
Particle Swarm Optimisation for Feature Selection: A
Size-Controlled Approach

Tony Butler-Yeoman, Bing Xue, and Mengjie Zhang

School of Engineering and Computer Science, Victoria University of Wellington
PO Box 600, Wellington 6140, New Zealand

Email: {butlertony, Bing.Xue, Mengjie.Zhang}@ecs.vuw.ac.nz

Abstract

Feature selection is a preprocessing step in classifica-
tion tasks, which can reduce the dimensionality of a
dataset and improve the classification accuracy and
efficiency. However, many current feature selection
algorithms select an unnecessarily large feature sub-
sets, particularly on datasets with high dimensional-
ity. This paper proposes a new particle swarm op-
timisation (PSO) based feature selection approach,
where a new method is proposed to find the possible
smallest size that potentially good feature subsets can
have to guide the PSO algorithm to search for smaller
feature subsets. The proposed algorithm is examined
and compared with original PSO based feature se-
lection and two typical feature selection method on
twelve benchmark datasets of varying difficulty. The
experimental results show that the proposed algo-
rithm successfully further reduces the dimensional-
ity of the dataset over original PSO and one of the
conventional method, and maintains or even increases
the classification performance in most cases. The pro-
posed algorithm selects more features than the other
conventional method, but achieves better classifica-
tion performance in most cases, which shows that the
proposed algorithm can balance the classification per-
formance and the number of features in most cases.
Furthermore, the proposed algorithm also shows bet-
ter efficiency and consistency performance in terms of
selecting consistent features across different stochas-
tic runs.
Keywords: Classification, Feature Selection, Particle
Swarm Optimisation

1 Introduction

In many classification tasks, the datasets often in-
clude a large number of features, so as to represent the
target concept as completely as possible. However, as
many features are redundant or irrelevant, this results
in noise in the dataset that reduces the performance of
many classification algorithms (Dash and Liu, 1997).
Furthermore, the large number of features contribute
to the “curse of dimensionality” (Dash and Liu, 1997;
Guyon and Elisseeff, 2003), which is one of the ma-
jor obstacles in classification. Feature selection is the
process of choosing a subset of the relevant features
from a large number of original features. The chosen
feature subset should be small and accurately describe

Copyright c©2015, Australian Computer Society, Inc. This
paper appeared at the Thirteenth Australasian Data Mining
Conference, Sydney, Australia. Conferences in Research and
Practice in Information Technology, Vol. 168. Md Zahidul Is-
lam, Ling Chen, Kok-Leong Ong, Yanchang Zhao, Richi Nayak,
Paul Kennedy, Ed. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

the target concept. As a preprocessing step, feature
selection is a practical and well-known solution to the
problems of high-dimensionality data, resulting in a
fast and high-performing classification process.

Based on the evaluation criteria, feature selection
algorithms are generally classified into two categories:
filter approaches and wrapper approaches (Dash and
Liu, 1997; Guyon and Elisseeff, 2003). Their main dif-
ference is that wrapper approaches include a classifi-
cation/learning algorithm in the feature subset eval-
uation step. The classification algorithm is used to
evaluate the goodness (i.e. the classification perfor-
mance) of the selected features. A filter feature selec-
tion process is independent of any classification al-
gorithm. Filter algorithms are often computation-
ally less expensive and more general than wrapper
algorithms. However, filters ignore the performance
of the selected features on a classification algorithm
while wrappers evaluate the feature subsets based on
the classification performance, which usually results
in better performance achieved by wrappers than fil-
ters for a particular classification algorithm (Dash
and Liu, 1997; Mitra et al., 2002; Liu and Zhao, 2009;
Liu et al., 2010).

Feature selection is a challenging task since the
space of possible feature subsets is the power set of
the features, hence there are 2n possible feature sub-
sets for a dataset with n features. If all features were
completely independent, an efficient greedy algorithm
could search this space fast by identifying and remov-
ing irrelevant features, leaving only the most useful
features. However, since features are often interact-
ing with each other, which leads to that individually
relevant features may become redundant and individ-
ually weakly relevant features may become highly rel-
evant when combined with other features (Guyon and
Elisseeff, 2003). Therefore, a powerful global search
algorithm that can consider all features at the same
time is needed to find the optimal feature subset(s).
Although different types of search techniques have
been applied to features selection (Guyon and Elis-
seeff, 2003; Liu et al., 2010), existing approaches still
suffer from the problem of being stagnation in local
optima. Evolutionary computation (EC) techniques
are well-known for their promising search ability, and
have been applied to feature selection tasks with some
success, such as genetic algorithms (GAs) (Zhu et al.,
2007; Lin et al., 2014), genetic programming (Muni
et al., 2006; Neshatian and Zhang, 2012; Espejo et al.,
2010; Purohit et al., 2010), differential evolution (DE)
(Bharathi P T, 2014a,b), and particle swarm optimi-
sation (PSO) (Boubezoul and Paris, 2012; Xue et al.,
2013b; Vieira et al., 2013). Compared with GAs and
GP, PSO is easier to implement, has fewer param-
eters, computationally less expensive, and can con-
verge more quickly (Engelbrecht, 2007). However,

the search of the original PSO algorithm often se-
lects a relatively large number of features, which may
include redundant features. Further reduction on the
number of features and analysis on the consistency of
features selected across different stochastic runs are
still needed.

1.1 Goals

The goal of this paper is to develop a new PSO based
wrapper feature selection approach that can select a
significantly smaller number of features and maintain
the classification performance over using the original
feature set and the features selected by standard PSO.
To achieve this goal, a new method is proposed to find
a target size which roughly indicates the smallest size
of feature subsets that can achieve the highest or close
to the highest classification performance. The target
size is used to guide the search of PSO in addition
to the original PSO search mechanism that focuses
mainly on the finding the highest classification per-
formance. Specifically, we will investigate:

• whether incorporating the target size method
into PSO for feature selection can further reduce
the number of features selected over standard
PSO,

• whether the classification performance of PSO
for feature selection can be maintained or even
improved in the new approach,

• whether the proposed approach can outperform
conventional feature selection methods, and

• whether the proposed approach can more consis-
tently select key informative features than stan-
dard PSO.

