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Abstract In classification problems, a large number of fea-
tures are typically used to describe the problem’s instances.
However, not all of these features are useful for classifica-
tion. Feature selection is usually an important pre-processing
step to overcome the problem of “curse of dimensionality”.
Feature selection aims to choose a small number of fea-
tures to achieve similar or better classification performance
than using all features. This paper presents a particle swarm
Optimization (PSO)-based multi-objective feature selection
approach to evolving a set of non-dominated feature subsets
which achieve high classification performance. The pro-
posed algorithm uses local search techniques to improve a
Pareto front and is comparedwith a puremulti-objective PSO
algorithm, three well-known evolutionary multi-objective
algorithms and a current state-of-the-art PSO-based multi-
objective feature selection approach. Their performances
are examined on 12 benchmark datasets. The experimental
results show that in most cases, the proposed multi-objective
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algorithm generates better Pareto fronts than all other meth-
ods.

Keywords Multi-objective · Feature selection · Classifi-
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1 Introduction

In machine learning, classification plays an important role,
which aims to assign a known class label to an instance based
on the instance’s properties, called instance features. Inmany
classification algorithms, an instance is described by a large
number of features. However, not all features provide use-
ful information. For example, some features do not contain
any relevant information about the class label, while other
features may be redundant. Those features can conceal the
useful information from the relevant features, which results
in a low-quality classifier (Zhao et al. 2009). In addition, due
to “the curse of dimensionality” (Gheyas and Smith 2010), a
large number of features cause a long time to train a classifi-
cation algorithm.Toovercome this problem, feature selection
(Guyon and Elisseeff 2003) is proposed to reduce the number
of features by removing all redundant and irrelevant fea-
tures, whichwill not only speed up the learning/classification
process but also improve the classification performance over
using all features. However, it is not an easy task to develop
an efficient and effective feature selection approach due to
the complex interaction between features and its huge search
space.

Feature selection aims to extract a good feature subset
from a large set of original feature. The extracted feature
subset is expected to achieve similar or better performance
than the whole feature set. Suppose that there are n original
features, then the total number of possible feature subsets
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is 2n . It can be seen that the search space size of feature
selection increases exponentially with respect to the number
of features. An exhaustive search technique, which consid-
ers all feature subsets, can guarantee to produce an optimal
feature subset. However, the exhaustive search is clearly too
slow especiallywhen there are a large number of original fea-
tures. Greedy search algorithms, such as sequential forward
selection (Whitney 1971) and sequential backward selec-
tion (Marill and Green 1963), are more efficient than the
exhaustive search algorithm. However, these methods eas-
ily get stuck at local optima. To solve the large search space
problem, evolutionary computation (EC) techniques are good
solutions because of their global search ability. Many EC
algorithms, such as genetic programming (GP) (Neshatian
and Zhang 2009a), genetic algorithms (GAs) (Yuan et al.
1999), artificial bee colony algorithm (ABC) (Hancer et al.
2015) and particle swarm optimization (PSO) (Unler and
Murat 2010; Yang et al. 2008), have been widely applied to
feature selection. Compared with other EC algorithms, PSO
is preferable because it not only uses fewer parameters but
also converges more quickly.

Feature selection has two main goals, which are to mini-
mize the number of selected features and to maximize the
classification performance. However, these objectives are
usually conflicting with each other. For example, when the
number of features is reduced, the classification is likely to
be decreased. Therefore, feature selection can be viewed as
a multi-objective problem and the searching process needs
to consider the trade-off between two objectives. This paper
will take the advantages of PSO to develop a multi-objective
feature selection approachwhich can simultaneously achieve
both objectives of feature selection problems.

1.1 Goals

The overall goal of this study is to develop a PSO-based
multi-objective feature selection approach, which can pro-
duce a set of non-dominated solutions that specify a small
number of features and achieve better classification per-
formance than using all features. To achieve this goal,
we develop a new multi-objective PSO (MOPSO) algo-
rithm, called ISRPSO, which uses local search techniques
to improve the Pareto front. In addition, the proposed algo-
rithm is also compared with three well-known evolutionary
multi-objective algorithms including Non-dominated sorting
genetic algorithm II (NSGAII) (Deb et al. 2000), Strength
Pareto evolutionary algorithm 2 (SPEA2) (Zitzler et al. 2001)
and Pareto archived evolutionary strategy (PAES) (Knowles
and Corne 1999). Finally the proposed algorithmwill then be
compared with a state-of-the-art multi-objective PSO algo-
rithm, named CMDPSOFS (Xue et al. 2013). Specifically,
we will investigate the following:

– Whether the proposed multi-objective PSO algorithm
(ISRPSO) evolves a set of non-dominated solutions with
a small number of features and better classification per-
formance than using all features.

– Whether applying local search can evolve better Pareto
front in comparison with a pure multi-objective PSO.

– Whether ISRPSO can evolve a better Pareto front than
NSGAII (Deb et al. 2000), SPEA2 (Zitzler et al. 2001)
and PAES (Knowles and Corne 1999) in feature selection
problems.

– Whether ISRPSO is able to produce a Pareto front
of non-dominated solutions, which can outperform a
state-of-the-artmulti-objective PSO for feature selection,
CMDPSOFS (Xue et al. 2013).

1.2 Organization

The remainder of this paper is organized as follows. Section
provides background information. In Sect. 3, we propose a
novel PSO-basedmulti-objective feature selection algorithm.
Section 4 describes the experimental design, and Sect. 5
presents the experimental results. In Sect. 6, we conclude
our work with some possible extensions for future work.

2 Background

2.1 Particle swarm optimization (PSO)

In 1995, Kennedy et al. (1995) proposed an evolutionary
computation algorithm called particle swarm optimization
(PSO), which was developed based on social behaviours.
Like other swarm intelligence algorithms, PSOmaintained a
set of particles, which was also known as a swarm. Each par-
ticle, which represented a candidate solution, moved around
the search space using its own position and velocity. Particu-
larly, the i th particle’s position was a D-dimensional vector,
xi = (xi1, xi2, . . . , xiD), where D was the dimensionality
of the search space. For each iteration, the positions were
updated according to the particle’s velocity, which was also
represented by a vector, vi = (vi1, vi2, . . . , viD). To avoid
skipping good positions due to moving too fast, the particle’s
velocitywas limited by a predefinedmaximumvelocity vmax,
whichmeant−vmax ≤ vid ≤ vmax. In PSO, each particle also
recorded the best position discovered by itself, called pbest .
In addition, the best position discovered by a particle’s neigh-
bours and itselfwas alsomaintained,whichwas called gbest .
According to the two pbest and gbest , the i th particlemoved
around the search space by the following updating equations:

vt+1
id =w∗vtid+c1∗ri1∗

(
pid − xtid) + c2 ∗ ri2 ∗ (pgd − xtid

)

(1)
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xt+1
id = xtid + vt+1

id (2)

where t represents the t th iteration, d denotes the dth dimen-
sion in the search space, w is a predefined constant inertia
weight, c1 and c2 are acceleration constants, ri1 and ri2 are
two random values uniformly generated in the interval [0,1],
and pid and pgd represent the position entry of pbest and
gbest in the dth dimension, respectively.

