 2
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Feature Selection and Feature Construction

• Feature selection aims to 
pick a subset of relevant 
features to achieve similar 
or better classification 
performance than using all 
features.

• Feature construction is  to  
construct new high-level 
features using original 
features to improve the 
classification performance.
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• “Curse of the dimensionality”
- Large number of features: 100s, 1000s, even 

millions
• Not all features are useful (relevant) 

• Redundant or irrelevant features may reduce the 
performance (e.g. classification accuracy)

• Costly: time, memory, and money

• Feature selection 
- to select a small subset of relevant features from 

the original large set of features in order to 
maintain or even improve the performance

10

Why Feature Selection ?
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• The quality of input features can drastically affect the learning 
performance. 

• Even if the quality of the original features is good, 
transformations might be required to make them usable for 
certain types of classifiers. 

• Feature construction does not add to the cost of extracting
(measuring) original features; it only carries computational 
cost. 

• In some cases, feature construction can lead to 
dimensionality reduction or implicit feature selection. 

11

Why Feature Construction?
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• Reduce the dimensionality (No. of features)
• Improve the (classification) performance

• Simplify the learnt model 
• Speed up the processing time

• Help visualisation and interpretation
• Reduce the cost, e.g. save memory 

• and  ?

12

What can FS/FC do ?
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• Large search space: 2n possible feature subsets 
- 1990: n < 20
- 1998: n <= 50
- 2007: n ≈ 100s
- Now: 1000s, 1 000 000s

• Feature interaction
- Relevant features may become redundant 
- Weakly relevant or irrelevant features may 

become highly useful 
• Slow processing time, or even not possible

• Multi-objective	Problems

13

Challenges in FS and FC

COMP422 Feature Manipulation: 19

Search Strategy

Basically, many different search algorithms can be used (eg exhaus-

tive, random, GA).

Good representation of solutions (subsets) is very important. A

search algorithm can perform better by using the structural infor-

mation available to subsets of features: the lattice of subsets.

How would you use the lattice to perform a search?

COMP422 Feature Manipulation: 20

Forward Selection Algorithm

Forward Selection:

• Start with the empty set.

• At each step examine all individual features by tentatively

adding them to the current set of selected features. Choose the

feature that yields the highest improvement and add it to the set

of selected features.

• Repeat the above step until the performance can no longer be

improved.

How does this algorithm compare to exhaustive search?

COMP422 Feature Manipulation: 21

Backward Selection Algorithms

Backward Selection:

• Start with the set of all available features.

• At each step examine all individual features by tentatively re-

moving them from the current set of selected features. Pick the

feature that its removal yields the highest improvement and re-

move it from the set of selected features.

• Repeat the above step until the performance can no longer be

improved.

How does this algorithm compare to forward selection?

COMP422 Feature Manipulation: 22

Overcoming Computational Intensity in Feature
Selection

Things to do to make searching the exponentially-growing space of

subsets of features (with 2m elements) feasible:

• Don’t search the entire space; use some heuristics instead (e.g.

Forward Selection, GA, PSO, ...)

• Choose computationally cheap learning algorithms (e.g. Near-

est Centroid) or other measures (non-wrappers).

• Take a different approach (e.g. using GP to search the space

implicitly)

COMP422 Feature Manipulation: 23

Non-Wrapper (Filter) Approach

A feature selection system that does not adopt a wrapper approach

is considered adopting a non-wrapper or filter approach. It covers a

large number of feature selection algorithms:

1. Algorithms that use a search strategy and a surrogate classifier.

2. Algorithms that use single-feature ranking for feature selection.

3. Transformational dimensionality reduction (e.g. PCA and

LDA) (Note: these algorithms don’t perform selection over

original input variables)

4. A large number of other algorithms (e.g. RELIEF, ...)

COMP422 Feature Manipulation: 24

Feature Selection by Single Feature Ranking

To select m⋆ features out of m original features:

1. Use an algorithm to measure the importance (goodness) of each

feature individually.

2. Sort (rank) all the m features in the descending order of their

importance.

3. Choose m⋆ top (most important) features.

The importance of a feature is determined depending on their con-

tribution to prediction. Common measures of relevance:

• Pearson’s correlation

• Logistic Regression, Statistical testing (e.g. χ2 test)

• Information theory measure (e.g. IG and IGR)
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General FS/FC System

Constructed/Selec
ted Feature(s)

Evolutionary Feature 
Selection/Construction
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• On training set:

15

Feature FS/FC Process

Constructed/
Selected 
Feature(s)

Feature(s)
Evaluation

Results 
Evaluation
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• Based on Evaluation  ——— learning algorithm
- Three categories: Filter, Wrapper, Embedded
- Hybrid (Combined)

16

Feature Selection Approaches

Filter
Original 
Features

Selected 
Features

Wrapper
Selected 
Features

Original 
Features

Selected Features

Learnt Classifier
Embedded Method

Selected  
Features

Evaluation
(Measure)

Learning 
Classifier

Original 
Features

Selected  
Features
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• Generally:

17

Feature Selection Approaches

Classification
Accuracy

Computational 
Cost

Generality
(different classifiers)

Filter Low Low High

Embedded Medium Medium Medium

Wrapper High High Low
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Feature Selection
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• Conventional approaches
- The Relief algorithm
‣ Feature ranking method

- The FOCUS algorithm 
- Sequential forward/backward selection 
- Sequential forward/backward floating selection
- Statistical feature selection methods

• Evolutionary Computation (EC) based approaches

19

Feature Selection Approaches

Tang, Jiliang, Salem Alelyani, and Huan Liu. "Feature selection for classification: A 
review." Data Classification: Algorithms and Applications (2014): 37.
Bolón-Canedo, Verónica, Noelia Sánchez-Maroño, and Amparo Alonso-Betanzos. "A 
review of feature selection methods on synthetic data." Knowledge and information 
systems 34.3 (2013): 483-519.
Zhai, Yiteng, Yew-Soon Ong, and Ivor W. Tsang. "The Emerging" Big 
Dimensionality"." IEEE Computational Intelligence Magazine 9.3 (2014): 14-26.
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• A group of techniques inspired by the principles 
of biological evolution

20

Evolutionary Computation (EC)
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• Don't need domain knowledge 
• Don’t make any assumption

- e.g. differentiable, linearity, separability, equality

• Easy to handle constraints

• EC can simultaneously build model structures 
and optimise parameters

• Population based search is particularly suitable 
for multi-objective optimisation

21

Why Evolutionary Computation ? 
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• EC Paradigms
• Evaluation

• Number of Objectives 

22

EC for Feature Selection

Bing Xue, Mengjie Zhang, Will Browne, Xin Yao. "A Survey on Evolutionary Computation Approaches to Feature 
Selection", IEEE Transaction on Evolutionary Computation, doi: 10.1109/TEVC.2015.2504420, published online on 30 
Nov 2015
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• Genetic algorithms (GAs), Genetic programming (GP)

• Particle swarm optimisation (PSO), ant colony 
optimisation(ACO)

• Differential evolution (DE), memetic algorithms, learning 
classifier systems (LCSs)