2 Background

2.1 Particle Swarm Optimisation

Particle Swarm Optimisation is an evolutionary com-
putation technique inspired by social behaviour pro-
posed by Kennedy and Eberhart (Kennedy and Eber-
hart, 1995; Shi and Eberhart, 1998). PSO maintains a
population of particles, called a swarm, each of which
encodes a candidate solution in the search space. PSO
initialises each particle in the swarm to a random po-
sition in the space, and iterates the position of each
particle based on the experience of the particle and
its neighbours. The position of particle i is repre-
sented by a vector, xi = (xi,1, . . . , xi,n), where n is
the dimension of the search space. The velocity is
represented by a similar vector vi = (vi,1, . . . , vi,n),
where each component of the vector is limited to
a predefined range [−vmax, vmax]. The best previ-
ous position (according to some fitness function) of
particle i is recorded as the personal best, pbesti =
(pi,1 . . . pi,n), and the best position found by the pop-
ulation as a whole is recorded as the global best,
gbest = (g1 . . . gn). At each iteration of the algo-
rithm, PSO updates the velocity and position of each
particle according to the following equations:

xt+1
i,d = xt

i,d + vt+1
i,d (1)

vt+1
i,d = w · vti,d + c1 · r1,i · (pi,d − xt

i,d)

+ c2 · r2,i · (gd − xt
i,d) (2)

Here 0 < d ≤ n denotes the component of the position
or velocity vector, and t represents the t-th iteration
of the algorithm. w is a predefined constant for the in-
ertia weight, and c1 and c2 are predefined acceleration
constants. Each r1,i and r2,i are random values uni-
formly distributed over [0, 1]. This description of PSO
is applicable to real-valued search spaces. However,
feature selection, along with many other problems,
occurs in a discrete search space and requires a modi-
fied algorithm. Binary PSO (Kennedy and Eberhart,
1997) is such an algorithm. In binary PSO, the values
of the components of all position vectors (xi, pbesti,
and gbesti) are restricted to 0 or 1. Equation (2)
is still used to update the velocity, each component
of which now indicates the probability of the corre-
sponding component in the position vector being 1.
A sigmoid function s(vi,d) is used to transform the
components of the velocity into a unit range. Binary
PSO updates the position of each particle according
to the following equation:

xi,d =

{
1, rand() < s(vi,d)

0, otherwise
(3)

where

s(x) =
1

1 + e−x

2.2 Related Work

The following sections survey a relevant selection of
recent and prominent work on feature selection.

2.2.1 Traditional Algorithms

FOCUS (Almuallim and Dietterich, 1994) and Relief
(Kira and Rendell, 1992) are two founding feature se-
lection algorithms. Each takes a filter approach and
so a learning system is not used in evaluation. FO-
CUS exhaustively searches the space of feature sub-
sets to find a small subset that accurately describes
the target concept. This is highly effective, but of
course exhaustive search is infeasible on large feature
spaces. Relief does not perform exhaustive search, in-
stead it scores each feature individually based on its
relevance to the class label and selects a set of the best
scoring features. This is much more efficient, but does
not take into account feature interaction (Kononenko,
1994); this could lead to, for example, ignoring fea-
tures that are only useful in combination, or selecting
two highly redundant features.

Sequential Forward Selection (SFS) (Whitney,
1971) and Sequential Backward Selection (SBS)
(Marill and Green, 1963) are two more widely-known
algorithms, both using a wrapper approach. These
perform a greedy search in the feature space, with
SFS (SBS) starting with an empty (full) feature set
and iteratively selecting features to add (remove).
Because this is a greedy search, both algorithms
are susceptible into local optima. To overcome this
and other issues, the ‘plus-l-take-away-r’ method
(Stearns, 1976) and sequential floating algorithms
(SFFS and SBFS) (Pudil et al., 1994) were proposed,
which are variants on SFS and SBS.

2.2.2 Feature Selection with PSO

Evolutionary computation techniques, including GAs
(Lin et al., 2014) and GP (Neshatian and Zhang,
2012), have been broadly applied to feature selection
problems. For brevity, this section will focus on using
PSO for feature selection (Cervante et al., 2012; Xue

et al., 2014; Lane et al., 2013, 2014; Xue et al., 2015;
Nguyen et al., 2014; Tran et al., 2014).

Both continuous PSO and binary PSO have been
used for both filter and wrapper, single objective
and multi-objective feature selection. A number of
new PSO algorithms have been proposed to improve
performance on feature selection problems, including
initialisation strategies, representation, fitness func-
tions, and the search mechanisms. Xue et al. (Xue
et al., 2013a) developed a new initialisation strategy
to mimic the typical forward and backward feature
selection methods in the PSO search process, which
showed that good initialisation significantly increased
the performance of PSO for feature selection. There
are only a few works on developing new representa-
tions in PSO for feature selection. The typical rep-
resentation has been slightly modified to simultane-
ously perform feature selection and parameter optim-
sation of a classification algorithm, mostly optimising
the parameters in the kernel functions of SVMs (Lin
et al., 2008; Huang and Dun, 2008; Vieira et al., 2013;
Boubezoul and Paris, 2012). The length of the new
representation is equal to the total number of features
and parameters. The representation was encoded in
three different ways, being continuous encoding (Lin
et al., 2008), binary encoding (Vieira et al., 2013), and
a mixture of binary and continuous encoding (Huang
and Dun, 2008; Boubezoul and Paris, 2012). Since
PSO was originally proposed for continuous optimisa-
tion, continuous encoding performed better than the
other two encoding schemes. Lane et al. (Lane et al.,
2013) proposed the use of PSO and statistical clus-
tering (which groups similar features into the same
cluster) for feature selection, where a new represen-
tation was proposed to incorporate statistical feature
clustering information during the search process of
PSO. In the new representation, features from the
same cluster were arranged together and only a single
feature was selected from each cluster. The proposed
algorithm was shown to be able to significantly reduce
the number of features.