The above description explains how a continuous PSO
works. There is still another kind of PSO, called binary PSO
(BPSO). In BPSO, the position entries are binary values.
There are some potential limitations of the current binary
PSO; for example, the update of particle position is based
only on the current velocity while in standard PSO, both cur-
rent velocity and position are used. Although both versions
of PSO have been successfully used to solve feature selection
problems (Unler and Murat 2010; Liu et al. 2011; Chuang
et al. 2008; Huang and Dun 2008), continuous PSO achieves
better performance than binary PSO as shown by Xue (Xue
et al. 2012a). Therefore, we will develop a multi-objective
feature selection approach using continuous PSO.

2.2 Multi-objective optimization

2.2.1 Basic concepts of multi-objective optimization

Inmany optimization problems, there ismore than one objec-
tive that needs to be optimized. Often, the objectives conflict.
Multi-objective problems refer to the presence of two ormore
conflicting objectives. For example, a feature selection prob-
lem is a multi-objective problem, in which minimizing both
classification error rate and the number of selected features
are two conflicting objectives. The conflicting objectives
can be expressed in multiple conflicting objective functions,
which needs to bemaximized or minimized. Inmathematical
terms, a multi-objective problem can be expressed as in the
following formula (as minimization problems):

Minimize ( f1(x), f2(x), . . . , fk(x)) (3)

where x is the vector of variables which describe the prob-
lem’s solutions, fi (x) is an objective function of x and the
integer k ≥ 2 is the number of objectives.

In multi-objective problems, the trade-off between con-
flicting objectives is used tomeasure the quality of a solution.
In particular, suppose that y and z are two solutions of a k
objectiveminimization problem. The solution y is better than
z or y dominates z if and only if:

∀i : fi (y) ≤ fi (z) and ∃ j : f j (y) < f j (z) (4)

where i, j ∈ 1, 2, 3, . . . , k.When a solution is not dominated
by any other solutions, it is called a non-dominated solution.

The set of a non-dominated solution forms a trade-off surface
in the objective space, namelyPareto front. Amulti-objective
algorithm is designed to evolve a set of non-dominated solu-
tions.

2.2.2 Evolutionary multi-objective algorithms

NAGAII, proposed by Deb et al. (2000), is one of the most
popular evolutionary multi-objective algorithms. There are
two main ideas introduced in NSGAII: a fast non-dominated
sorting technique and a diversity preserving algorithm. The
fast non-dominated sorting technique is an efficient approach
to sorting all parents and offspring into different level of non-
dominated solutions. This sorted population is used to build
the parent population for the next generation. The density-
preserving algorithm estimates the density of solutions based
on the crowding distance and uses the estimates to maintain
the diversity of the population.

SPEA2 is another popular evolutionary multi-objective
algorithm proposed by Zitzler et al. (2001). The most impor-
tant principle introduced in SPEA2 is the incorporation
between the fine-grained fitness assignment strategy, a den-
sity estimation technique and an enhanced archive truncation
method. In particular, each individual fitness is the sum of
its strength raw fitness and a density estimation. A new pop-
ulation is constructed by selecting non-dominated solutions
from both the original solution and the archive. If the num-
ber of non-dominated solutions exceeds the population size,
the archive truncation method is applied to determine which
solutions will be selected. The truncation method bases on
the distance between a solution and its kth nearest neighbour.

PAES is an evolutionary multi-objective algorithm pro-
posed by Knowles and Corne (1999). The author argued that
PAES is the simplest possible non-trivial algorithm, which is
able to generate diverse solutions in the Pareto optimal set.
Themain idea of PAES is the combination of local search and
the usage of an archive of previously found non-dominated
solutions to identify the approximate dominance rank of the
current and candidate solutions.

The success of the PSO algorithm for a single-objective
problem has encouraged researchers to extend PSO to solve
multi-objective problems (MOPSO). As explained in the pre-
vious section, in PSO for a single-objective problem, each
particle has exactly one leader gbest to update its position.
However, in most of current MOPSO algorithms, instead of
recording gbest for each particle, an archive set is used to
maintain a set of non-dominated solutions being discovered
by the population. Each particle will select a solution from
the archive set as its gbest to update its position. When the
final iteration is reached, the archive set represents the final
result of theMOPSOalgorithm,which forms theParetofront.
This work will apply a local search on the archive set to help
MOPSO better explore Pareto front. Since these algorithms
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were successfully applied to solve feature selection prob-
lems, all these above algorithms will be used as benchmark
techniques for the proposed algorithm, which is specifically
designed for feature selection.

2.3 Related work on feature selection

2.3.1 Traditional feature selection methods

A basic version of feature selection is feature ranking (Dash
and Liu 1997), where a score is assigned to each feature
according to an evaluation criterion. Feature selection can be
performedby selecting featureswith the highest scores.How-
ever, this type of algorithm ignores the interaction between
features. Additionally, the features with the highest scores
are usually similar. Therefore, these algorithms tend to select
redundant features.

Sequential search techniques were also applied to solve
feature selection problems. In particular, sequential forward
selection (SFS) (Whitney 1971) and sequential backward
selection (SBS) (Marill and Green 1963) were proposed.
SFS started with an empty feature set. For each iteration,
a single feature from the unselected features, which resulted
in the best accuracy when using with selected features, was
added into the selected feature set. On the other hand, SBS
started from a full set of features and iteratively removed a
single feature at each step. These algorithms stopped when
adding or removing any single feature did not result in any
improvement of the classification accuracy. Although these
local search techniques achieved better performance than the
feature rankingmethod, theymight suffer the “nesting” prob-
lem, in which a feature was permanently added or removed
from the selected feature set. To avoid the nesting effect,
Stearns (1976) proposed a “plus-l-takeaway-r” method in
which l features were added before r features were removed
from the feature subset. However, it was not an easy task to
determine the best values of (l,r ). Instead of using a fixed pair
of values (l,r ), Pudil et al. (1994) proposedfloating sequential
selection algorithms, in which the values (l,r ) were dynami-
cally determined.

2.3.2 EC approaches (non-PSO) for feature selection

EC techniques are well known because of their global search
ability. EC algorithms have been applied to feature selec-
tion problems, such as GAs (Zhu et al. 2007), GP (Neshatian
and Zhang 2009b). Zhu et al. (2007) proposed a hybrid fea-
ture selection approach, which combined both local search
and GAs. In this algorithm, a filter method was used to
rank features individually. Basing on the ranking informa-
tion, GAs deleted or added a feature to achieve better fitness
value, which was the classification accuracy. The experi-

ments showed that this algorithm outperformed the GAs
alone and other algorithms.