23

EC for Feature Selection

Bing Xue, Mengjie Zhang, Will Browne, Xin Yao. "A Survey on Evolutionary Computation Approaches to Feature 
Selection", IEEE Transaction on Evolutionary Computation, doi: 10.1109/TEVC.2015.2504420, published online on 30 
Nov 2015
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EC for Feature Selection

Bing Xue, Mengjie Zhang, Will Browne, Xin Yao. "A Survey on Evolutionary Computation Approaches to Feature 
Selection", IEEE Transaction on Evolutionary Computation, doi: 10.1109/TEVC.2015.2504420, published online on 30 
Nov 2015
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• Over 25 years ago, first EC techniques
- Filter, Wrapper, Single Objective, Multi-objective

• Representation
- Binary string

• Search mechanisms
- Genetic operators

• Multi-objective feature selection
• Scalability issue  

25

GAs for Feature Selection

R. Leardi, R. Boggia, and M. Terrile, “Genetic algorithms as a strategy for feature selection,” Journal of Chemometrics, vol.
6, no. 5, pp. 267– 281, 1992.
Z. Zhu, Y.-S. Ong, and M. Dash, “Markov blanket-embedded genetic algorithm for gene selection,” Pattern Recognition, vol. 
40, no. 11,pp. 3236–3248, 2007.
W. Sheng, X. Liu, and M. Fairhurst, “A niching memetic algorithm for simultaneous clustering and feature selection,” IEEE 
Transactions on Knowledge and Data Engineering, vol. 20, no. 7, pp. 868–879, 2008.
Bing Xue, Mengjie Zhang, Will Browne, Xin Yao. "A Survey on Evolutionary Computation Approaches to Feature Selection", 
IEEE Transaction on Evolutionary Computation, doi: 10.1109/TEVC.2015.2504420, published online on 30 Nov 2015
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• Implicit feature selection 
- Filter, Wrapper, Single Objective, Multi-objective

• Embedded feature selection 

• Feature construction

• Computationally expensive

26

GP for Feature Selection

L. Jung-Yi, K. Hao-Ren, C. Been-Chian, and Y. Wei-Pang, “Classifier design with feature selection and feature extraction 
using layered genetic programming,” Expert Systems with Applications, vol. 34, no. 2, pp. 1384–1393, 2008.
Purohit, N. Chaudhari, and A. Tiwari, “Construction of classi- fier with feature selection based on genetic programming,” in 
IEEE Congress on Evolutionary Computation (CEC), pp. 1–5, 2010.
M. G. Smith and L. Bull, “Genetic programming with a genetic algorithm for feature construction and selection,” Genetic 
Programming and Evolvable Machines, vol. 6, no. 3, pp. 265–281, 2005.
Bing Xue, Mengjie Zhang, Will Browne, Xin Yao. "A Survey on Evolutionary Computation Approaches to Feature 
Selection", IEEE Transaction on Evolutionary Computation, doi: 10.1109/TEVC.2015.2504420, published online on 30 Nov 
2015
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• Very popular in recent years
- Filter, Wrapper, Single Objective, Multi-objective

• Representation, continuous PSO vs Binary PSO
• Search mechanism 
• Fitness function

• Scalability 

27

PSO for Feature Selection

E. K. Tang, P. Suganthan, and X. Yao, “Feature selection for microarray data using least squares SVM and particle swarm 
optimization,” in IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 
1–8, 2005.
L. Y. Chuang, H. W. Chang, C. J. Tu, and C. H. Yang, “Improved binary PSO for feature selection using gene expression 
data,” Computational Biology and Chemistry, vol. 32, no. 29, pp. 29– 38, 2008.
C. L. Huang and J. F. Dun, “A distributed PSO-SVM hybrid system with feature selection and parameter optimization,” 
Application on Soft Computing, vol. 8, pp. 1381–1391, 2008.
B. Xue, M. Zhang, and W. N. Browne, “Multi-objective particle swarm optimisation (PSO) for feature selection,” in 
Proceeding of the 14th Annual Conference on Genetic and Evolutionary Computation Conference (GECCO), pp. 81–88, 
ACM, 2012.
Bing Xue, Mengjie Zhang, Will Browne, Xin Yao. "A Survey on Evolutionary Computation Approaches to Feature 
Selection", IEEE Transaction on Evolutionary Computation, doi: 10.1109/TEVC.2015.2504420, published online on 30 Nov 
2015
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• Start from around 2003
- Filter, Wrapper, Single Objective, Multi-objective

• Representation
• Search mechanism 
• Filter approaches

• Scalability

28

ACO for Feature Selection

S. Kashef and H. Nezamabadi-pour, “An advanced ACO algorithm for feature subset selection,” Neurocomputing, 2014.
S. Vieira, J. Sousa, and T. Runkler, “Multi-criteria ant feature selection using fuzzy classifiers,” in Swarm Intelligence for Multi-
objective Problems in Data Mining, vol. 242 of Studies in Computational Intelligence, pp. 19–36, Heidelberg, 2009.
C.-K. Zhang and H. Hu, “Feature selection using the hybrid of ant colony optimization and mutual information for the forecaster,” 
in International Conference on Machine Learning and Cybernetics, vol. 3, pp. 1728–1732, 2005.
R. Jensen, “Performing feature selection with aco,” in Swarm Intelli- gence in Data Mining, vol. 34 of Studies in Computational 
Intelligence, pp. 45–73, / Heidelberg, 2006.
L. Ke, Z. Feng, and Z. Ren, “An efficient ant colony optimization approach to attribute reduction in rough set theory,” Pattern 
Recognition Letters, vol. 29, no. 9, pp. 1351–1357, 2008.
Bing Xue, Mengjie Zhang, Will Browne, Xin Yao. "A Survey on Evolutionary Computation Approaches to Feature Selection", 
IEEE Transaction on Evolutionary Computation, doi: 10.1109/TEVC.2015.2504420, published online on 30 Nov 2015
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• DE: since 2008 
- potential for large-scale 

• LCSs: 
- implicit feature selection
- embedded feature selection 

• memetic: 
- population search + local search
- Wrapper + filter

29

DE, LCSs, and Memetic

A. Al-Ani, A. Alsukker, and R. N. Khushaba, “Feature subset selection using differential evolution and a wheel based 
search strategy,” Swarm and Evolutionary Computation, vol. 9, pp. 15–26, 2013.
Z. Li, Z. Shang, B. Qu, and J. Liang, “Feature selection based on manifold-learning with dynamic constraint handling 
differential evolution,” in IEEE Congress on Evolutionary Computation (CEC), pp. 332–337, 2014.
I.-S. Oh, J.-S. Lee, and B.-R. Moon, “Hybrid genetic algorithms for feature selection,” IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 26, no. 11, pp. 1424 –1437, 2004.
S. Palanisamy and S. Kanmani, “Artificial bee colony approach for optimizing feature selection,” International Journal of 
Computer Science Issues (IJCSI), vol. 9, no. 3, pp. 432–438, 2012.
Z. Zhu, S. Jia, and Z. Ji, “Towards a memetic feature selection paradigm [application notes],” IEEE Computational 
Intelligence Mag- azine, vol. 5, no. 2, pp. 41–53, 2010.
Y. Wen and H. Xu, “A cooperative coevolution-based pittsburgh learn- ing classifier system embedded with memetic 
feature selection,” in IEEE Congress on Evolutionary Computation, pp. 2415–2422, 2011.
Bing Xue, Mengjie Zhang, Will Browne, Xin Yao. "A Survey on Evolutionary Computation Approaches to Feature 
Selection", IEEE Transaction on Evolutionary Computation, doi: 10.1109/TEVC.2015.2504420, online on 30 Nov 2015
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• Biological and biomedical tasks 
- gene analysis, biomarker detection, cancer classification, and disease 

diagnosis
• Image and signal processing 

- image analysis, face recognition, human action recognition, EEG brain-
computer-interface, speaker recognition, handwritten digit recognition, 
personal identification, and music instrument recognition. 