Learning from neighbours’ experience, i.e. social
interaction through gbest, and learning from each in-
dividual’s own experience through pbest, are the key
ideas in PSO. Chuang et al. (Chuang et al., 2008)
developed a gbest resetting mechanism by including
zero features in order to guide the swarm to search for
small feature subsets. Xue et al. (Xue et al., 2013a)
considered the number of features when updating
pbest and gbest during the search process of PSO,
which could further reduce the number of features
over the traditional updating pbest and gbest mech-
anism without deteriorating the classification perfor-
mance.

The fitness function plays an important role in
PSO for feature selection. Many existing works used
only the classification performance as the fitness func-
tion (Liu et al., 2011; Zhang and Hu, 2005; Tang et al.,
2005; Yong et al., 2015), which led to relatively large
feature subsets. However, most of the fitness func-
tions used different ways to combine both the classi-
fication performance and the number of features into
a single fitness function (Huang and Dun, 2008; Fd-
hila et al., 2011; Ramadan and Abdel Kader, 2007).
However, it is difficult to determine in advance the op-
timal balance between them without a priori knowl-
edge. Most of the algorithms select a relatively large
number of features.

Algorithm 1 Size-Controlled PSO Feature Selection

1: divide Dataset into a training set and a test set
2: randomly initialise position and velocity of each

particle
3: while the stopping criterion is not met do
4: evaluate the fitness (classification perfor-

mance) of each particle on the training set
5: for each particle p do
6: update the pbest of p
7: update the gbest of p
8: end for
9: for each particle p do
10: update the velocity of p according to Equa-

tion (4)
11: update the position of p according to

Equation (1)
12: end for
13: end while
14: Test process:
15: calculate the classification accuracy of the fea-

tures selected by gbest on the test set
16: return the position of gbest (the selected feature

subset)
17: return the training and test classification accura-

cies

3 Proposed Approach

3.1 Size-Controlled PSO for Feature Selec-

tion

In PSO for feature selection, PSO focuses on search-
ing for the best classification performance according
to the fitness function. However, since the search
space is huge in most cases, besides the classification
performance, PSO needs further guidance to search
towards a feature subset with not only high classifi-
cation accuracy, but also a small size. Therefore, we
propose a size-controlled PSO for feature selection,
where the search of PSO is also guided by a target
size T . The influence of T is produced through the
velocity updating equation, which is shown by Equa-
tion (4).

vt+1
i,d = w · vti,d

+ c1 · r1,i · (pi,d − xt
i,d)

+ c2 · r2,i · (gd − xt
i,d)

+ c3 · r3,i · s(T − |p|) (4)

where,

s(x) =
1

1 + e−x

where |p| shows the number of features selected by
particle i, c3 is a third acceleration constant, and each
r3,i is a random value uniformly distributed in [0, 1].

Algorithm 1 shows the pseudo-code for the size-
controlled PSO. The position of each particle is still
updated using Equation (1). To implement this size-
controlled PSO, the key issue is how to determine the
target size T .

Algorithm 2 Sequential Random Target Size Opti-
misation
1: classification accuracy indicates how good a fea-

ture subset is;
2: Accuracy′′ indicates how good an integer n is;
3: d: the dimensionality of the data;
4: initialise range← [1, d].
5: Start:
6: for iteration i from 1 to maximum iterations do
7: randomly sample a set of N integers and their

values are within range, i.e. randomly sample a
set of candidate sizes;

8: for each candidate integer n from set N do
9: randomly sample s different feature sub-

sets and each subset contains n features;
10: evaluate the classification accuracies of the

s subsets;
11: find the highest classification accuracy and

assign it as the Accuracy′′ of the candidate size
n;

12: end for
13: topAcc← the best Accuracy′′ so far regardless

of size;
14: find all possible candidate sizes with

Accuracy′′ ∈ [topAcc − toleranceAcc], and
assign the smallest candidate size to bestSize;

15: range ← [1, 2∗R∗d
i];

16: centre range on bestSize;
17: if bestSize is not changed then
18: exit;
19: end if
20: end for
21: return bestSize as target size T .

3.2 Sequential Random Target Size Optimi-

sation

In this section, we propose a sequential random target
size optimisation (SRTSO) method to find the target
size T that the size-controlled PSO requires.

The Pseudocode of SRTSO can found in Algo-
rithm 2. SRTSO aims to find a good size (bestSize)
with the expectation that the feature subset(s) con-
taining bestSize features can achieve the optimal or
near optimisal classification performance. Meanwhile,
bestSize is the smallest size that can achieve such
good classification performance. In SRTSO, there are
two evaluation criteria: (1) the classification accuracy
shows how good a feature subset is; (2) Accuracy′′

shows how good the size n is, and since SRTSO gener-
ates multiple feature subsets that contain n features,
the best classification accuracy among them is used
as the Accuracy′′ value.

SRTSO follows an iteratively searching process. In
each iteration, a set of N integers (candidate sizes)
are randomly generated, where all integers are within
range, Line 7. range is initialised as [1, d] and dynam-
ically changes during the search as range = [1, 2Rd

i],
where R is a constant value, d is the dimensional-
ity and i means the ith iteration of SRTSO. 2Rd

i can
ensure that the candidate size that SRTSO searches
for becomes smaller along with the search process,
i.e. the increase of i. Furthermore, range is also de-
termined/adjusted by the classification performance
in each iteration through centering it around a value
called bestSize. bestSize is calculated from Line 8
to 14. bestSize shows the smallest sizes which have

Accuracy′′ ∈ [topAcc−toleranceAcc], where topAcc is
the highest classification SRTSO has found so far and
toleranceAcc is a very small percentage. Using the
constraint of Accuracy′′ ∈ [topAcc − toleranceAcc]
to determine the bestSize value is to ensure that the
bestSize is a small value and also always has a highest
Accuracy′′.

