
A Multitree Genetic Programming
Representation for Automatically Evolving

Texture Image Descriptors

Harith Al-Sahaf(B), Bing Xue, and Mengjie Zhang

School of Engineering and Computer Science, Victoria University of Wellington,
P.O. Box 600, Wellington 6140, New Zealand

{harith.al-sahaf,bing.xue,mengjie.zhang}@ecs.vuw.ac.nz

Abstract. Image descriptors are very important components in com-
puter vision and pattern recognition that play critical roles in a wide
range of applications. The main task of an image descriptor is to auto-
matically detect micro-patterns in an image and generate a feature vec-
tor. A domain expert is often needed to undertake the process of devel-
oping an image descriptor. However, such an expert, in many cases, is
difficult to find or expensive to employ. In this paper, a multitree genetic
programming representation is adopted to automatically evolve image
descriptors. Unlike existing hand-crafted image descriptors, the proposed
method does not rely on predetermined features, instead, it automati-
cally identifies a set of features using a few instances of each class. The
performance of the proposed method is assessed using seven benchmark
texture classification datasets and compared to seven state-of-the-art
methods. The results show that the new method has significantly out-
performed its counterpart methods in most cases.

Keywords: Multitree · Image classification · Feature extraction

1 Introduction

Discriminating between texture images is highly dependent on the detected
micro-patterns, i.e., keypoints, such as lines, spots and homogeneous regions pre-
sented in those images. Designing a method to automatically identify or detect
such micro-patterns is often require human intervention to carry out this task.
The detection can be performed either manually, where a domain expert high-
lights the coordinates of those keypoints, or automatically by using keypoint
detectors such as corner detection [21] and local binary patterns (LBP) [18].
Over the past 50 years, image descriptors have emerged to automatically detect
a set of predetermined micro-patterns in order to extract the feature vector for
an image [11]. The majority of those image descriptors have two limitations.
Firstly, they are designed to detect a specific set of micro-patterns such as cor-
ners; secondly, they are hand-crafted where domain expert intervention is needed
to design and develop those descriptors.
c© Springer International Publishing AG 2017
Y. Shi et al. (Eds.): SEAL 2017, LNCS 10593, pp. 499–511, 2017.
https://doi.org/10.1007/978-3-319-68759-9_41



500 H. Al-Sahaf et al.

Genetic Programming (GP) is an evolutionary computation technique that
mimics the principles of natural selection and survival of the fittest, where a
population of computer programs are evolved over generations to find a solution
for a user-defined problem [10].

Conventionally, a GP individual is represented by tree structure, where the
leaf nodes are populated from the terminal set and the internal nodes are pop-
ulated from the function set. The tree-based representation is one of the most
commonly used individual representations in GP [20], but it is not the only one.
Over the past 30 years, different individual representations have been investi-
gated such as linear GP, multitree GP, and cartesian GP [20].

Automatically evolving interest point detectors by utilising GP has been
proposed in [7], and further studied by Olague and Trujillo [19].

Fu et al. [8] proposed a GP method to construct invariant features for edge
detection. In order to improve the extracted features from raw pixel values, the
distributions of the observations from GP programs are used. Their results show
that the constructed features by GP with distribution estimation have improved
the detection performance compared to the combination of linear support vector
machine and a Bayesian model.

Cordelia et al. [6] proposed a multitree based GP method for generating
prototypes in classification problems, where a dynamic representation is used
to allow each individual to have different number of trees. This dynamic repre-
sentation allows the method to cope with situation where one or more classes
comprise subclasses. Using three well-known datasets and compared to another
GP based method, their method has achieved significantly better performance
as shown in [6].

Broic and Estevez [3] utilised multitree GP and information theory to per-
form clustering. In their method, an information theory based fitness function
is developed to measure the goodness of an evolved program. Moreover, prob-
abilistic based interpretation of the trees’ output is used in order to avoid the
requirement for a conflict resolution phase. The results of their experiments
show the superiority of this method compared to k-means clustering using 10
clustering benchmark datasets.

Utilising multitree GP to automatically discover some patterns for self-
assembling swarm robots is proposed in [14]. Promising results have been
achieved by this method, which reflect its effectiveness.

Recently, Al-Sahaf et al. [1] utilised GP to automatically evolve LBP-like
rotation-invariant image descriptors using a set of arithmetic operators, first-
order statistics and a special code node. Strongly-typed GP (STGP) [16] is
required in order to specify the structure of an evolved program by this method.
Their results reveal the ability of the automatically evolved descriptors to out-
perform their counterpart hand-crafted descriptors.