• Network/web service
- Web service composition and development, network security, and email 

spam detection. 
• Business and financial problems

- Financial crisis, credit card issuing in bank systems, and customer churn 
prediction. 

• Others
- power system optimisation, weed recognition in agriculture, melting point 

prediction in chemistry, and weather prediction.

30

Related Areas (Applications)

Bing Xue, Mengjie Zhang, Will Browne, Xin Yao. "A Survey on Evolutionary Computation Approaches to Feature 
Selection", IEEE Transaction on Evolutionary Computation, doi: 10.1109/TEVC.2015.2504420, published online on 30 
Nov 2015
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Feature Selection
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PSO for FS: initialisation and updating

• Initialisation:
- Forward selection
- Backward selection
- Mixture of both

• Updating: 
- Consider the number of 

features in the pest and 
gbest updating

Bing Xue, Mengjie Zhang, Will N. Browne."Particle Swarm Optimisation for Feature Selection in Classification: Novel Initialisation and 
Updating Mechanisms". Applied Soft Computing. Vol 18, PP. 261--276, 2014

74CHAPTER 3. WRAPPER BASED SINGLE OBJECTIVE FEATURE SELECTION

Initialise the position and velocity of 
each particle

Update pbest and gbest

Termination ? 

Yes

Return the best solution (Selected features)

No

Collect the features selected by a particle

Evaluate the classification performance

Calculate the goodness of the particle 
according to fitness function

Transform 
training set

Update the velocity and position of 
each particle

Fitness 
Evaluation

Figure 3.2: The evolutionary training process of a PSO based feature selec-
tion algorithm.

The evolutionary training process of a PSO based wrapper feature se-
lection algorithm is shown in Figure 3.2. The key step is the goodness/fitness
evaluation procedure. The position of a particle represents a selected fea-
ture subset. By removing the features that are not selected, the training set
is transformed to a new training set. The classification performance of the
selected features is evaluated on the transformed training set. Based on
the classification performance, the fitness of the particle is then calculated
according to the predefined fitness function. After evaluating the fitness of
all particles, the algorithm updates the pbest and gbest, and then updates
the velocity and position of each particle. The algorithm stops when a pre-
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PSO FS: with backward elimination 

Bach Hoai Nguyen, Bing Xue, Ivy Liu and Mengjie Zhang."Filter based Backward Elimination in Wrapper based PSO for Feature Selection in 
Classification", Proceedings of 201 IEEE Congress on Evolutionary Computation. Beijing, China. 6-11 July, 2014. IEEE Press. PP.3111-- 3118. 
2015
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• Introduce and develop the 
first multi-objective PSO 
approach to feature selection
- Simultaneously minimise 

the number of features and 
the error rate

- ~121 citations since June 
2013

34

Multi-objective PSO for FS

Bing Xue, Mengjie Zhang, Will Browne. “Particle swarm optimization for feature 
selection in classification: A multi-objective approach, IEEE Transactions on 
Cybernetics, vol. 43, no. 6, pp. 1656-1671, 2013.
M. R. Sierra and C. A. C. Coello, "Improving PSO-based multi-objective 
optimization using crowding, mutation and epsilon-dominance", Proc. EMO, pp. 
505-519, 2005
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- Simultaneously minimise the number of features and the 
error rate

35

Multi-objective PSO for FS

Bing Xue, Mengjie Zhang, Will Browne. “Particle swarm optimization for feature selection in classification: A multi-objective 
approach, IEEE Transactions on Cybernetics, vol. 43, no. 6, pp. 1656-1671, 2013.
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Multi-objective PSO for FS：Binary VS continuous

-Ave: Average 
Results 
-Best: Best 
Results 

Example:
(20, 40), (20,42) 
(20, 41), (20,43)

-Ave: (20, 41.5)
-Best: (20, 40)

Bing Xue, Mengjie Zhang, Will N. Browne."Multi-Objective Particle Swarm Optimisation (PSO) for Feature Selection". Proceedings of 2012 
Genetic and Evolutionary Computation Conference (GECCO 2012). ACM Press. Philadelphia, USA. 7-11 July 2012. pp. 81-88
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• Updating equations:

37

Probability based BPSO (PBPSO)

Bing Xue, Su Nguyen, Mengjie Zhang. "A New Binary Particle Swarm Optimisation Algorithm for Feature Selection". Proceedings of the 17th European Conference 
on Applications of Evolutionary Computation (EvoApplications 2014). Lecture Notes in Computer Science. Vol. 8602. Granada, Spain 23rd - 25th April 2014. pp. 501-
513
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Probability based BPSO (PBPSO)

Bing Xue, Su Nguyen, Mengjie Zhang. "A New Binary Particle Swarm Optimisation Algorithm for Feature Selection". Proceedings of the 17th European 
Conference on Applications of Evolutionary Computation (EvoApplications 2014). Lecture Notes in Computer Science. Vol. 8602. Granada, Spain 23rd - 25th 
April 2014. pp. 501-513
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• Introduce statistical feature clustering to feature 
selection and develop the first approach

- reduce the size of the search space
- #features: from 600 to ~12
- implicitly consider feature interaction
- Example: 
‣ our method achieved accuracy 100%: {10, 7, 3}

‣ Single feature ranking: 7, 10, 12, 1, 9, 11, 6, 2, 13, 5, 4, 3

39

EC and Statistical Grouping for FS 

Bing Xue, Micthell C. Lane, Ivy Liu, Mengjie Zhang, “Particle Swarm Optimisation for Feature Selection Based on Statistical 
Clustering”, Evolutionary Computation (Journal, MIT Press), Passed first round review with positive comments
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EC and Statistical Grouping for FS 

Mitchell C. Lane, Bing Xue, Ivy Liu, Mengjie Zhang. "Gaussian Based Particle Swarm Optimisation and Statistical Clustering for Feature Selection". Proceedings of the 14th European 
Conference on Evolutionary Computation in Combinatorial Optimisation (EvoCOP 2014). Lecture Notes in Computer Science. Volume 8600, Granada, Spain 23rd - 25th April 2014. pp. 
133--144 

Mitchell C. Lane, Bing Xue, Ivy Liu and Mengjie Zhang. "Particle Swarm Optimisation and Statistical Clustering for Feature Selection". Proceedings of the 26th Australasian Joint 
Conference on Artificial Intelligence (AI2013) Lecture Notes in Computer Science. Vol. 8272. Springer. Dunedin, New Zealand, December 2013. pp. 214-220

• Development of four new 
particle position update 
algorithms that 
automatically select a single 
feature from each feature 
cluster

• As features are grouped by 
similarity, a single feature is 
expected to provide enough 
information about its 
feature cluster
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• Information theory in evolutionary feature 
selection

- Fast algorithm — mutual information
- New measures, evaluate multiple features 
- Evolutionary multi-objective filter feature 

selection

41

Information Theory Feature Selection

Bing Xue, Liam Cervante, Lin Shang, Will Browne, Mengjie Zhang. “A Multi-Objective Particle Swarm Optimisation for Filter Based 
Feature Selection in Classification Problems". Connection Science. Vol. 24, No. 2-3, pp. 91-116, 2012.