When the maximum number of iteration has been
reached or bestSize is the same in two iterations,
SRTSO is terminated. SRTSO returns bestSize as
the target size T , which guides PSO to search the
regions where the size of feature subsets is T .

By applying the SRTSO method to determine T in
Equation 4 in PSO, a new approach named SCTSOFS
is proposed to solve feature selection problems.

Table 1: Datasets
Dataset Number of Number of Number of

features instances classes

WDBC 30 569 2

Ionosphere 34 351 2

Splice 61 3190 4

Hill Valley 100 606 2

Gas 6 128 1694 3

Musk 1 166 476 2

Semeion 256 1593 2

Arrhythmia 278 452 2

Madelon 500 2600 2

Isolet 5 617 1599 26

Multiple Features 649 2000 10

Amazon 10000 1599 50

4 Experimental Design

Twelve datasets (in Table 1) were chosen from the
UCI machine learning repository (Bache and Lich-
man, 2013) as benchmark problems to evaluate the
performance of SCTSOFS. These were chosen to rep-
resent a range of features, instances, and classes to
represent different types of tasks. For each dataset,
the instances are randomly divided into 2/3 for the
training set and 1/3 for the testing set such that class
distribution is approximately maintained.

To perform fitness evaluations in the feature selec-
tion process, a classification algorithm is needed to
calculate the classification accuracy. There are many
options for the algorithm, such as K-nearest neigh-
bour (KNN), Decision Trees, Support Vector Ma-
chines, and Naive Bayes. KNN was chosen with k = 1
(1NN) due to its simplicity and wide use in existing
papers. Each evaluation uses 10-fold cross validation
on the training set (Guyon and Elisseeff, 2003).

The performance of SCTSOFS is compared with
that of all features, standard PSO for feature selection
and two conventional feature selection algorithms:
SFS and SBS. The parameters in PSO and SCT-
SOFS follows common settings suggested in (Clerc
and Kennedy, 2002): inertia weight w = 0.7298, ac-
celeration constants c1 = c2 = 1.49618, maximum
velocity vmax = 6. PSO uses a population size of 30
and the maximum iterations of 50 and SCTSOFS uses
a population size of 10 and the maximum iterations
of 30, and its third acceleration constant c3 = c1. For
SCTSO, the maximum iteration is 2, N = 30, s = 10,
R = 0.3, and tolerance = 0.01. By using such set-
tings, it ensures that PSO and SCTSOFS have the
same number of evaluations for fair comparison pur-
poses. PSO and SCTSOFS are performed for 30 in-
dependent runs on each dataset. SFS and SBS are

Table 2: Accuracy (%) and size results for All features, standard PSO, and SCTSOFS

Dataset Algorithm

Training Set Acc. Test Set Acc.

Mean Mean Best Mean Signif- Best

size (± stdev) (± stdev) icance

WDBC

All 30.0 93.9 93.9 96.3 − 96.3

PSO 14.4 96.8 ± 0.2 97.4 96.8 ± 1.1 = 98.4

SCTSOFS 9.8 96.2 ± 1.1 97.1 96.8 ± 1.1 98.9

Ionosphere

All 34.0 88.0 88.0 84.5 − 84.5

PSO 12.8 94.0 ± 0.6 95.7 87.3 ± 2.0 = 90.6

SCTSOFS 7.9 93.7 ± 0.9 95.7 86.6 ± 3.2 93.1

Splice

All 60.0 72.3 72.3 69.6 − 69.6

PSO 23.9 78.9 ± 0.8 80.7 75.4 ± 1.8 − 79.0

SCTSOFS 14.0 80.5 ± 2.4 85.0 78.0 ± 3.3 84.0

Hill Valley

All 100.0 57.2 57.2 56.5 + 56.5

PSO 48.0 61.3 ± 0.4 62.1 55.2 ± 0.8 = 56.9

SCTSOFS 25.7 60.2 ± 1.4 62.5 54.8 ± 1.7 57.9

Gas 6

All 128.0 100.0 100.0 99.8 + 99.8

PSO 35.8 100.0 ± 0.0 100.0 99.8 ± 0.2 = 100.0

SCTSOFS 3.4 100.0 ± 0.0 100.0 99.7 ± 0.2 100.0

Musk 1

All 166.0 84.2 84.2 74.7 − 74.7

PSO 79.6 92.8 ± 0.8 94.6 79.4 ± 2.7 = 83.0

SCTSOFS 48.6 90.3 ± 2.4 92.4 79.3 ± 3.1 85.5

Semeion

All 265.0 97.1 97.1 96.4 + 96.4

PSO 136.2 98.2 ± 0.1 98.4 95.9 ± 0.6 + 97.2

SCTSOFS 89.0 96.9 ± 1.1 98.0 95.3 ± 0.6 96.2

Arrhythmia

All 278.0 53.8 53.8 55.0 = 55.0

PSO 135.5 64.4 ± 0.7 66.1 56.4 ± 2.2 = 60.3

SCTSOFS 108.9 62.2 ± 2.8 67.1 55.8 ± 3.5 63.6

Madelon

All 500.0 54.0 54.0 54.3 − 54.3

PSO 244.7 60.0 ± 0.6 60.9 55.6 ± 1.6 = 59.4

SCTSOFS 150.2 59.1 ± 1.7 65.9 55.9 ± 2.3 60.3

Isolet 5

All 617.0 80.6 80.6 71.2 − 71.2

PSO 304.2 84.1 ± 0.3 85.0 74.3 ± 1.0 + 76.9

SCTSOFS 238.3 82.6 ± 1.1 83.9 72.7 ± 1.4 76.0

Multiple Features

All 649.0 97.8 97.8 96.9 + 96.9

PSO 326.2 98.5 ± 0.1 98.7 97.1 ± 0.4 + 98.0

SCTSOFS 168.7 97.4 ± 0.8 98.1 96.2 ± 0.9 97.7

Amazon

All 10000.0 13.8 13.8 11.4 − 11.4

PSO 4919.1 18.1 ± 0.4 19.1 12.1 ± 0.9 − 14.0

SCTSOFS 480.6 19.2 ± 0.8 20.7 13.3 ± 1.5 16.8

deterministic methods, which produce one single so-
lution (feature subset) on each dataset and their set-
tings follow common settings in Weka (Witten and
Frank, 2005). A statistical significance test, Wilcoxon
test with the significance level as 0.05, is performed
on the test accuracies of different algorithms.