The proposed method in [1] represents the baseline for the newly introduced
method in this paper, where the representation of an evolved program is the
main difference between the two methods.



A Multitree GP Representation for Automatically Evolving 501

The overall goal of this study is to utilise multitree GP to the task of auto-
matically evolving rotation-invariant image descriptors. The proposed method
uses simple arithmetic operators and first-order statistics, and only two instances
per class to build a GP program that scans an image using a sliding window to
generate the feature vector. Specifically, this study aims at providing answers
for the following questions.

– How a descriptor can be represented using a multitree GP representation?
– What fitness function can be used when there are only a few instances per

class in the training set?
– Is the proposed method able to evolve image descriptors that can outperform

the hand-crafted descriptors?

2 Background

The baseline method rotation-invariant GP descriptor (GP-criptorri) [1] is dis-
cussed in this section.

GP-criptorri is a GP based method that aims at automatically evolv-
ing rotation-invariant image descriptors using only two instances per class.
GP-criptorri uses a tree based representation, where each individual is repre-
sented by a single tree. The function set comprises the four arithmetic operators
+, −, × and /, and a special code node type. Apart from code, these functions
takes two arguments and they have their corresponding arithmetic meaning. A
code node takes a predefined number of children and returns a binary code by
substituting the value returned by each of its children by 0 if it is negative, and
1 otherwise. The terminal set in GP-criptorri consists of four node types min(·),
max(·), mean(·), and stdev(·) each of which operates on a vector of values and
returns the minimum, maximum, mean and standard deviation, respectively. The
order-invariant property of these four operators allowed GP-criptorri to evolve
rotation-invariant image descriptors [1].

The distances of between-class and within-class are used in the fitness func-
tion of GP-criptorri in order to allow the method to cope with having a small
number of training instances. The fitness function of GP-criptorri is defined as:

fitness′ = 1 −
(
1
/ (

1 + e−5(D′
b−D′

w)
))

(1)

where D′
b and D′

w are, respectively, the average distance of between-class and
the average distance of within-class. These two distances are defined as:

D′
b =

1
z (z − n)

∑
u∈R

∑
v∈R\u

χ2 (u,v) , {u ∈ u,v ∈ v} (2)

D′
w =

1
z (n − 1)

∑
u∈R

∑
u,v∈u

χ2 (u,v) , {u �= v} (3)

where z is the total number of instances in the training set, n is the number of
instances per class, and R = {(vi, �i)} is the training set. vi denotes the feature



502 H. Al-Sahaf et al.

vector of the ith instance and the corresponding class label is denoted by �i, where
vi ∈ R≥0, �i ∈ {1, 2, . . . , c}, c is the number of classes, and i ∈ {1, 2, . . . , z}. The
distance between two feature vectors is measured by the widely used Chi-square
(χ2) measure [5], which is defined as:

χ2 (u,v) =
1
2

E∑
i=1

(ui − vi)
2

(ui + vi)
(4)

where E is the number of elements, u and v are two feature vectors of the same
length, i.e., consist of equal umber of elements, and ui and vi are, respectively,
the ith element in u and v.

3 The Proposed Method

The proposed multitree GP rotation-invariant image descriptor (MGPDri
t,w)

method is explained in this section.

3.1 Overall Algorithm

Similar to other machine learning methods, the overall algorithm can be divided
into five parts as depicted in Fig. 1. In the first part (dataset preprocessing), the
system divides the dataset equally into two subsets each of which comprises 50%
of the total instances in each class. The system randomly selects two instances
of each class from the first subset to form the training set (Str); whereas the
second subset will be used for evaluating the performance of the system, i.e.,
the test set (Sts). In the second part (image descriptor evolution), the system
feeds the training set (Str) into GP to evolve an image descriptor. The evolved
descriptor is then used to transform the training and test sets, i.e., generates
the feature vector for each image in the two sets, which is the third part of the
overall algorithm (dataset transformation). The transformed training and test
sets are, respectively, denoted as R and S. The fourth part (building a classifier)
concerns with building a classifier by feeding the transformed training set (R)
into a classification algorithm. The fifth and final part of the overall algorithm
(evaluation) uses the transformed test set (S) and the built classifier in order
to assess the goodness of the evolved descriptor to generate feature vectors that
are sufficient to be classified by the built classifier. More details regarding these
five parts are provided in the following subsections.