Oreski and Oreski (2014) proposed a hybrid genetic
algorithm with neural-networks (HGA-NN) to evolve an
optimum feature subset. In the initialization step, the feature
set was narrowed by different fast filter techniques. So impor-
tant features, which were selected by the filter approaches,
were used to initialise themajor part of population. The rest of
population was filled randomly. In HGA-NN, an incremental
stage was applied to enhance the creation of the initial popu-
lation, which increased the diversity of the genetic material.
The proposed algorithm was evaluated on two real-world
credit datasets. The experimental results showed that HGA-
NN achieved better classification performance than GA-NN
technique proposed by Wang (2005).

Lin et al. (2014) proposed a novel GA-based feature selec-
tion approach, in which the prior knowledge about financial
distress prediction was used to group similar features. After
that a filter approach was used to rank all features in the same
group and only top-rank features from each group were cho-
sen to participate in the selection process by GAs algorithm.
Although the two-step selection approach was efficient, it
skipped the interaction between features. Other GA-based
feature selection approaches were developed recently to
solve real-world problems, such as Chaaraoui and Flórez-
Revuelta (2013); Seo et al. (2014); Liang et al. (2015).
Neshatian and Zhang (2009b) proposed a wrapper GP-based
approach, which evaluated and ranked feature subset in
binary classification tasks. Experiments showed that the pro-
posed methods detected subset of relevant features in differ-
ent situations, where other methods had difficulties. Bhowan
and McCloskey (2015) proposed two GP-based approaches
to evolve a set of features, whichwas used directly in theWat-
son system, an intelligent open-domain question answering
system. The first approach extracted all features, which were
used in the best-of-run evolvedGP tree. The second approach
considers all evolved trees. Particularly, from the set of GP
trees, the top N features with the most frequency were cho-
sen as extracting features. Two values of N being used in
this paper were 10 and 20. The experiment results showed
that, the set of features selecting from the best GP tree only
workedwell when the number of selected features was small.
Meanwhile, selecting top N features from the whole set of
trees produces good resulted on both small and large datasets.
However, as other ranking features selection algorithms, this
algorithm did not consider the interaction between features,
especially between redundant features.

2.3.3 PSO-based feature selection methods

Many EC algorithms have been used for feature selection,
such as GAs, GP or PSO. PSO is preferable because it is eas-
ier to implement and uses fewer parameters than GAs and
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GP. Wang et al. (2007) proposed a filter PSO-based feature
selection algorithm, which applied rough set theory to eval-
uate feature subset. In the proposed algorithm, the fitness
function was the combination of the classification quality
of the feature subset calculated by rough set theory and the
proportion of the selected features. The experimental results
showed that the proposed algorithm could find the optimal
solution in a smaller amount of time than a GA using rough
sets. Chakraborty and Chakraborty (2013) proposed a filter
PSO-based feature selection approach, which used fuzzy set
to calculate the fitness value for each particle. Specifically,
themembership value of fuzzy set theorywas usedwithmore
than one thresholds to decide whether or not an instance is
consistent according to the selected features. The proportion
of consistent instances over the total number of instances was
the consistent or fitnessmeasure of the current feature subset.
Two PSO-based filter feature selection algorithms were pro-
posed in Cervante et al. (2012), where mutual information
and entropy were used in the fitness function to evaluate the
relevance and redundancy of the selected feature subset. The
experiments showed that the proposed methods significantly
reduced the number of features whilst achieved similar or
better classification than using all features.

In PSO, premature convergence was a common problem,
in which the swarm converged quickly to a local optima. To
avoid premature convergence, Chuang et al. (2008) proposed
a new gbest updating mechanism, which resets gbest ele-
ments to zero if it maintained the same value after several
iterations. However, the performance of this algorithm was
not compared with other PSO-based algorithms. Later, Tran
et al. (2014) also applied this resetting mechanism cooper-
ating with local searches on pbest to simultaneously reduce
the number of selected features and improve the classifica-
tion performance. In addition, the newfitness calculationwas
proposed, which based on the changed features (selected to
not selected or vice versa). The proposed algorithm achieved
smaller feature subset with lower classification error than
(Chuang et al. 2008). Another binary PSO-based algorithm,
which also aimed to avoid premature convergence, was pro-
posed by Bin et al. (2012). At each iteration of this algorithm,
the swarm was divided into two groups, named “leaders”
and “followers”. The “leaders” had better fitness values. The
“followers” updated their positions and velocities based on
leaders’ update. The experimental results showed that the
proposed update strategy better utilizes the social behaviour
phenomenon than the standard binary PSO.

Xue et al. (2014) proposed three new initialization
mechanisms, which mimic the sequential feature selection
approach. While the small initialization used about 10%
of original features to initialize the particles, particles in
the large initialization were constructed based on 50% of
original features. These two initialization mechanisms were
combined in the mixed initialization, which used the small

initialization for most of particles and the large initialization
for the rest. In addition, three new updating mechanisms for
pbest and gbest were proposed in the paper. The experimen-
tal results showed that the new initialization and updating
mechanisms led to smaller feature subsets with better clas-
sification performance than the standard PSO and two-stage
binary PSO algorithm.

Vieira et al. (2013) proposed a new representation for
binary PSO, which simultaneously performed feature selec-
tion and optimized the SVM kernel parameters. Particularly,
each bit string corresponded to an original feature or a
kernel parameter, which resulted in the length of the new
representation was equal to the total number of features
and kernel parameters. Experimental results showed that
the proposed algorithm achieved better classification per-
formance than other binary PSO-based feature selection
algorithms (Chuang et al. 2008; Lee et al. 2008) and selected
smaller feature subsets thanGA-based feature selection algo-
rithm (Huang and Wang 2006). This representation was also
applied to continuous encoding (Lin et al. 2008) and a mix-
ture of binary and continuous encoding (Boubezoul and Paris
2012). Lane et al. (2013) applied statistical clustering, which
groups similar features into one cluster. In particular, the
proposed method arranged the features in the same clus-
ter together and selected a single feature from each cluster
based on the velocity. Lane et al. (2014) further improved his
work by applying Gaussian distribution to select multiple
features from each cluster. Later, Nguyen et al. (2014b) also
applied statistical clustering to propose a new representation,
in which each bit string belonged to a certain feature cluster
and presented a feature index from the cluster. However, in
the new representation a small change of the position might
not lead to any different feature subset. Therefore, Nguyen
et al. (2015) applied Gaussian distribution to propose a new
transformation rule, which could form a smoother fitness
landscape than the representation in Nguyen et al. (2014b).