5 Results and Discussions

5.1 Comparisons with All Features

Table 2 summarises the classification accuracy and
the feature subset size of “All” features, PSO and
SCTSOFS, where “mean ± stdev” shows the average
and the standard deviation of the accuracies from the
30 independent runs. In terms of the training set, the
classification performance of SCTSOFS is better than
using the full set of features on ten out of the twelve
datasets. The comparison on test set accuracy be-
tween SCTSOFS and using a full set of features is
generally positive. SCTSOFS performs significantly
better on seven of the twelve datasets, worse on four,
and equally on one. This indicates that feature selec-
tion using SCTSOFS is mostly beneficial to classifi-
cation accuracy, but this may depend on the dataset.

In terms of the feature subset size, SCTSOFS sub-
stantially reduce the dimensionality to at least one
third of the original number of features. For example,
the number of features is reduced to around 150 on

average from the original 500 on the Madelon dataset,
but still increase the classification accuracy.

5.2 Comparisons with Standard PSO

According to Table 2, it can be seen that in terms of
the subset size, SCTSOFS significantly outperforms
the standard PSO feature selection algorithm. SCT-
SOFS selects a subset with slightly more than half
the number of features that PSO selects. The best
improvement of SCTSOFS over standard PSO is on
the Gas 6 and Amazon datasets, i.e. selecting an or-
der of magnitude fewer features. The results show
that SCTSOFS has largely accomplished its goal of
reducing feature subset size.

With regards to the accuracy on the test set, SCT-
SOFS is similar or significantly better than PSO on
nine out of the twelve datasets, but significantly worse
on three datasets. This indicates an overall trend of
having similar test set performance. The results on
the training set suggest there is no noticeable differ-
ence in the level of overfitting between the two al-
gorithms. However, overfitting is suggested for both
algorithms on some datasets, in particular Musk 1.

5.3 Comparison with Traditional methods

Table 3 shows the classification accuracy and subset
size of SFS and SBS on each dataset, where the empty

cells for the three large datasets mean that the algo-
rithm (SFS or SBS) cannot produce a solution by
running for a week. There is a symbol of +, −, or
= for each algorithm on each dataset, representing
the result of a significance test between the classifi-
cation accuracy of the corresponding algorithm and
SCTSOFS on the test set; a + indicates that the cor-
responding method is statistically significantly better,
a − indicates SCTSOFS is better, and an = indicates
they are not statistically distinguishable. Statistical
significance tests for the size of the feature subset are
not given, as the difference is clear.

According to Table 3, SCTSOFS very clearly out-
performs SBS in terms of subset size, with SBS select-
ing the majority of features on most datasets. SBS
has statistically equal or lower test set accuracy on
ten of the twelve datasets. On these datasets, SCT-
SOFS is a superior algorithm in all respects.

In contrast, the comparison between SFS and
SCTSOFS is mixed. SFS selects very small subsets
on all datasets. On the test set, the accuracy of SCT-
SOFS is statistically equal to or better than SFS on
eight of the twelve datasets. The possible reason is
that although SCTSOFS uses a size control method,
but the main focus is still to optimise the classifica-
tion performance. Therefore, SCTSOFS outperforms
SFS in terms of the classification performance in most
cases.

5.4 Computational Cost

Table 4 summarises the running time of each algo-
rithm and the empty cells for the three large datasets
mean that the algorithm (SFS or SBS) cannot pro-
duce a solution by running for a week. It can be ob-
served that SCTSOFS is faster than standard PSO on
all the twelve datasets, although SCTSOFS has extra
calculation in SCTSO to find the target size T . This
is likely due to the evaluated subsets being, on aver-
age, much smaller in SCTSOFS than PSO. The speed
difference ranges from near-identical to less than half
the running time.

Comparing SCTSOFS with the two traditional
methods, SFS runs more quickly on seven of the
twelve datasets and SBS also takes orders of magni-
tude longer to run on almost all datasets, except for
the smallest dataset. SBS on the three large datasets
(Isolet 5, Multiple Features, and Amazon) and SFS on
the two large datasets (Multiple Features and Ama-
zon) cannot even produce a solution within a week.
The main reason is that the number of evaluations in
SCTSOFS is a fixed number, and the number of eval-
uations in SFS and SBS increases very quickly along
with the number of features in the datasets.

5.5 Analysis of Selected Features

This section compares the features selected by the
standard PSO algorithm and SCTSOFS, with the
aim of comparing the consistency of the two algo-
rithms. Here, consistency measures the similarity of
the selected features across multiple runs. This is an
important performance metric for a stochastic fea-
ture selection algorithm, as it indicates the ability to
consistently identify high-quality features in a clas-
sification task. This can be analysed based on the
frequency of each feature in a dataset being selected
is analysed. A uniform frequency among all or most
features indicates that the feature selection algorithm
is highly inconsistent, indiscriminately selecting fea-
tures. Similarly, if some features are very commonly

selected and others are very rarely selected, the algo-
rithm is highly consistent and selective in its outputs.

To show the consistency, the number of times that
each feature is selected by PSO or SCTSOFS in the
30 independent runs are collected, and scaled to [0, 1]
as frequency values. 0 means that the feature is not
selected at all through the 30 runs and 1 means it is
selected across all the 30 runs.

Table 3: Accuracy (%) and size results for SFS and

SBS
Method Size Train Sig. Test Sig. Size Train Sig. Test Sig.