Fig. 1. The overall algorithm of the proposed method.



A Multitree GP Representation for Automatically Evolving 503

3.2 Program Representation

Here, a tree-based GP representation [20] is used, where a tree is a set of con-
nected nodes. Unlike conventional GP representation where each individual is
represented by a single tree, each individual in multitree GP (MGP) [6] is repre-
sented by a set of trees as depicted in Fig. 2. Each individual in MGPDri

t,w com-
prises a set of predefined number of trees (t), where the leaf nodes are drawn from
the terminal set and the internal nodes are drawn from the function set. Similar
to GP-criptorri [1], the terminal set comprises four first-order statistic node types
min(·), max(·), mean(·), and stdev(·). The aim of each of these node types is to
perform feature extraction as they aggregate a set of pixels and return a single
value. The function set consists of the arithmetic operators that are often used in
GP such as +, −, ×, and protected / (returns 0 if the denominator is zero). One
of the main differences between MGPDri

t,w and the baseline GP-criptorri method
is that the code node type has been omitted, which represents the root node
of an individual evolved by GP-criptorri. Having the code node type requires
the use of STGP in order to define restrictions on the inputs and outputs of
the different node types. Moreover, special care is required to ensure the closure
property when applying the mutation and crossover operators. The code node
converts the output of its children to a binary code by using the 0 value as a
threshold. As this node is not used in MGPDri

t,w, the system applies the same
rule, i.e., uses the 0 value as a threshold, on the output of the root node of each
tree of the individual in order to generate a binary code from the outputs of
those trees. More details on this operation are provided in Sect. 3.4.

(a) (b)

Fig. 2. GP individual representations (a) single tree; and (b) multitree.

3.3 Fitness Function

The fitness of an individual often reflects its ability to tackle the user-defined
problem. Hence, the design of the fitness function is highly dependent on some
factors such as the problem at hand (e.g. classification or regression) and the
restrictions (e.g. number of training examples). For classification tasks, the accu-
racy measure, or its variations, is often used as a fitness function. However, rely-
ing on the accuracy is inappropriate in some situations such as when there are
only a few training instances [1], or the dataset is highly imbalanced [2], i.e., the
instances of one class are outnumbered by the instances in the other classes. Sim-
ilar to GP-criptorri, the fitness function in MGPDri

t,w is designed to consider the



504 H. Al-Sahaf et al.

distance between instances from different classes as well as the distance between
instances of the same class, which is defined as

fitness = α × Dw + (1 − α) × (1 − Db) (5)

where α is a scale factor ∈ [0, 1], and Dw and Db are, respectively, the within-
class and between-class distance components.

Unlike GP-criptorri, MGPDri
t,w does not measure the average distance

between each instance and all instances from the same and other classes; instead,
the Dw component measures the average distance between each instance and only
the farthest (most dissimilar) instance from the same class and calculated using
Eq. (6); whilst Db measures the average distance between each instance and only
the closest (most similar) instance from all other classes and is calculated using
Eq. (7). This design was motivated by the concepts of margins in support vector
machines.

Dw =
1
z

∑
u∈R

∑
u∈u

max
v

χ2 (u,v) , {v ∈ u,u �= v} (6)

Db =
1

z (c − 1)

∑
u∈R

∑
v∈R\u

min
u,v

χ2 (u,v) , {u ∈ u,v ∈ v} (7)

Here a bold letter, e.g., u and v, is used to indicate the set of all instances
belonging to one class.

In MGPDri
t,w, the aim is to minimise the fitness value, i.e., the smaller the

fitness value the better the individual. Hence, the system will try to minimise
Dw and maximise Db. It is worth noting that χ2 returns a value between 0 and
1 (inclusive), and subsequently the values for Dw and Db are ranging between
0 and 1. Ideally, the system will evolve an individual that has a fitness value
equals to 0 (i.e. 0 within-class average distance and 1 between-class average
distance); whereas an individual with a fitness value of 1 (i.e. 1 within-class and
0 between-class average distances) is considered the worst case scenario.