Recently, filter and wrapper approaches have been com-
bined to form hybrid approaches, which take the advantages
of both filter and wrapper methods. Nguyen et al. (2014a)
proposed awrapper PSO-based feature selection approach, in
which gbest is improved by a local search using a filter-based
measure. The local search mimicked the typical backward
feature selection method to remove features from gbest
according to the relevant and redundant measure calculated
bymutual information. The experimental results showed that
the proposed algorithms selected much smaller number of
features while still achieved similar or better classification
performance than the other PSO-based algorithms. Although
the proposed algorithm had to perform an extra task for local
search, its computation cost is still cheaper than other PSO-
based algorithms because of the smaller number of selected
features. An extensive review about EC-based feature selec-
tion algorithms was conducted in Xue et al. (2015a).
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Feature selection problem can be seen as amulti-objective
problem, because its two objectives usually conflict with
each other. However, most of wrapper feature selection
approaches used only classification performance as the fit-
ness function (Mohemmed et al. 2009; Zhang et al. 2015)
or combined the classification accuracy and the number of
selected features into a single fitness function (Xue et al.
2012b; Huang and Dun 2008). Xue et al. (2012a) proposed
two multi-objective PSO algorithms for feature selection
problems. The first algorithm applied the idea of non-
dominated sorting-based multi-objective genetic algorithm
II (NSGAII) into PSO for feature selection. The other algo-
rithmbased on the idea of crowding,mutation and dominance
(CMDPSOFS) to evolve the Pareto front solutions. Accord-
ing to the experimental results, both algorithms could select
a small number of features while achieving better classi-
fication performance than using all features. However, the
above algorithms did not propose any specific design for fea-
ture selection problems. Therefore, this work will propose a
new local search technique for MOPSO, which is specifi-
cally designed for feature selection problems. The proposed
algorithm is then compared with the current state-of-the-art
multi-objective PSO-based algorithm, CMDPSOFS.

3 PSO-based multi-objective feature selection
algorithm: ISRPSO

In this section, we investigate a new approach to feature
selection using multi-objective PSO, with two objectives to
explore the Pareto front of feature subsets. Initially, standard
PSO was proposed to solve single-objective problems, in
which each particle remembers the best position discovered
by its neighbours and itself so far, called gbest . To develop a
multi-objective PSO algorithm, Li (2003) introduces the idea
of an archive set, which is used in NSGA. The archive set
contains all non-dominated solutions which have been dis-
covered by the swarm so far. With the archive set, instead of
using the individual gbest to update velocity, each particle
selects an archive member as its gbest . Therefore, the whole
archive set guides the swarm through the search space. It is
expected that the better archive sets would allow the swarm
to construct better solutions, which select a small number
of features and maintain or even improve the classification
accuracy. In this paper, we investigate a novel PSO-based
multi-objective feature selection algorithm (ISRPSO), which
uses local search techniques to improve the archive set with
a better Pareto front.

3.1 Representation and fitness function for ISRPSO

In this study, a continuous PSO is used to solve feature selec-
tion problems. Each particle’s position representation is a

vector of n real numbers, where n is the total number of
features. Each position entry xi corresponds to the i th fea-
ture in the original feature set. The value xi varies between
0 and 1 and represents the confidence that feature ith should
be included in the solution subset. A threshold θ is used to
decide whether or not a feature is selected: the ith feature is
selected if and only if θ < xi .

As stated above, each feature selection problem has two
objectives: minimizing the classification error rate and min-
imizing the number of selected features. These objectives
are calculated according to Eqs. 5 and 6, respectively. Notice
that both Error Rate and FeatureRate varies in the interval
[0,1], which guarantees the fairness between two objectives.

ErrorRate = FP + FN

T P + T N + FP + FN
(5)

where TP, TN, FP and FN are true positives, true negatives,
false positives and false negatives, respectively.

FeatureRate = #Selected f eatures

#All f eatures
(6)

3.2 Important set concepts from the archive set

Before describing the novel multi-objective PSO, it is help-
ful to clearly define some concepts about feature sets being
built from the archive set. As mentioned above, the archive
set contains all non-dominated solutions, which are not dom-
inated by any other solutions discovered so far. Therefore, the
features being selected by these archivemembers can be con-
sidered the important features. These features are contained
in one feature set, denoted as S.

Another important concept relates to each individual of
the archive set. In particular, a set Si consists of all features
which are selected by the i th archive member. Similarly, a
set USi consists of all features, which are selected by all
archive members except the i th particle. It can be seen that
S = Si

⋃
USi or USi = S\Si .

Let us consider an example. Assume the original feature
set contains 5 features, F = { f1, f2, f3, f4, f5}. The archive
set contains three members Archive = {A1, A2, A3}, in
which the features selected by each member are defined as
below:

– 1th member (A1): S1 = { f1, f2}
– 2nd member (A2): S2 = { f1, f3}
– 3rd member (A3): S3 = { f2, f3, f4}

So feature f5 is not selected by any archive members, which
might indicate that f5 is an irrelevant or a redundant feature.
According to the above definition, the set of all features being
selected by this archive set is S = { f1, f2, f3, f4}. For each
archive member, the set USi is defined as below
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– US1 = S\S1 = { f3, f4}
– US2 = S\S2 = { f2, f4}
– US3 = S\S3 = { f1}

3.3 Local search to improve the archive set

As stated above, this work investigates using local search
techniques to improve the quality of the archive members,
which hopefully results in a better Pareto front. In particu-
lar, three operations, including Inserting (I), Swapping (S),
Removing (R) are proposed to enhance the archive set. All
of these operators use three sets S, Si ,USi to search around
each archive member to find better solutions. These opera-
tions are described in the following sections.

3.3.1 Inserting

As mentioned above, for the ith archive member, the setUSi
contains all features that are selected by all archive members
except the ith members. Since the features being selected by
archive members are usually important, it would be possible
to improve the classification accuracy of an archive member
by adding one feature from the set USi to the current set of
selected features Si .

The features in each set USi are sorted according to
their single classification accuracy, which is the classifica-
tion performance when only feature ith is used to perform
classification. The better features, which have higher accu-
racy are in front of the list. After that, each feature in USi is
temporarily added into Si to form a new feature set, called
S′
i . If the accuracy of S′

i is better than the accuracy of Si ,
the inserting process stops. The new solution, called SOin ,
whose selected features are S′

i , is built and passed as an input
to the next step (Removing). So after the inserting step, the
new solution SOin will select at most one feature more than
the original archive member, Ai .

Continuing the example from the above section, in which
the first archive member A1 selects S1 = { f1, f2} and its
US1 = { f3, f4}. Suppose that C({ f1, f2, f3}) = 0.75,
C({ f1, f2, f4}) = 0.82, C({ f1, f2}) = 0.80, where C(.) is
the classification of a feature set. Also suppose that the single
classification accuracy of f3 is better than f4. The inserting
process will start with f3. At the first step, the “inserting”
process will temporarily add feature f3 to set S1, to form
a new set { f1, f2, f3}. However, since C({ f1, f2, f3}) <

C({ f1, f2}), feature f3 will be discarded. After that feature
f4 is temporarily added to the set S1 to form a new feature set,
{ f1, f2, f4}. This time, sinceC({ f1, f2, f4}) > C({ f1, f2}),
a new solution SOin is created, which uses { f1, f2, f4} as its
selected features. This solution will be further improved by
Removing operation, which will be discussed in the next
section.