Acc. Acc. Acc. Acc.
WDBC Ionosphere

SFS 7.0 93.9 − 96.3 − 5.0 93.2 − 86.4 =
SBS 21.0 96.3 = 98.4 + 26.0 90.1 − 82.0 −

Splice Hill Valley

SFS 6.0 88.9 + 88.2 + 1.0 56.3 − 49.5 −
SBS 50.0 75.1 − 69.8 − 90.0 59.0 − 55.2 =

Gas 6 Musk 1

SFS 2.0 100.0 + 99.3 − 14.0 93.7 + 79.3 =
SBS 3.0 100.0 + 99.3 − 84.0 93.4 + 80.4 =

Semeion Arrhythmia

SFS 10.0 65.8 + 59.0 +
SBS 206.0 98.3 + 95.9 + 123.0 64.5 + 54.3 −

Madelon Isolet 5

SFS 11.0 88.3 + 86.4 + 40.0 90.1 + 80.4 +
SBS 488.0 57.2 − 53.8 −

Multiple Features Amazon

SFS 14.0 98.9 + 95.9 =
SBS

Table 4: Running time (milliseconds) of algorithms

Algorithm WDBC Ionosphere Splice

All 40 45 895

SFS 7854 3299 177342

SBS 13434 8564 2356288

PSO 15694 ± 1642 7007 ± 672 1072188 ± 88625

SCTSOFS 14877 ± 3070 5504 ± 703 686714 ± 209926

Algorithm Hill Valley Gas 6 Musk 1

All 62 199 57

SFS 11842 37932 97880

SBS 211320 2305076 1515172

PSO 43607 ± 2651 162846 ± 22318 43556 ± 5375

SCTSOFS 40780 ± 8940 109839 ± 18292 30494 ± 5738

Algorithm Semeion Arrhythmia Madelon

All 709 81 7378

SFS 23204 70472 2519672

SBS 64670783 6230209 183583434

PSO 972074 ± 78612 76910 ± 3713 9640148 ± 650128

SCTSOFS 703928 ± 142299 60132 ± 13983 6454478 ± 2519219

Algorithm Isolet 5 Multiple Features Amazon

All 1482 3862 43292

SFS 8844293 4223189

SBS

PSO 1832157 ± 28898 5418443 ± 471782 54771372 ± 1488128

SCTSOFS 1502773 ± 290200 2933193 ± 459691 25809611 ± 5421677

Table 5: Q-measure of PSO and SCTSOFS

Algorithm WDBC Ionosphere Splice

PSO 0.447 0.468 0.485

SCTSOFS 0.417 0.634 0.590

Algorithm Hill Valley Gas 6 Musk 1

PSO 0.345 0.241 0.282

SCTSOFS 0.435 1.109 0.308

Algorithm Semeion Arrhythmia Madelon

PSO 0.211 0.210 0.185

SCTSOFS 0.245 0.214 0.209

Algorithm Isolet 5 Multiple Features Amazon

PSO 0.198 0.171 0.153

SCTSOFS 0.204 0.245 0.671

5.5.1 Statistics-based Analysis

The frequency values of the features being selected
can be treated as distributions. The concept of con-
sistency is characterised by the probability distribu-
tion of features being highly non-uniform, and so a
comparison to the discrete uniform distribution of n
elements, where n is the dimensionality of the data,
gives a metric for an algorithm’s consistency. Suppos-
ing f1 . . . fn are the frequency values for the n feature
over a number of experiments, the Q-value of those
frequencies is defined as follows:

Q =

n∑
i=1

∣∣∣∣ fi∑n
i=1 fi

− 1

n

∣∣∣∣
This, in essence, normalises the frequencies to form

a proper probability distribution and then sums the
absolute values of the difference between each feature
and the worst-case values of the uniform distribution.
A high Q-value indicates that the algorithm shows
high consistency, and a low Q-value indicates incon-
sistency.

Table 5 gives the Q-value for the benchmark
datasets. The results are near-universally favourable
towards SCTSOFS, showing a Q-value greater than
or equal to that of the standard PSO algorithm in all
cases except for the WDBC dataset. This indicates
that the new method SCTSOFS is more consistent in
terms of finding relevant features.

5.5.2 Graph-based Analysis

To better show the results, Figure 1 takes the Splice
and Ionosphere datasets as examples to plot the
scaled values. Other datasets follow a similar pat-
tern and they are not presented here due to the page
limit.

In Figure 1, the scaled values are sorted in an as-
cending order. Following the horizontal axis, from the
left to right, the scaled values are increasing, which
shows the lowest frequency to the highest frequency
of features being selected. The deeper the curve is the
more consistent the algorithm is, because how deep-
ness of the curve shows how well the algorithm distin-
guish different features. Both plots in Figure 1 show
SCTSOFS positively in comparison to standard PSO,
particularly, Splice shows over two-thirds of the fea-
tures being selected no more than 20% of the time,
in contrast with standard PSO. It is also shown that
SCTSOFS as a more bowed curve, indicating a higher
consistency. These results do, however, corroborate
with the above statistics-based analysis. In addition,
the area under the curve for SCTSOFS is significantly
smaller than that of the standard PSO algorithm in

0 10 20 30 40 50 60

feature, sorted in order of increasing frequency

0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

a
lis

e
d
 f

re
q
u
e
n
cy

 o
f

se
le

ct
io

n

PSO

SCTOFS

(a) Splice

0 5 10 15 20 25 30

feature, sorted in order of increasing frequency

0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

a
lis

e
d
 f

re
q
u
e
n
cy

 o
f

se
le

ct
io

n

PSO

SCTOFS

(b) Ionosphere

Figure 1: Sorted frequencies of features being se-

lected.

both cases. This is expected, as the area represents
the average size of the selected feature subsets.