Bing Xue, Liam Cervante, Lin Shang, Will N. Browne, Mengjie Zhang. “Evolutionary Algorithms and Information Theory for Filter
Based Feature Selection in Classification". International Journal on Artificial Intelligence Tools. Vol. 22, Issue 04, August 2013. pp. 
1350024 -- 1 - 31. DOI: 10.1142/S0218213013500243.



GECCO,Dever, 
Colorado, USA. 20-24 
July 2016

42

Feature Selection Though Data Discretisation

Proposed

• One-stage (PSO-DFS)Two-stage	 (PSO-FS)

Binh Tran Ngan, Mengjie Zhang, Bing Xue. "Bare-Bone Particle Swarm Optimisation for Simultaneously Discretising and Selecting Features For High-Dimensional 
Classification". Proceedings of the 19th European Conference on the Applications of Evolutionary Computation (EvoApplications 2016, EvoIASP 2016). Lecture 
Notes in Computer Science. Vol. 9597. Porto, Portugal, March 30 - April 1, 2016. pp. 701-718

Bare-Bone Particle Swarm Optimisation
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Feature Selection Though Data Discretisation

Candidate	
solution

Binh Tran Ngan, Mengjie Zhang, Bing Xue. "Bare-Bone Particle Swarm Optimisation for Simultaneously Discretising and Selecting Features For High-Dimensional 
Classification". Proceedings of the 19th European Conference on the Applications of Evolutionary Computation (EvoApplications 2016, EvoIASP 2016). Lecture 
Notes in Computer Science. Vol. 9597. Porto, Portugal, March 30 - April 1, 2016. pp. 701-718
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• Promote rough set theory for feature selection
- Others’: mainly < 200 features 
- Ours: more than 600 features

44

Filter FS based on Rough Set

The	upper	
approximatio
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Objects
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FS based on Rough Set

Bing Xue, Liam Cervante, Lin Shang, Will Browne and Mengjie Zhang."Binary PSO and rough set theory for feature selection: a 
multi-objective filter based approach". International Journal of Computational Intelligence and Applications (IJCIA), Vol. 13, No. 2 
(2014). pp. 1450009(1-34)
Liam Cervante, Bing Xue, Lin Shang, Mengjie Zhang. "A Multi-Objective Feature Selection Approach Based on Binary PSO and 
Rough Set Theory". Proceedings of the 13th European Conference on Evolutionary Computation in Combinatorial Optimisation 
(EvoCOP 2013). Lecture Notes in Computer Science. Vol. 7832. Vienna, Austria. 3-5 April 2013. pp. 25-36
Liam Cervante, Bing Xue, Lin Shang and Mengjie Zhang. "A Dimension Reduction Approach to Classification Based on Particle 
Swarm Optimisation and Rough Set Theory". Proceedings of the 25th Australasian Joint Conference on Artificial Intelligence. 
Lecture Notes in Artificial Intelligence.Vol. 7691. Springer. Sydney, Australia, December 2012. pp. 313-325

Attributes Equivalence	
relation Partition Equivalence	

classes

Lower	and	upper	
approximationsRough	set
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Feature Selection                             Classification      

46

Class +
< 0                 >=

Class -

Soha Ahmed, Mengjie Zhang, Lifeng Peng and Bing Xue. "Genetic Programming for Measuring Peptide Detectability". Proceedings of the 10th International Conference on Simulated 
Evolution and Learning (SEAL 2014). Lecture Notes in Computer Science. Vol. 8886. Dunedin, New Zealand. December 15-18, 2014. pp. 593-604

GP for Embedded Feature Selection



GECCO,Dever, 
Colorado, USA. 20-24 
July 2016

47

Feature Construction
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• GP is flexible in making mathematical and logical functions

• There isn’t much structural (topological) information in the 
search space of possible functions, so using a meta-heuristic 
approach (such as evolutionary computation) seems 
reasonable.

48

Why Use GP for Feature Construction?

Selected 
Features

Constructed 
Features

Constructed 
Features
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• One constructed feature for one class

49

GP for FC: A System Diagram

Neshatian, K.; Mengjie Zhang; Andreae, P., "A Filter Approach to Multiple Feature Construction for Symbolic Learning Classifiers
Using Genetic Programming," in Evolutionary Computation, IEEE Transactions on , vol.16, no.5, pp.645-661, Oct. 2012

COMP422 Feature Manipulation: 37

Non-Wrapper (Filter) Approach

• A feature construction system that does not adopt a wrapper ap-

proach is considered adopting a non-wrapper or filter approach.

• A measure of goodness in the form of a surrogate classifier is

required. The measure, however, should be designed differently

depending on type of classifiers will be using the constructed

features.

COMP422 Feature Manipulation: 38

What is a Good feature?

The measure of goodness is subjective with respect to the type of

classifier. The features in this figure, x1 and x2, are good for a linear

classifier.

COMP422 Feature Manipulation: 39

What is a Good feature?

The same set of features are not good for a decision tree classifier

that is not able to transform its input space.

COMP422 Feature Manipulation: 40

Why Use GP for Feature Construction?

• GP is flexible in making mathematical and logical functions

• There isn’t mush structural (topological) information in the

search space of possible functions, so using a meta-heuristic ap-

proach (such as evolutionary computation) seems reasonable.

COMP422 Feature Manipulation: 41

GP for Feature Construction: A System Diagram

COMP422 Feature Manipulation: 42

A Sample Measure of Goodness: The Entropy of
Class Intervals

Defining a measure of goodness for a single feature:

• The interval of a class along a feature is determined by the dis-

persion of the instances of that class along the feature axis. The

dispersion of instances itself is related to the distribution of data

points in that class.

• An interval I is represented with a pair (lower, upper) which

shows the lower and upper boundaries of the interval. Ic is used

to indicate an interval for class c.

• The interval of class c could be formulated as follows if the

class distributions were normal.

Ic = [µc − 3σc, µc + 3σc]

However, the normality assumption is not always satisfied.
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Defining a measure of goodness for a single feature:

• The interval of a class along a feature is determined by the 
dispersion of the instances of that class along the feature 
axis. The dispersion of instances themselves is related to the 
distribution of data points in that class. 

• An interval I is represented with a pair (lower, upper) which 
shows the lower and upper boundaries of the interval. Ic is 
used to indicate an interval for class c. 

• The interval of class c could be formulated as follows if the 
class distributions were normal. 