3.3.2 Removing

In the I nserting step, at most one feature might be added to
the feature selected set of an archive member to form a new
solution SOin , which is guaranteed to be similar or better
than the archive member in terms of classification accuracy.
In contrast, Removing step tries to improve SOin by remov-
ing at most one feature from SOin . The Removing process
works in the same way as backward selection algorithm.
Firstly, all features selected by SOin are sorted according
to their single classification accuracies. In the sorted list,
the features with less accuracy will be at the top of the list;
therefore, they are more likely to be removed. After that,
each feature from the sorted list will be temporarily removed
from the selected set until there is an improvement in terms of
the classification accuracy. The new solution, called SOre is
built and passed as an input to the next step (Swapping). So
after the removing step, the new solution SOre will contain
at most one feature less than the solution SOin , provided by
the I nserting step.

Continuing the example from the above section, the Insert-
ing process provides SOin = { f1, f2, f4} as an input to the
Removing process. Suppose that C( f2) < C( f1) < C( f4).
After sorting features according to their classification accu-
racy, the order of removing features is f2 → f1 → f4.
Suppose that C({ f1, f4}) = 0.80, C({ f2, f4}) = 0.85, and
C({ f1, f2}) = 0.75. Firstly, f2 is temporarily removed from
SOin , which results in a feature set { f1, f4}. However, since
C({ f1, f4}) = 0.80 < C({ f1, f2, f4}) = 0.82, feature f2
restored. Next feature f1 is temporarily removed from SOin ,
which produces another feature set,{ f2, f4}. This time, as
C({ f2, f4}) = 0.85 > C({ f1, f2, f4}) = 0.82, a new solu-
tion SOre is created, which uses { f2, f4} as its selected
features. This solution will be improved in the last operation
called Swapping, which will be discussed in the following
section.

3.3.3 Swapping

Compared with Inserting and Removing operations, Swap-
ping is a bit more complicated. For each solution, this
operation acts on both the selected set Si and unselected set
USi . In addition, instead of adding or removing features from
the solution, this operation tries to find out better solutions
by swapping between features in Si andUSi . In other words,
this operation will temporarily replace one feature from Si
by one feature from USi .

Firstly, all features in Si are sorted according to their sin-
gle classification accuracies in ascending order, so the worst
feature is more likely to be replaced. In contrast, all features
in USi are sorted in descending order; therefore, the fea-
ture with better single classification performance will have
more chance to be added. For each feature u in USi , this
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process will try to replace with a feature in Si . Once fea-
ture u finds a suitable feature s in Si , which means the
classification accuracy is improved when s is replaced by
u, the replacing process for u is stopped. After that the swap-
ping process will continue with the feature after feature u in
USi .

Continuing the example from the above section to explain
for this operation, { f2, f4}, the new solution SOre is fed
into Swapping process. Its selected and unselected sets
are Sre = { f2, f4} and USre = { f1, f3}. Suppose that
C( f1) < C( f3) and C( f2) > C( f4), the above two sets are
sorted as following Sre = { f4, f2} andUSre = { f3, f1}. The
Swapping operation starts with the first element of the set
USre, which is feature f3. Firstly, f3 will try to swapwith the
worst feature in the set Sre, which is feature f4. Suppose that
C({ f3, f2}) > C({ f4, f2}), then f3 immediately replaces f4
to create a better solution SOs1 , which selects the following
feature { f3, f2}. Note that the selected set is updated, which
is Ss1 = { f3, f2}. The Swapping processes will continue
until all features in the unselected set USre have been con-
sidered.

3.3.4 Overall ISRPSO algorithm

Algorithm 1 shows the pseudo-code of ISRPSO. To deter-
mine a leader, ISRPSO maintains a set of non-dominated
solutions being discovered so far. A gbest for a particle is
selected from the Archive set according to their objective
distance and a binary tournament selection. Specifically, the
binary tournament selection is used to select two solutions
from the Archive set, and the closest solution (to the particle)
in the objective space is chosen as the gbest . The maximum
size of the Archive set is set as the number of particles in
the swarm.

The local search, which aims to improve the solutions
in Archive set, is performed every five iterations. Partic-
ularly, three operations are used to improve the solution
quality of the Archive set. For each Archive member, the
inserting operation tries to add one more feature into the
member’s feature set to create a new solution, called SOin .
If adding one feature improves the classification accuracy of
the current Archivemember, then SOin is built based on the
new feature set. Otherwise, SOin is exactly the same as the
current Archivemember. After that, the solution SOin is fur-
ther improved by the removing operation. On the contrary,
removing operation tries to delete at most one feature from
SOin , which results in similar (no feature is deleted) or higher
classification accuracy. Once more, the output of removing
operation, SOre, is improved by the swapping operation.
Instead of removing or inserting features, this operation finds
a better solution by swapping between features selected by
current solution (SOre) and featureswhich are selected by the
other Archive members. So the swapping operation might

Algorithm 1 : Pseudo-code of ISRPSO
1: begin
2: divide Dataset into a Training set and a Test set;
3: initialize the swarm;
4: evaluate two objectives values for each particle;
5: add non-dominated solutions into Archive set;
6: while Maximum iterations is not reached do
7: if i teration is divided by 5 then 
 improve the Archive set for

each 5 iterations
8: for each solution i in the Archive do
9: (SOin, Sin,USin) = I nserting(Ai , Si ,USi )
10: (SOre, Sre,USre) = Removing(SOin, Sin,USin)
11: (SOsw, Ssw,USsw) = Swapping(SOre, Sre,USre)
12: if SOsw is not dominated by any archive members then
13: insert SOsw into Archive set
14: end if
15: end for
16: end if
17: for each particle i in the swarm do
18: select a leader (gbest) from Archive set for each particle

using a binary tournament selection based on the objec-
tives distance;

19: update the velocity and the position of particle i ;
20: evaluate two objective values for each particles;
21: update the pbest for each particle;
22: if the i th particle is not dominated by any archive members

then
23: insert i th particle into Archive set;
24: end if
25: end for
26: end while
27: calculate the testing classification error rate of the solutions in

Archive set on the test set;
28: return the solutions in Archive;
29: return the training and test classification error rates of the solutions

in Archive; end

produce a new solution, SOsw, which has the same number
of selected features but achieves better accuracy than SOre.
Therefore, the local search method is able to improve the
archive member’s accuracy by increasing at most one fea-
ture. A new position is built based on the feature set SOsw.
In the new position, all position entries corresponding to fea-
tures from SOsw are set to 1 and all other entries are set to 0.
Finally, if the new solution is not dominated by any Archive
member, it will be inserted into the Archive set. In addition,
all solutions, which are dominated by the new solution, will
be removed from the Archive set.