6 Conclusions and Future Work

The goal of this paper was to develop a new PSO ap-
proach to feature selection with the expectation of sig-
nificantly reducing the number of features and achiev-
ing the similar or even better classification than using
all features and standard PSO. The goal was achieved
by developing a sequential random target size optimi-
sation method to find a rough target size (number of
features), which was used to guide the PSO search
towards feature subsets with high classification per-
formance and small number of features.

The proposed algorithm, SCTSOFS, was com-
pared with the standard PSO for feature selection
and two typical traditional methods, SFS and SBS.
The results show that in most cases, SCTSOFS sub-
stantially reduced the dimensionality of the dataset
over the original feature set, the feature sets selected
by standard PSO, and SBS, and the classification
performance was maintained or even improved. Al-
though SFS selected a smaller number of features in
many cases, the classification performance of SCT-
SOFS was generally better, which suggested that al-
though SCTSOFS seriously considered the number of
features during feature selection process, but it did
not sacrifice the classification performance. Further-
more, SCTSOFS used a shorter running time than
PSO in all cases, a longer time than SFS and SBS on
small datasets, but a much shorter time than SFS and
SBS on large datasets. Since PSO and SCTSOFS are
stochastic methods, we also analyse their consistency
in terms of selecting features in different runs, the
analysis showed that SCTSOFS selected more consis-
tent features across different independent runs, which
can provide a better suggestions to real-world users to
find informative or key features in complex problems.

Several questions have been raised in the process
of this research, such as the consistency analysis for
stochastic feature selection algorithms. The analy-

sis presented in this paper can provide straightfor-
ward illustrations, but is relatively simple and lack
of theoretical prove. Further developments in this
area would yield deeper insights into the operation,
effectiveness, and applicability of these types of algo-
rithms.

References

Almuallim, H. and Dietterich, T. G. (1994), ‘Learning
boolean concepts in the presence of many irrelevant
features’, Artificial Intelligence 69, 279–305.

Bache, K. and Lichman, M. (2013), ‘Uci machine
learning repository’.
URL: http://archive.ics.uci.edu/ml

Bharathi P T, P. S. (2014a), ‘Differential evolution
and genetic algorithm based feature subset selec-
tion for recognition of river ice type’, Journal of
Theoretical and Applied Information Technology
7(1), 254–262.

Bharathi P T, P. S. (2014b), ‘Optimal feature subset
selection using differential evolution and extreme
learning machine’, International Journal of Science
and Research (IJSR) 3, 1898–1905.

Boubezoul, A. and Paris, S. (2012), ‘Application of
global optimization methods to model and feature
selection’, Pattern Recognition 45(10), 3676 – 3686.

Cervante, L., Xue, B., Shang, L. and Zhang, M.
(2012), A dimension reduction approach to classi-
fication based on particle swarm optimisation and
rough set theory, in ‘25nd Australasian Joint Con-
ference on Artificial Intelligence’, Vol. 7691 of Lec-
ture Notes in Computer Science, Springer, pp. 313–
325.

Chuang, L. Y., Chang, H. W., Tu, C. J. and Yang,
C. H. (2008), ‘Improved binary PSO for feature se-
lection using gene expression data’, Computational
Biology and Chemistry 32(29), 29– 38.

Clerc, M. and Kennedy, J. (2002), ‘The particle
swarm– explosion, stability, and convergence in a
multidimensional complex space’, IEEE Transac-
tions on Evolutionary Computation 6(1), 58–73.

Dash, M. and Liu, H. (1997), ‘Feature selection for
classification’, Intelligent Data Analysis 1(4), 131–
156.

Engelbrecht, A. P. (2007), Computational intelli-
gence: an introduction (2. ed.), Wiley.

Espejo, P., Ventura, S. and Herrera, F. (2010), ‘A
survey on the application of genetic programming
to classification’, IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and
Reviews 40(2), 121–144.

Fdhila, R., Hamdani, T. and Alimi, A. (2011), Dis-
tributed MOPSO with a new population subdivi-
sion technique for the feature selection, in ‘Inter-
national Symposium on Computational Intelligence
and Intelligent Informatics (ISCIII’11)’, pp. 81 –86.

Guyon, I. and Elisseeff, A. (2003), ‘An introduction
to variable and feature selection’, The Journal of
Machine Learning Research 3, 1157–1182.

Huang, C. L. and Dun, J. F. (2008), ‘A distributed
PSO-SVM hybrid system with feature selection and
parameter optimization’, Application on Soft Com-
puting 8, 1381–1391.

Kennedy, J. and Eberhart, R. (1995), Particle swarm
optimization, in ‘IEEE International Conference on
Neural Networks’, Vol. 4, pp. 1942–1948.

Kennedy, J. and Eberhart, R. (1997), A discrete bi-
nary version of the particle swarm algorithm, in
‘IEEE International Conference on Systems, Man,
and Cybernetics’, Vol. 5, pp. 4104–4108.

Kira, K. and Rendell, L. A. (1992), ‘A practical ap-
proach to feature selection’, Assorted Conferences
and Workshops pp. 249–256.

Kononenko, I. (1994), ‘Estimating attributes: Analy-
sis and extensions of relief’, Lecture Notes in Com-
puter Science 784, 171.

Lane, M., Xue, B., Liu, I. and Zhang, M. (2013), Par-
ticle swarm optimisation and statistical clustering
for feature selection, in ‘AI 2013: Advances in Ar-
tificial Intelligence’, Vol. 8272 of Lecture Notes in
Computer Science, Springer International Publish-
ing, pp. 214–220.

Lane, M., Xue, B., Liu, I. and Zhang, M. (2014),
Gaussian based particle swarm optimisation and
statistical clustering for feature selection, in ‘Evo-
lutionary Computation in Combinatorial Optimisa-
tion’, Vol. 8600 of Lecture Notes in Computer Sci-
ence, Springer Berlin Heidelberg, pp. 133–144.

Lin, F., Liang, D., Yeh, C.-C. and Huang, J.-C.
(2014), ‘Novel feature selection methods to finan-
cial distress prediction’, Expert Systems with Ap-
plications 41(5), 2472–2483.