• However, the normality assumption is not always satisfied. 
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GP for FC Measure: Entropy of Class Intervals 

Neshatian, K.; Mengjie Zhang; Andreae, P., "A Filter Approach to Multiple Feature Construction for Symbolic Learning Classifiers Using 
Genetic Programming," in Evolutionary Computation, IEEE Transactions on , vol.16, no.5, pp.645-661, Oct. 2012

COMP422 Feature Manipulation: 37

Non-Wrapper (Filter) Approach

• A feature construction system that does not adopt a wrapper ap-

proach is considered adopting a non-wrapper or filter approach.
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Defining a measure of goodness for a single feature:
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to indicate an interval for class c.
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• Overlapping intervals

• Non-overlapping intervals

51

GP for FC Measure:Examples of good and bad class 
intervals

Neshatian, K.; Mengjie Zhang; Andreae, P., "A Filter Approach to Multiple Feature Construction for Symbolic Learning Classifiers Using 
Genetic Programming," in Evolutionary Computation, IEEE Transactions on , vol.16, no.5, pp.645-661, Oct. 2012
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• 4 features, 3 classes

52

GP for FC Measure: Original VS Constructed

Neshatian, K.; Mengjie Zhang; Andreae, P., "A Filter Approach to Multiple Feature Construction for Symbolic Learning Classifiers Using 
Genetic Programming," in Evolutionary Computation, IEEE Transactions on , vol.16, no.5, pp.645-661, Oct. 2012
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• Construct multiple features from a single tree

53

GP for FC Measure: Multiple feature construction

Selected Features

Constructed 
Features

Soha Ahmed, Mengjie Zhang, Lifeng Peng and Bing Xue."Multiple Feature Construction for Effective Biomarker Identification and
Classification using Genetic Programming". Proceedings of 2014 Genetic and Evolutionary Computation Conference (GECCO 2014). ACM
Press. Vancouver, BC, Canada. 12-16 July 2014.pp.249--256
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Image Recognition/Classification
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• The traditional way
• Domain-specific pre-extracted features approach (DS-GP)

55

Image Recognition/Classification

The input is raw image pixel values

The feature areas need to be designed by 
domain-experts

Transform the pixel values of the selected 
areas to a different domain

Select a subset out of the extracted features 
(optional)

Feed the extracted features (with or without 
selection) to a GP-based classifier
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Images: GP-Surff

Designing a	program	representation	that	is	capable	of	detecting	sub-regions	
of	the	image	that	are	rich	in	features;

Constructing a	classification	system	to	extract	features	from	the	selected	
regions	and	then	use	a	SVM	classifier	and	voting	scheme	to	predict	the	class	
label;	and
Investigatingwhether	the	regions	detected	by	the	new	method	are	similar	to	
those	designed	by	domain	experts.

Andrew Lensen, Harith Al-Sahaf, Mengjie Zhang and Bing Xue. "A Hybrid Genetic Programming Approach to Feature Detection and Image Classification". Proceedings of 2015 the 
30th International Conference on Image and Vision Computing New Zealand (IVCNZ 2015). IEEE Press. Auckland. 23 - 24 Nov 2015. pp. (to appear)

• Improve domain-independent object classification in images 
by using GP techniques.
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11/14/201
5

• A program evolved on JAFFE, average over 95% test 
accuracy 

• The program detect 4 interesting regions

57

Images: GP-Surff

Andrew Lensen, Harith Al-Sahaf, Mengjie Zhang and Bing Xue. "A Hybrid Genetic Programming Approach to Feature Detection and Image Classification". Proceedings of 2015 the 30th 
International Conference on Image and Vision Computing New Zealand (IVCNZ 2015). IEEE Press. Auckland. 23 - 24 Nov 2015. pp. (to appear)
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• GP-HoG uses strongly typed GP to perform three tasks in 
the same tree structure. 

• All layers are trained simultaneously and coherently.

• Output of the tree is thresholded.

58

Images: GP-HoG Method

Andrew Lensen, Harith Al-Sahaf, Mengjie Zhang, Bing Xue. "Genetic Programming for Region Detection, Feature Extraction, Feature Construction and 
Classification in Image Data". Proceedings of the 19th European Conference on Genetic Programming (EuroGP 2016). Lecture Notes in Computer Science. Vol. 
9594. Porto, Portugal, March 30 - April 1, 2016. pp. 51-67 
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• The below tree has 98% training 
and 95% test performance on 
the Jaffe dataset despite being 
very simple.

59

Images: GP-HoG Method

Andrew Lensen, Harith Al-Sahaf, Mengjie Zhang, Bing Xue. "Genetic Programming for Region Detection, Feature Extraction, Feature Construction and Classification in 
Image Data". Proceedings of the 19th European Conference on Genetic Programming (EuroGP 2016). Lecture Notes in Computer Science. Vol. 9594. Porto, Portugal, 
March 30 - April 1, 2016. pp. 51-67 

• The below tree has 95% training 
and 100% test performance on 
the Jaffe dataset.
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Biology
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• Due to the nature, the MS data production process is very 
expensive (costs around 2,000 NZD daily) and time 
consuming (around two weeks to produce a single sample).

• The number of samples available is very small and the 
number of features in each sample is extremely large.

• Moreover, the features of  interest are too small.

• The classification of MS data is challenging.

61

Biology 
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Biological Datasets

Data set # Features # Samples # Classes

Pancreatic 
Cancer 6771 181 2

Ovarian Cancer1 15154 253 2

Ovarian Cancer 
2 15000 216 2

Prostate Cancer 15000 322 4

Toxpath 7105 115 4

Arcene 10,000 200 2

Apple-plus 773 40 4

Apple-minus 365 40 4
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Biology 

4

Proteins Metabolites

Mass spectrometry Spectrum
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Biology 

Soha Ahmed, Genetic Programming for Biomarker Detection in Classification of Mass Spectrometry Data, PhD thesis, 2015, School of Engineering and Computer Science, Victoria 
University of Wellington, New Zealand
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Biology: Feature ranking and GP FS

Soha Ahmed, Mengjie Zhang, Lifeng Peng. "Improving Feature Ranking for Biomarker Discovery in Proteomics Mass 
Spectrometry Data using Genetic Programming". Connection Science. Vol. 26, Issue 3, 2014. pp. 215-243

58 CHAPTER 3. ENSEMBLE FEATURE RANKING

Dataset Original 
Features

REFS-F

IG

N-GP runs .
.
.

P1,1, P1,2, ...., P1,m

P2,1, P2,2, ...., P2,m

PN,1, PN,2, ...., PN,m

New Feature Set

Ranking Features 
according to
 their usage in 
the GP programs

Selecting 
top-ranked 
features

EvaluationResults

Figure 3.1: Overview of the GP-based approach.

At the beginning of each of the 10-folds cross-validation process, the
random seed of GP is initialised, and the following steps are performed.
Since the GP process is initialised at every fold, the bias of GP to the feature
selection process is avoided. The process of 10-folds cross validation is
explained as follows. For each fold, 30 independent GP runs are used, and
hence, the total number of independent runs are 300.