With these three operations, it is expected that at least the
final improved solution SOsw will not be dominated by any
Archive members. In a good case, SOsw might even dom-
inate some Archive members. Therefore, this local search
technique either maintains the diversity of the swarm or even
improves the Pareto front by creating a better solution. Cur-
rently, since the classification accuracy is used to compare
between two solutions, it is quite expensive to perform this
local search. Therefore, the solutions within the Archive set
are improved by these three operations for every five itera-
tions.
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4 Design of experiments

The proposed multi-objective PSO-based algorithm is exam-
ined and compared with a pure multi-objective PSO algo-
rithm (MOPSO), three well-known evolutionary multi-
objective algorithms (NSGAII, SPEA2 and PAES) and a
state-of-the-art PSO-based multi-objective feature selection
algorithm (CMDPSOFS). The comparison is performed on
twelve datasets shown in Table 1, which were selected from
theUCImachine learning repository (Asuncion andNewman
2007). These datasets have different numbers of features,
classes and instances. For each dataset, all instances are ran-
domly divided into a training set and a test set, which contains
70 and 30% of the instances, respectively.

All the algorithms are wrapper approaches, which use
K nearest neighbour (KNN) as their classification/learning
algorithms where K = 5. In recent literature Xue et al.
(2015b), the generality of wrapper feature selection appro-
aches is discussed. The experimental results show that feature
subsets, which are selected by wrappers using simple clas-
sification algorithms like KNN, can be general to other
classification algorithms. Therefore, in this work, only KNN
is used as a classification algorithm to select features and
to test the performance of selected feature subset. Another
reason using KNN instead of other classifier algorithms, like
SVM and DT, is to make the evaluation process faster in this
wrapper approach. During the training process, each parti-
cle, which represents a set of selected features, is evaluated
using tenfold cross-validation. After the training process, the
selected features are evaluated on the test set to obtain the
testing classification error rate. For each dataset, all of the
algorithms have been conducted for 50 independent runs.

In all of the PSO-based algorithms, the fully connected
topology is used. The parameters are set as follows (Van
Den Bergh 2006): w = 0.7298, c1 = c2 = 1.49618, vmax =
6.0. The population size is 30 and the maximum number of
iterations is 100. The threshold θ is set as 0.6.

In NSGAII (Deb et al. 2000), SPEA2 (Zitzler et al. 2001)
and PAES (Knowles and Corne 1999), the representation of
each individual is the same as the GA-based feature selection
algorithms (Chakraborty 2002; Hamdani et al. 2007), where
each individual is a n-bit binary string and n is the number of
available features. Each bit in the representation corresponds
to a feature in the original feature set. If a bit value is “1”
then the corresponding feature is selected. Otherwise the bit
with value “0” indicates that the corresponding feature is
not selected. In these algorithms, a bit-flip mutation operator
is applied and a single point crossover operator is used in
NSGAII and SPEA2. The mutation rate is 1

n , where n is the
number of features in the original set and the crossover rate
is 0.9. In these algorithms, the number of individuals is 30
and the number of generations is 100. Therefore, the total
number of evaluations is 3000.

Table 1 Datasets

Dataset #Features #Classes #Instances

Wine 13 3 178

Australian 14 2 178

Vehicle 18 4 846

German 24 2 1000

Ionosphere 34 2 351

Lung Cancer 56 3 32

Sonar 60 2 208

Movementlibras 90 15 360

Hillvalley 100 2 606

Musk1 166 2 476

Madelon 500 2 4400

Isolet5 617 2 1559

5 Results and discussion

For each dataset, five multi-objective algorithms, ISRPSO,
CMDPSOFS, NSGAII, SPEA2, PAES and CMDPSOFS are
conducted for 50 independent runs. After each run, a set
of non-dominated solutions are obtained. To compare these
algorithms, firstly all 50 archive sets are combined together
to create an union set. In this union set, the classification
error rate of feature subsets, which share the same number
of features, are “averaged”. A set of “average” solutions is
obtained using the average classification error rate and the
corresponding number of features. This average set is called
the “average” Pareto front. The meaning of average Pareto
front is the estimation of classification errorwhen the number
of features is predefined. In addition, for each dataset, all non-
dominated solutions are selected from the union set to create
a set of “best” solutions, called “best” set.

Firstly, ISRPSO is compared with a pure multi-objective
PSO algorithm to illustrate how the local search can improve
the Pareto front. This comparison on the training and test sets
is shown in Figs. 1 and 2, respectively. Meanwhile, Figs. 3
and 4 show the comparison between ISRPSO and NSGAII,
SPEA2, PAES on the training and test sets, respectively.
Finally, ISRPSO is compared with the state-of-the-art multi-
objective PSO-based feature selection, CMDPSOFS (Xue
et al. 2013). In particular, the classification error on training
set between ISRPSO and CMDPSOFS are shown in the Fig.
5, while Fig. 6 indicates these algorithms’ classification per-
formance on the test set. In these figures, “-Ave” stands for
the “average” Pareto front resulted from the 50 independent
runs. “-Best” represents the non-dominated solutions (“best”
set) of all multi-objective algorithms. In each figure, the top
line means the dataset name followed by the total number of
features and the classification error rate achieved using all
features.
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Fig. 1 Comparison between IRPSO and MOPSO on the training set

5.1 Comparison between ISRPSO and using all features

According to Fig. 2, in all cases, ISR-Ave includes three
or more feature subsets, which select a smaller number of

features and achieve a lower classification error rate than
using all features.

As can be seen in Fig. 2, ISR-Best includes two or
more solutions, which select a small number of features
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Fig. 2 Comparison between ISRPSO and MOPSO on the test set

while still achieve lower classification error rate than using
all features. On all datasets, ISRPSO evolves at least one
feature set, which only selects less than 10% of the total
number of features but achieves better classification perfor-

mance than using all features. Specially, onMadelon dataset,
despite of selecting only 5 out of 500 features, ISRPSO
still can achieve around 10.05% better than using all fea-
tures.
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Fig. 3 Comparisons between NSGAII, SPEA2, PAES and ISRPSO on the training set
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Fig. 4 Comparisons between NSGAII, SPEA2, PAES and ISRPSO on the test set
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Fig. 5 Comparison between ISRPSO and CMDPSOFS on the training set

The results suggest that ISRPSO with three operations
applied on the Archive set can effectively explore the Pareto
front, which can select a small number of features and
achieve better classification accuracy than using all fea-
tures.

5.2 Comparison between ISRPSO and a pure
multi-objective PSO (MOPSO)

To test the effect of the local search applied in ISRPSO,
ISRPSO is compared with a pure multi-objective PSO algo-
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Fig. 6 Comparison between ISRPSO and CMDPSOFS on the test set

rithm (MOPSO) for feature selection. The comparisons on
the training and the test set are shown in Figs. 1 and 2, respec-
tively.