Lin, S. W., Ying, K. C., Chen, S. C. and Lee, Z. J.
(2008), ‘Particle swarm optimization for parame-
ter determination and feature selection of support
vector machines’, Expert Systems with Applications
35(4), 1817–1824.

Liu, H., Motoda, H., Setiono, R. and Zhao, Z. (2010),
Feature selection: An ever evolving frontier in data
mining, in ‘FSDM’, Vol. 10 of JMLR Proceedings,
JMLR.org, pp. 4–13.

Liu, H. and Zhao, Z. (2009), Manipulating data and
dimension reduction methods: Feature selection, in
‘Encyclopedia of Complexity and Systems Science’,
Springer, pp. 5348–5359.

Liu, Y., Wang, G., Chen, H. and Dong, H. (2011), ‘An
improved particle swarm optimization for feature
selection’, Journal of Bionic Engineering 8(2), 191–
200.

Marill, T. and Green, D. (1963), ‘On the effectiveness
of receptors in recognition systems’, IEEE Trans-
actions on Information Theory 9(1), 11–17.

Mitra, P., Murthy, C. and Pal, S. (2002), ‘Unsu-
pervised feature selection using feature similarity’,
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 24(3), 301–312.

Muni, D., Pal, N. and Das, J. (2006), ‘Genetic
programming for simultaneous feature selection
and classifier design’, IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B: Cybernetics
36(1), 106–117.

Neshatian, K. and Zhang, M. (2012), Improving rele-
vance measures using genetic programming, in ‘Eu-
ropean Conference on Genetic Programming (Eu-
roGP 2012)’, Vol. 7244 of Lecture Notes in Com-
puter Science, Springer, pp. 97–108.

Nguyen, H., Xue, B., Liu, I. and Zhang, M. (2014),
PSO and statistical clustering for feature selection:
A new representation, in ‘Simulated Evolution and
Learning’, Vol. 8886 of Lecture Notes in Computer
Science, pp. 569–581.

Pudil, P., Novovicova, J. and Kittler, J. V. (1994),
‘Floating search methods in feature selection’, Pat-
tern Recognition Letters 15(11), 1119–1125.

Purohit, A., Chaudhari, N. and Tiwari, A. (2010),
Construction of classifier with feature selection
based on genetic programming, in ‘IEEE Congress
on Evolutionary Computation (CEC’10)’, pp. 1–5.

Ramadan, R. M. and Abdel Kader, R. F.
(2007), ‘Face recognition using particle swarm
optimization-based selected features’, International
Journal of Signal Processing, Image Processing and
Pattern Recognition 2(2), 51–65.

Shi, Y. and Eberhart, R. (1998), A modified parti-
cle swarm optimizer, in ‘IEEE International Con-
ference on Evolutionary Computation (CEC’98)’,
pp. 69–73.

Stearns, S. (1976), On selecting features for pattern
classifier, in ‘Proceedings of the 3rd International
Conference on Pattern Recognition’, IEEE Press,
Coronado, Calif, USA, pp. 71–75.

Tang, E. K., Suganthan, P. and Yao, X. (2005),
Feature selection for microarray data using least
squares SVM and particle swarm optimization,
in ‘IEEE Symposium on Computational Intelli-
gence in Bioinformatics and Computational Biol-
ogy (CIBCB’05)’, pp. 1–8.

Tran, B., Xue, B. and Zhang, M. (2014), Overview of
particle swarm optimisation for feature selection in
classification, in ‘Simulated Evolution and Learn-
ing’, Vol. 8886 of Lecture Notes in Computer Sci-
ence, Springer International Publishing, pp. 605–
617.

Vieira, S. M., Mendonça, L. F., Farinha, G. J. and
Sousa, J. M. (2013), ‘Modified binary PSO for fea-
ture selection using SVM applied to mortality pre-
diction of septic patients’, Applied Soft Computing
13(5), 3494–3504.

Whitney, A. (1971), ‘A direct method of nonparamet-
ric measurement selection’, IEEE Transactions on
Computers C-20(9), 1100–1103.

Witten, I. H. and Frank, E. (2005), Data Mining:
Practical Machine Learning Tools and Techniques
(Second Edition), Morgan Kaufmann.

Xue, B., Cervante, L., Shang, L., Browne, W. N.
and Zhang, M. (2014), ‘Binary PSO and rough
set theory for feature selection: A multi-
objective filter based approach’, International
Journal of Computational Intelligence and Appli-
cations 13(02), 1450009.

Xue, B., Zhang, M. and Browne, W. (2013a), Novel
initialisation and updating mechanisms in PSO for
feature selection in classification, in ‘Applications
of Evolutionary Computation’, Vol. 7835 of Lecture
Notes in Computer Science, Springer Berlin Heidel-
berg, pp. 428–438.

Xue, B., Zhang, M. and Browne, W. N. (2013b), ‘Par-
ticle swarm optimization for feature selection in
classification: A multi-objective approach’, IEEE
Transactions on Cybernetics 43(6), 1656–1671.

Xue, B., Zhang, M. and Browne, W. N. (2015),
‘A comprehensive comparison on evolutionary fea-
ture selection approaches to classification’, Inter-
national Journal of Computational Intelligence and
Applications 14(02), 1550008.

Yong, Z., Dunwei, G., Ying, H. and Wanqiu, Z.
(2015), ‘Feature selection algorithm based on bare
bones particle swarm optimization’, Neurocomput-
ing 148, 150–157.

Zhang, C. and Hu, H. (2005), Using PSO algorithm to
evolve an optimum input subset for a SVM in time
series forecasting, in ‘IEEE International Confer-
ence on Systems, Man and Cybernetics (SMC’05)’,
Vol. 4, pp. 3793–3796.

Zhu, Z., Ong, Y.-S. and Dash, M. (2007), ‘Markov
blanket-embedded genetic algorithm for gene selec-
tion’, Pattern Recognition 40(11), 3236–3248.