1. Shuffle the data randomly;

2. Divide the data into ten-folds;

3. For every fold, do the following:

(a) Use the current fold as a test and the rest of the folds as the
training set

(b) Run the GP Algorithm

(c) Use the selected features to transform training and test sets.
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Biomarker Identification

Soha Ahmed, Mengjie Zhang, Lifeng Peng and Bing Xue."Multiple Feature Construction for Effective Biomarker Identification and Classification using Genetic Programming". 
Proceedings of 2014 Genetic and Evolutionary Computation Conference (GECCO 2014). ACM Press. Vancouver, BC, Canada. 12-16 July 2014.pp.249--256

m/z values in Apple-plus data set (12 
biomarkers)

New Method (9 ✓ ) Method 2 (3✓)

331.21 ✗ ✓

471.09 ✓ ✓

107.05, 169.05, 238.05, 275.09, 4
56.11, 459.13

✓ ✗

456.62, 475.10 ✗ ✗

449.11 ✓ ✓

229.09 ✓ ✗

Apple minus m/z (5 biomarkers) New Method (5 ✓ ) Method 2 (2✓)

463.0 ✓ ✗

447.09 ✓ ✓

273.03 ✓ ✓

435.13 ✓ ✗

227.07 ✓ ✗
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Soha Ahmed, Mengjie Zhang, Lifeng Peng and Bing Xue. "Genetic Programming for Measuring Peptide Detectability". Proceedings of the 10th International Conference on 
Simulated Evolution and Learning (SEAL 2014). Lecture Notes in Computer Science. Vol. 8886. Dunedin, New Zealand. December 15-18, 2014. pp. 593-604

Biology:GP for Measuring Peptide Detectability
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Swarm random 
initialization Evaluate fitness of each particle

Stopping criteria is met?

Update pbest
Local search for better pbest

Reset gbest to 0

Update particle’s velocity and 
position

Return the best solution

Yes
No

Start

Particles found 
better pbest ?

gbest not improved for 
m iterations ?

Yes

Yes

No

No

Update gbest

Yes

No

No

Yes

Biology: PSO with local search on pbest and 
resetting gbest (PSO-LSRG)

Binh Tran, Mengjie Zhang and Bing Xue, "A PSO Based Hybrid Feature Selection Algorithm For High-Dimensional Classification". Proceedings of 2016 IEEE World 
Congress on Computational Intelligence/ IEEE Congress on Evolutionary Computation (WCCI 2016 /CEC2016). Vancouver, Canada. 24-29 July, 2016. pp(to appear)

• Use a filter measure to identify:
– Relevant features: correlated to the class label.
– Redundant features: correlated with each other.

• Symmetric uncertainty (SU) is a normalised version of information gain (IG).
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Biology: PSO with local search on pbest and 
resetting gbest (PSO-LSRG)

5	- 6	times	faster	
than	PSO

• A PSO based hybrid FS algorithm for high-
dimensional classification.

• PSO-LSSU combines wrapper and filter 
measures:

- The fitness function.
- The local search.

• PSO-LSSU achieved much smaller feature 
subsets with significantly better classification 
performance than the compared methods in 
most cases.

Binh Tran, Mengjie Zhang and Bing Xue, "A PSO Based Hybrid Feature Selection Algorithm For High-Dimensional Classification". Proceedings of 2016 IEEE World Congress 
on Computational Intelligence/ IEEE Congress on Evolutionary Computation (WCCI 2016 /CEC2016). Vancouver, Canada. 24-29 July, 2016. pp(to appear)



GECCO,Dever, 
Colorado, USA. 20-24 
July 2016 Feature Selection/Construction Bias

• If the whole dataset is used during FS/FC process, the 
experiments(or evaluation) have FS/FC Bias

• What if only a small number of instances available ?
- In classification, use k-fold cross validation 
- How to use k-fold cross validation in FS/FC to evaluate a FS/FC 

system ?
70

Feature 
Selection
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• Many works on bio-data containing feature selection 
- which leads to biased results
- conclusion might change 

71

Feature Selection Bias

Binh Tran, Bing Xue and Mengjie Zhang. "Investigation on Particle Swarm Optimisation for Feature Selection on High-
dimensional Data: Local Search and Selection Bias", Connection Science, Accepted April 2016
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Figure 4. Structures of experiments with and without feature selection bias.

the index of the features, where the index of the features are listed in a descending order
by their frequency. It would be much more interesting to discover the biological finding
of these genes, but since the original meanings of the features/genes in GEMS are not
given, it is impossible to perform such research. In the future, we intend to collaborate with
researchers from biology to deep analyse the biological finding of the selected genes.

4.6. Further discussions

In this section, the re-substitution estimator was used to evaluate the performance of
the feature selection algorithms, which is the same as in Chuang et al. (2008) and many
other existing papers (Abedini et al., 2013; Ahmed et al., 2012; Alba et al., 2007; Babaoglu
et al., 2010; Huang et al., 2007; Mishra et al., 2009; Mohamad et al., 2011, 2013; Santana
et al., 2010; Shen et al., 2007; Yu et al., 2009). The re-substitution estimator, in other words,
means the whole dataset is used during the evolutionary feature selection process (as
shown in Figure 4(a)). There is no separate unseen data to test the generality of the selected
features. According toAmbroise andMcLachlan (2002), there is a feature selectionbias issue
here, so one cannot claim that the selected features can be used for future unseen data.

Feature selection bias typically happens when the dataset includes only a small number
of instances, especially on the gene expression data, where n-fold CV (10-CV) or LOOCV is
needed. Figure 4 compares the structures experiments with and without feature selection
bias. It can be seen that with selection bias, the algorithm reports the classification per-
formance of the (inner) CV loop and “such results are optimistically biased and are a subtle
meansof trainingon the test set” (Kohavi and John, 1997). Therefore, the conclusionsdrawn
from the re-substitution estimator with selection bias may be different from that without
bias. This, however, has not been seriously investigated in EC for gene selection.

5. Experiment II

In this section, the second set of experiments have been conducted, where the feature
selection bias issue is removed.

5.1. Performance evaluation

To avoid feature selection bias and compare the performance of the algorithms with and
without bias, the second set of experiments without feature selection bias have been
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GP for FS and FC

Figure 4: Constructed Features

Figure 7: Ovarian feature correlation

overfitting by constructing new high-level features with bet-
ter distribution than the original skewed features. However,
the number of features constructed by one best individual is
still too small to be representative for the whole feature set
with a large number of features. Increasing the number of
constructed features may further improve the performance
of these learning algorithms on high-dimensional data. Our
future work will focus on this direction.
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Figure 8: Madelon feature correlation

Figure 9: Feature distributions

1 2 3 4

-1000

0

1000

2000

3000

4000

5000

6000

7000

Leukemia four selected features

1

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

Leukemia constructed feature

5.2 The constructed feature
To see why SVM can improve its performance by using

only one constructed feature, we pick the best constructed
feature in one GP run on Leukemia dataset to analyse.
Figure 1 shows this GP tree with the the size of ten and
constructing a new feature based on four original features:
D13637 at, D42043 at, D78611at and X95735 at. The val-
ues of these four selected features are plotted in Figure 2 to
Figure 3. Among these features, X95735 at has the least
number of overlapping values between two classes. How-
ever, by combining these features, the constructed feature
can split di↵erent instances in di↵erent classes into two com-
pletely separate intervals. Figure 4 shows the feature values
created by this constructed feature and a similar constructed
feature for DLBCL GEMS dataset. The result shows that
GP has the ability to select informative features to build
high-level features with a higher discriminating ability.