As can be seen from two figures, on the first six datasets in
which the number of features is quite small, the Pareto fronts
evolved by these two algorithms are similar. It is clear that
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on small datasets, MOPSO is able to effectively explore the
search space to produce an optimal or near optimal Pareto
front without any additional help. However, the big differ-
ences between these two algorithms occur on the other six
datasets, which have larger number of features than the first
six datasets. As can be seen from two Figs. 1 and 2, in both
training and test set, ISRPSO outperforms MOPSO in terms
of the number of selected features as well as the classifi-
cation performance. For example, in the Hillvalley dataset,
even selecting the same number of features, ISRPSO always
achieves 2–3% better classification accuracy than MOPSO.
Similarly, in theMusk1 dataset, ISRPSO only selects around
7 features to achieve the same performance as 20 features
selected by MOPSO. The biggest difference can be seen in
theMadelon dataset. ISRPSOselects only 10 features but still
achieves 5% better performance than 90 features selected by
MOSPO. Similarly, in the Isolet5 dataset, ISRPSO is able
to evolve at least three solutions with very low classification
error, which cannot be achieved by MOPSO even when a
large number of features are selected.

The larger the number of features, the more complicated
the search space. Therefore, in the datasets with a large num-
ber of features, MOPSO tends to stick at local optima. In
these cases, applying local search techniques inMOPSOwill
help the particle to exploit better solutions, which results in
a better Pareto front. Specifically, three proposed operations
try to improve the classification performance of each archive
member while maintaining or even reducing the number of
selected features using the set of promising features. The
idea is by improving the archive set, the whole swarmwill be
guided to better positions. The experimental results show that
the proposed local search technique is helpful for MOPSO
to better exploit the Pareto front.

5.3 Comparison between ISRPSO and NSGAII, SPEA2,
PAES

To test the performance of ISRPSO, it is compared with three
popular evolutionary multi-objective algorithms, namely,
NSGAII, SPEA2 and PAES. Comparisons between ISRPSO,
NSGAII, SPEA2 and PAES on training and test set are shown
in Figs. 3 and 4, respectively.

According to Fig. 3, on the training set, in most cases,
the average Pareto fronts evolved by ISRPSO are much
better than the other multi-objective algorithms. Similarly,
ISRPSO’s best Pareto fronts provide better solutions than
NSGAII, SPEA2 and PAES. Particularly, on the small
datasets (the first six datset in Table 1), the ISRPSO’s Pareto
fronts are quite similar to other algorithms’ Pareto front,
except in Vehicle dataset, ISRPSO’s accuracy is about 9%
better than other algorithms’ accuracy while they select
the same number of features. On the other big dataset,
ISRPSO’s Pareto fronts are significantly better than NSGAII

and SPEA2. With the same number of selected features,
ISRPSO’s accuracy is about 2–15%better than the best accu-
racy of NSGAII, SPEA2 and PAES. Especially, on large
dataset like Madelon and Isolet5, ISRPSO is able to find out
solutions with a very small number of features, which cannot
be found by either NSGAII, SPEA2 or PAES. In addition,
on Madelon dataset, the worst solution of ISRPSO signif-
icantly dominates the best solution of NSGA, SPEA2 and
PAES algorithms.

As can be seen in Fig. 4, in most cases, ISRPSO’s
Pareto front is similar or better than other multi-objective
algorithms. Particularly, ISRPSO usually selects a smaller
number of features to achieve the same accuracywithNSGA,
SPEA or PAES. However, in the first nine small datasets,
sometimes ISRPSO sacrifices the classification accuracy to
select a small number of features. For example, in Hillvalley
dataset, ISRPSO cannot find out the solution which achieves
higher classification performance than the best solution of
PAES. On the other datasets (big datasets), ISRPSO’s Pareto
front is significantly better than the other three algorithms.
For example, in the Isolet5 dataset, the lowest classification
error achieved by ISRPSO is 0.88% with 74 selected fea-
tures. Meanwhile, the lowest classification error achieved
by NSAII is 1.2%, which requires more than 220 features.
In addition, on the Madelon dataset, the lowest classifica-
tion accuracy, achieved by ISRPSO, is 80.5% with only two
selected features. Meanwhile, 80.5% is also the best perfor-
mance that NSGAII can achieve but NSGAII needs to select
a large feature set, which contains more than 160 features.

The results in Figs. 3 and 4 suggest that ISRPSO can
effectively improve the Pareto front. In most cases, ISRPSO
outperforms NSGAII, SPEA2 and PAES in both objectives.
However, onHillvalley dataset, ISRPSO sacrifices the classi-
fication accuracy to achieve smaller number of features. The
reason is that the proposed algorithm lacks exploration abil-
ity. Since the local search operations aim to add or remove at
most one feature from the current feature set, the operations
can only find out the better subset which are close to the cur-
rent position but better performance than the current feature
set. Therefore, the positions, which correspond to a much
higher number of features than the current solution, are too
far and hard to be discovered by the local search operations.
However,with the samenumber of selected features, the local
search operations ensure that the better feature combination
will be discovered. Therefore, ISRPSO usually achieves bet-
ter performance than other multi-objective algorithms when
the same number of features are selected.

5.4 Comparison between ISRPSO and CMDPSOFS

Figure 5 indicates the performance of ISRPSO and CMDP-
SOFS on the training set. As can be seen from Fig. 5, on all
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datasets, ISRPSO selects a smaller number of features and
still achieves better classification performance than CMDP-
SOFS. With the same number of selected features, ISRPSO
outperforms CMDPSOFS in terms of classification accu-
racy. For example, in the Hillvalley, with seven selected
features, ISRPSO’s performance is about 14% better than
CMDPSOFS’s classification accuracy. In most cases, the
ISRPSO’s average Pareto front is even better than the best
Pareto front evolved by CMDPSOFS. In Madelon dataset,
despite of selecting only five features, ISRPSO still achieves
better performance than the performance of 100 features
selected by CMDPSOFS. To achieve same classification
accuracy as ISRPSO, CMDPSOFS usually needs to select
much more features than ISRPSO. For example, in Move-
mentlibras dataset, CMDPSOFS selects from 2 to 8 times
more features than ISRPSO.

Figure 6 shows the differences between ISRPSO and
CMDPSOFS on the test set. In the first ten datasets, the
average Pareto fronts of ISRPSO and CMDPSOFS are sim-
ilar in terms of classification accuracy but ISRPSO usually
selects smaller number of features than CMDPSOFS. Sim-
ilarly, on the first ten datasets, ISRPSO’s best Pareto fronts
are almost identical to the best Pareto fronts from CMDP-
SOFS. Although, in the best Pareto fronts, ISRPSO still
selects slightly smaller number of features thanCMDPSOFS.
However, on some datasets like Sonar or German, ISRPSO
cannot find out the solution which selects a large number
of features but achieves low classification rate. Once more,
ISRPSOsacrifices the classification accuracy to select a small
number of features. On the other big datasets, namely Made-
lon and Isolet5, ISRPSO outperforms CMDPSOFS in terms
of the number of selected features and the classification per-
formance. For example, in Madelon dataset, to achieve 19%
classification error rate, ISRPSO selects only 5 featureswhile
CMDPSOFSneeds to selectmore than 40 features. In Isolet5,
with 63 selected features, ISRPSO’s classification error rate
is 0.88% which is much smaller than CMDPSOFS’s error
rate (1.3%).