Figure 1: Leukemia constructed feature
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5.3 Overfitting problem
To analyse the overfitting problem, we choose Colon, the

smallest dataset, to have a closer look at the distribution of
each feature. Figure 5 shows the boxplot of the first 100 fea-
tures of Colon dataset. We can see that all of these features
have a skewed distribution. Each feature also has many out-
liers scattering far away from its mean value. In the experi-
ment, Colon is divided into 10 folds each of which has about
6 instances. Therefore, there is a very high chances that
the distributions of the training and the test folds are very
di↵erent. As a result, the constructed or selected features
based on the training fold can not be generalised to correctly
predict the unseen data in the test fold. This may be the
reason why the training and test accuracies are so di↵er-
ent. This explanation is concordant to the result of Ovarian
dataset where both SVM and GP achieve similar perfor-
mance on training and test sets. The boxplot of the first
one hundred features of this dataset in Figure 6 shows that
these features have a rather symmetric distribution without
many outliers. This is also the only dataset that KNN gives
similar performance on training and test sets.

Similar to Ovarian, Madelon dataset also has a symmetric
distribution. However, GP and SVM have very di↵erent
behaviours in this dataset. While GP has nearly the same
classification accuracies on training and test sets with about
63%, SVM achieve 100% accuracy on training set but only
about 50% in test set. By plotting the relationship between

Figure 2: Feature X95735 at and D42043 at

Figure 3: D13637 at and D78611 at

features of these two datasets in Figure 7 and Figure 8, we
find that Ovarian features are more correlated to each other
(about 0.4 to 0.6) than Madelon features (about 0.01 to
0.03). This indicates that for non-linear data GP can work
better than libSVM which is a linear classification algorithm.
A↵ected by this overfitting problem, SVM has the poor-

est test performance on most of the datasets. However, only
one constructed feature can significantly improve its perfor-
mance on 6 datasets while other created subsets can not.
This can be explained by looking at the distribution of the
constructed feature. Figure 9 shows the boxplot of the con-
structed features and its four original base features. Com-
pared to the original features, the constructed feature has
a much better distribution without outliers. Therefore, the
overfitting problem may be alleviated in the transformed
dataset using this constructed feature.

6. CONCLUSIONS AND FUTURE WORK
In general, results show that GP constructed features can

improve the performance of kNN, SVM and GP classifiers
on high-dimensional problems. Using only the constructed
feature, SVM achieve a higher accuracies than using all fea-
tures and other created subsets in most datasets. Among
the six created subsets, the construct feature and the termi-
nal features achieve the highest performance in GP. The last
four subsets achieve similar performance in kNN and SVM
on all datasets.
Analysis of the constructed feature shows that by choos-

ing informative features, GP can construct new features
which have higher discriminating ability than original fea-
tures. The big di↵erence between training and test sets on
most of the datasets indicates the problem of overfitting. By
analysing the datasets, we found that this problem occurs
when the data has a skewed distribution with many out-
liers. GP also shows its ability to alleviate the problem of
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5.2 The constructed feature
To see why SVM can improve its performance by using

only one constructed feature, we pick the best constructed
feature in one GP run on Leukemia dataset to analyse.
Figure 1 shows this GP tree with the the size of ten and
constructing a new feature based on four original features:
D13637 at, D42043 at, D78611at and X95735 at. The val-
ues of these four selected features are plotted in Figure 2 to
Figure 3. Among these features, X95735 at has the least
number of overlapping values between two classes. How-
ever, by combining these features, the constructed feature
can split di↵erent instances in di↵erent classes into two com-
pletely separate intervals. Figure 4 shows the feature values
created by this constructed feature and a similar constructed
feature for DLBCL GEMS dataset. The result shows that
GP has the ability to select informative features to build
high-level features with a higher discriminating ability.

Figure 1: Leukemia constructed feature
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5.3 Overfitting problem
To analyse the overfitting problem, we choose Colon, the

smallest dataset, to have a closer look at the distribution of
each feature. Figure 5 shows the boxplot of the first 100 fea-
tures of Colon dataset. We can see that all of these features
have a skewed distribution. Each feature also has many out-
liers scattering far away from its mean value. In the experi-
ment, Colon is divided into 10 folds each of which has about
6 instances. Therefore, there is a very high chances that
the distributions of the training and the test folds are very
di↵erent. As a result, the constructed or selected features
based on the training fold can not be generalised to correctly
predict the unseen data in the test fold. This may be the
reason why the training and test accuracies are so di↵er-
ent. This explanation is concordant to the result of Ovarian
dataset where both SVM and GP achieve similar perfor-
mance on training and test sets. The boxplot of the first
one hundred features of this dataset in Figure 6 shows that
these features have a rather symmetric distribution without
many outliers. This is also the only dataset that KNN gives
similar performance on training and test sets.

Similar to Ovarian, Madelon dataset also has a symmetric
distribution. However, GP and SVM have very di↵erent
behaviours in this dataset. While GP has nearly the same
classification accuracies on training and test sets with about
63%, SVM achieve 100% accuracy on training set but only
about 50% in test set. By plotting the relationship between
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0.03). This indicates that for non-linear data GP can work
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This can be explained by looking at the distribution of the
constructed feature. Figure 9 shows the boxplot of the con-
structed features and its four original base features. Com-
pared to the original features, the constructed feature has
a much better distribution without outliers. Therefore, the
overfitting problem may be alleviated in the transformed
dataset using this constructed feature.

6. CONCLUSIONS AND FUTURE WORK
In general, results show that GP constructed features can

improve the performance of kNN, SVM and GP classifiers
on high-dimensional problems. Using only the constructed
feature, SVM achieve a higher accuracies than using all fea-
tures and other created subsets in most datasets. Among
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5.3 Overfitting problem
To analyse the overfitting problem, we choose Colon, the

smallest dataset, to have a closer look at the distribution of
each feature. Figure 5 shows the boxplot of the first 100 fea-
tures of Colon dataset. We can see that all of these features
have a skewed distribution. Each feature also has many out-
liers scattering far away from its mean value. In the experi-
ment, Colon is divided into 10 folds each of which has about
6 instances. Therefore, there is a very high chances that
the distributions of the training and the test folds are very
di↵erent. As a result, the constructed or selected features
based on the training fold can not be generalised to correctly
predict the unseen data in the test fold. This may be the
reason why the training and test accuracies are so di↵er-
ent. This explanation is concordant to the result of Ovarian
dataset where both SVM and GP achieve similar perfor-
mance on training and test sets. The boxplot of the first
one hundred features of this dataset in Figure 6 shows that
these features have a rather symmetric distribution without
many outliers. This is also the only dataset that KNN gives
similar performance on training and test sets.

Similar to Ovarian, Madelon dataset also has a symmetric
distribution. However, GP and SVM have very di↵erent
behaviours in this dataset. While GP has nearly the same
classification accuracies on training and test sets with about
63%, SVM achieve 100% accuracy on training set but only
about 50% in test set. By plotting the relationship between
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features of these two datasets in Figure 7 and Figure 8, we
find that Ovarian features are more correlated to each other
(about 0.4 to 0.6) than Madelon features (about 0.01 to
0.03). This indicates that for non-linear data GP can work
better than libSVM which is a linear classification algorithm.
A↵ected by this overfitting problem, SVM has the poor-

est test performance on most of the datasets. However, only
one constructed feature can significantly improve its perfor-
mance on 6 datasets while other created subsets can not.
This can be explained by looking at the distribution of the
constructed feature. Figure 9 shows the boxplot of the con-
structed features and its four original base features. Com-
pared to the original features, the constructed feature has
a much better distribution without outliers. Therefore, the
overfitting problem may be alleviated in the transformed
dataset using this constructed feature.

6. CONCLUSIONS AND FUTURE WORK
In general, results show that GP constructed features can

improve the performance of kNN, SVM and GP classifiers
on high-dimensional problems. Using only the constructed
feature, SVM achieve a higher accuracies than using all fea-
tures and other created subsets in most datasets. Among
the six created subsets, the construct feature and the termi-
nal features achieve the highest performance in GP. The last
four subsets achieve similar performance in kNN and SVM
on all datasets.
Analysis of the constructed feature shows that by choos-

ing informative features, GP can construct new features
which have higher discriminating ability than original fea-
tures. The big di↵erence between training and test sets on
most of the datasets indicates the problem of overfitting. By
analysing the datasets, we found that this problem occurs
when the data has a skewed distribution with many out-
liers. GP also shows its ability to alleviate the problem of
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Figure 4: Constructed Features

Figure 7: Ovarian feature correlation

overfitting by constructing new high-level features with bet-
ter distribution than the original skewed features. However,
the number of features constructed by one best individual is
still too small to be representative for the whole feature set
with a large number of features. Increasing the number of
constructed features may further improve the performance
of these learning algorithms on high-dimensional data. Our
future work will focus on this direction.
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Figure 8: Madelon feature correlation

Figure 9: Feature distributions
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• Search space:
- Large search space: bit-string/vector with a length equal to the 

total number of features 
- Classification accuracy or existing filter measures in the fitness 

function, which often cannot lead to a smooth fitness landscape 
or with low locality 

• Long computational time
- A large number of evaluations 
- Wrapper: each evaluation involves a learning process of a 

machine learning or data mining algorithm 
- Filters are computationally cheaper than wrappers 

• Poor scalability
- the dimensionality of the search space often equals to the total 

number of features, thousands, or even millions
- the number of instances is large 
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• Feature selection or construction bias issue

• Generalisation issue
- especially wrappers: selected or constructed features can 

easily overfit the wrapped learning algorithm and the 
training data, leading to poor performance on unseen test 
data

- Feature construction
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• Efficient and effective filter measure for the fitness function:
- reduce the computational cost, 
- smooth the landscape of the search space, 
- improve the learning and generalisation performance, and 
- increase the interpretability/understandability of the obtained 

feature set 

• Representation 
- Reduce the search space
- Incorporate more information of about the features, e.g.

relative importance of features, feature interactions or feature 
similarity 

- Embedded feature selection or construction
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• Search mechanism 
- Evolutionary multi-objective optimisation
- Combinatorial optimisation
- Memetic computing 
- Large-scale optimisation
- Surrogate models 
- Adaptive parameter control techniques 

• Feature construction 
- both feature selection and feature construction

• Instance selection and construction 

• Combining EC with machine learning approaches 

• Feature selection and feature construction for other machine
learning tasks: clustering and symbolic regression 
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• Task Force on Evolutionary Computation for Feature Selection and 
Construction, IEEE CIS

• IEEE Symposium on Computational Intelligence in Feature Analysis, 
Selection, and Learning in Image and Pattern Recognition (FASLIP) in 
IEEE SSCI 2016

• Australian Conference on Artificial Lift and Computational Intelligence 
(ACALCI 2017)

• Special session on Evolutionary Machine Learning in Image Analysis and 
Pattern Recognition in The 20th Asia-Pacific Symposium on Intelligent 
and Evolutionary Systems (IES2016)

• Special session on Evolutionary Feature Selection and Construction in 
IEEE WCCI 2016 /CEC2016

• Special session on Transfer Learning in Evolutionary Computation in 
IEEE WCCI 2016 /CEC2016

• Special Issue on Evolutionary Optimisation, Feature Reduction and 
Learning, Soft Computing (Journal) , Springer
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• Task Force on Evolutionary Computation for Feature Selection and 
Construction, IEEE CIS

• Special session on Evolutionary Feature Selection and Construction in 
CEC2017

• Special session on Evolutionary Machine Learning in Image Analysis and 
Pattern Recognition in IES2017

• IEEE Symposium on Computational Intelligence in Feature Analysis, 
Selection, and Learning in Image and Pattern Recognition (FASLIP) in 
IEEE SSCI 2017

• Special session on Transfer Learning in Evolutionary Computation in 
IEEE WCCI 2016 /CEC2016

• The tutorial on EC for Feature Selection and Feature Construction,
GECCO 2017

• The tutorial on EC for Feature Selection and Feature Construction,
CEC2017

• Special Issue
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IEEE Symposium on Computational Intelligence 
in Feature Analysis, Selection, and Learning
in Image and Pattern Recognition (FASLIP)

2016 IEEE Symposium Series on Computational 
Intelligence (SSCI 2016)
http://ssci2016.cs.surrey.ac.uk/

December 6-9, 2016, Athens, Greece

Deadline: 15 August 2016



PhD Scholarships Available in 
Evolutionary Computation 

Join our internationally renowned and friendly research team:
• Up to eight funded PhDs (fees + stipend) available 3 times a year,
• 3yr duration in English, with expert supervision.

Five major EC strategic research directions:
• Feature selection/construction for classification, regression, clustering
• Combinatorial optimisation: scheduling, routing, web services
• Computer vision and image analysis
• Multi- and many- criteria optimisation
• Transfer learning
Techniques include: Genetic Programming, Learning Classifier Systems, 
Particle Swarm Optimisation, Differential Evolution, and many others.
Wellington voted as ‘Coolest little capital in the World!’
VUW is the top-rated research university in New Zealand.  
Requirements: MSc/ME; GPA >= 3.5/4; research experience/publications

Come and find us after one of our many talks or apply at:
http://www.victoria.ac.nz/fgr/prospective-phds/scholarships

Find us: http://ecs.victoria.ac.nz/Groups/ECRG/WebHome or [Search:	‘ECRG	VUW’]
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• Evolutionary Computation Research Group, 
Victoria University of Wellington, NZ

• Postdoc in Evolutionary Computations

• Salary: $70,000 – 85,000

• Areas:
- Evolutionary Feature Selection and High 

Dimensionality Reduction
- Evolutionary Image Analysis
- Classification and Clustering
- Transfer Learning 

• Huawei NZ Funded Project
• Contact: Mengjie.Zhang@ecs.vuw.ac.nz or Bing.Xue@ecs.vuw.ac.nz
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