The results in Figs. 5 and 6 show that in most cases
ISRPSO evolves similar or better Pareto fronts than CMDP-
SOFS. Specially, in the datasets with a large number of
features, ISRPSO significantly outperforms CMDPSOFS in
terms of classification accuracy and number of selected fea-
tures. This results illustrate that for a complicated search
space (high dimension) the proposed local search tech-
nique, which is specifically designed for feature selection,
provides a better support than crossover and mutation opera-
tors being used in CMDPSOFS. Particularly, CMDPSOFS
uses a general mutation operator on the whole swarm to
improve both global and local search abilities of the algo-
rithm. However, the mutation operator in CMDPSOFS is
not specifically designed for feature selection problems. In
our algorithm, the local search technique uses the sequential

Table 2 Comparisons on computational times (in minutes)

ISRPSO CMD NSGA2 PAES SPEA2

Wine 0.19 0.25 0.24 0.21 0.20

Australian 2.41 4.0 3.99 3.95 3.24

Vehicle 7.6 6.59 6.59 6.35 5.53

German 7.75 9.3 9.32 8.85 7.64

Ionosphere 0.67 1.54 1.06 1.04 0.87

Lung Cancer 0.01 0.01 0.01 0.01 0.01

Sonar 0.49 0.49 0.49 0.48 0.43

Movement 3.54 2.08 2.37 1.97 2.09

Hillvalley 121.39 23.49 28.88 24.88 30.23

Musk1 38.21 6.02 7.46 5.73 6.69

Madelon 5166.41 523.52 713.4 609.38 716.09

Isolet5 4090.83 198.67 323.94 283.24 327.78

forward/backward idea to add/remove features from the cur-
rent feature set. In addition, the local search technique also
uses a good feature set (all features selected by the archive
set) to improve the current feature subsets in the archive set,
which is likely to be faster and more effective than using all
features, like in CMDPSOFS. Furthermore, our local search
concentrates on improving the quality of the archive set rather
than the whole swarm like CMDPSOFS. The reason is a
good archive set is expected to guide the whole swarm to
discover better feature subsets and evolve a more optimal
Pareto front. However, the improvement over CMDPSOFS
made by ISRPSO on the training set is much better than
on the test set, which might be a result of overfitting prob-
lem.

5.5 Comparisons on computational time

Table 2 shows the average computational time (in minutes)
used by ISRPSO, CMDPSOFS (CMD), NSGA2, PAES and
SPEA2 in one run.

It can be seen that on the first seven datasets, ISRPSO
uses similar or less time than CMDPSOFS, NSGA2, PAES
and SPEA2. However, on the datasets having a large number
of features, ISRPSO is more expensive than the other algo-
rithms. The reason is that three local search operators’ cost
depends on the total number of features. Particularly, suppose
that in theworst case, the archive set (A) selects all N original
features. For each archive member, the inserting and remov-
ing operators, respectively, consider the features, which are
selected and not selected by the archive member. In the worst
case when all features are considered to be added/removed,
the number of evaluations in the two operators equals to the
total number of features, which is N . The swapping operator
tries to swap each pair of selected and unselected feature.
In the worst case, all pairs are tested, which leads to the
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number of evaluations |U | ∗ |US|, where |U | + |US| = N .
When |U | = |US| = N

2 , the number of evaluations in the
swapping operator reaches the highest (worst) value, which
is N2

4 . In the worst case, the local search technique needs to

evaluate N + N2

4 times. So in general, for each iteration the
number of evaluations caused by local search operators is:
|A| ∗ (N + N2

4 ), where |A| is the size of archive set. Mean-
while, in CMDPSOFS, the mutation operators are applied to
each individual, so in each iteration the number of evaluations
caused by the mutation operator is equal to the population
size. Therefore, when the number of original features ismuch
more than the swarm size, ISRPSO becomes more expensive
than CMDPSOFS. In general, ISRPSO achieves better clas-
sification accuracy than the other algorithms, it is efficient
only on the small datasets. On the large datasets, although
ISRPSO selects a smaller number of features than other algo-
rithms to reduce the evaluation cost, it is still expensive when
there is a large number of original features. We will investi-
gate how to reduce the computation cost of the local search
operators.

6 Conclusions and future work

The goal of this study was to develop a PSO-based multi-
objective feature selection approach, which evolved a set of
non-dominated feature with high classification performance.
The algorithm ISRPSOwas proposed to simultaneouslymin-
imize the number of features and the classification error rate.
In ISRPSO, three operations, namely inserting, removing
and swapping are applied on each archive member to better
explore thePareto front. The experiments on12datasets show
that ISRPSO successfully evolved a set of non-dominated
solutions,which reduced the number of features and achieved
better classification performance than using all features. In
comparison with a pure multi-objective PSO (MOSPO),
ISRPSO usually evolved better Pareto front especially on
the datasets with a large number of features, which indicated
that the proposed local search was useful for feature selec-
tion problems. Furthermore, the results showed that ISRPSO
outperformed threewell-known evolutionarymulti-objective
algorithms (NSGAII, SPEA2, PAES) in terms of both clas-
sification accuracy and the number of selected features.
Compared with CMDPSOFS, ISRPSO achieved similar or
better classification accuracy while selected smaller number
of features. Especially, for the datasets with a large num-
ber of features, ISRPSO significantly outperformed all other
algorithms.

However, there are some potential limitations of ISRPSO.
Firstly, overfitting is one of ISRPSO’s problem. As can be
seen from the results, sometimes the significant improvement
made by ISRPSO on the training set does not lead to a signif-

icant improvement in the test set. Therefore, in the future, we
will further develop ISRPSO to improve its generalization.
In addition, for some datasets, ISRPSO seems to sacrifice the
classification accuracy to select a small number of features. It
is necessary to further balance between these two objectives
for ISRPSO, which is left for future work. In addition, as can
be seen from the experimental results, both genetic operators
such as crossover, mutation and three local search operators
helps MOSPO to better explore the Pareto front. Therefore,
the combination between these two ideas might even better
support MOPSO, which will be investigated in the future.
Additionally, ISRPSO is not tested with high-dimensional
datasets mainly because of the expensive computation cost
of wrapper approaches. In the future, it would be interest-
ing to reduce the computation cost of ISRPSO so that it can
be extended to deal with high-dimensional datasets such as
gene datasets. Although the experimental results show that
ISRPSO could evolve a good Pareto front, the computation
complexity of the algorithm is not analysed in detail due
to the variation in the fitness evaluation process of feature
selection problems. Investigating the complexity of a feature
selection algorithm is still an open issue, which is left for
future work.
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