3.4 Feature Vector Extraction

Each individual in MGPDri
t,w is an image descriptor that operates directly on

the raw pixel values of an image and generates a feature vector. The individual
scans the image being evaluated in a pixel-by-pixel manner from left to right
and from top to bottom using a window of size w (i.e. w × w pixels). At each
pixel (window position), the system calculates the terminals required by invoking
the min, max, mean and stdev functions on the pixel values of the current
window. The calculated terminals are then fed into the trees of the individual
and recursively each tree will be evaluated from the leaf nodes to the root node.
The value obtained from each root node will be substituted by 0 if it is negative
and 1 otherwise. This will form a binary code that comprises t bits, where t
is the number of trees. The binary code is then converted to decimal and the
corresponding bin of the histogram is incremented as presented in Fig. 3.



A Multitree GP Representation for Automatically Evolving 505

Fig. 3. An example demonstrates the steps to extract the feature vector from an image.

4 Experiment Design

To assess the performance of MGPDri
t,w, experiments are conducted using seven

datasets for texture image classification. This section provides details regarding
the benchmark datasets, methods for comparison, and parameter settings.

4.1 Benchmark Datasets

The proposed method is designed to handle grey-scale images, where the inten-
sity of each pixel is ranging between 0 (black) and 255 (white). Hence, seven
widely-used datasets for texture classification are selected in this study.

The first dataset in this study (BrNoRo) is formed from the widely used
Brodatz Texture1 [4] dataset. Originally, the Brodatz Texture dataset comprises
112 classes each of which consists of a single image of size 640 × 640 pixels. The
single instance of 20 randomly selected classes is divided into 84 non-overlapping
tiles each of which with size 64 × 64 pixels. The second dataset (BrWiRo) is
formed by rotating the instances of BrNoRo around the centre at successive 30◦

angles, i.e., {0◦, 30◦, . . . , 330◦}. Figure 4 presents samples from BrNoRo.

Fig. 4. Samples from the BrNoRo dataset.

The Outex Texture Classification2 [17] test suites consist of 16 texture clas-
sification benchmark datasets that vary in illumination, rotation, spatial scale
and colour. The third (OutexTC00) and fourth (OutexTC10) datasets in this
study are formed using the instances of Outex TC 00000 and its rotated version
1 Available at: http://multibandtexture.recherche.usherbrooke.ca.
2 Available at: http://www.outex.oulu.fi/index.php?page=classification.

http://multibandtexture.recherche.usherbrooke.ca
http://www.outex.oulu.fi/index.php?page=classification


506 H. Al-Sahaf et al.

Outex TC 00010, respectively. Each of these two datasets consist of 24 classes for
the same type of texture materials; however, the former dataset is rotation-free
and the latter dataset comprises instances that fall into 9 rotation angles: 0◦, 5◦,
10◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦. Figure 5 shows examples from OutexTC00.

Fig. 5. Samples from the OutexTC00 dataset.

The fifth dataset in this study (KySinHw) is formed using the instances
of Kylberg Sintorn Rotation3 [13], which consists of 25 classes each of
which comprises instances that were rotated at successive 40◦ angles, i.e.,
{0◦, 40◦, . . . , 320◦}. Figure 6 shows examples from this dataset.

Fig. 6. Samples from the KySinHw dataset.

Fig. 7. Samples from the KyNoRo dataset.

The Kylberg Texture4 [12] dataset comprises two groups: with rotation, and
without rotation. The two groups consist of the same number of classes (28)
and for the same type of materials as depicted in Fig. 7. The main difference
between the content of these two groups is that the instances of each class in the
former (without rotation) are all captured under the same rotation angle; whilst
the instances of each class in the latter group (with rotation) are rotated in

3 Available at: http://www.cb.uu.se/∼gustaf/KylbergSintornRotation/.
4 Available at: http://www.cb.uu.se/∼gustaf/texture/.

http://www.cb.uu.se/~gustaf/KylbergSintornRotation/
http://www.cb.uu.se/~gustaf/texture/


A Multitree GP Representation for Automatically Evolving 507

0◦ 30◦ 60◦ 90◦ 120◦ 150◦ 180◦ 210◦ 240◦ 270◦ 300◦ 330◦

Fig. 8. A sample from the KyWiRo dataset presented in 12 rotation angles.

12◦ at successive 30◦ angles, i.e., {0◦, 30◦, . . . , 330◦}. Figure 8 shows an example
taken from the with rotation group rotated in 12 angles. The sixth (KyNoRo)
and seventh (KyWiRo) datasets in this study are, respectively, formed using the
instances of the without and with rotation groups.

4.2 Methods for Comparison

The MGPDri
t,w method aims at evolving dense image descriptors, therefore, six

the-state-of-the-art dense hand-crafted image descriptors are used in this study
in addition to the baseline method (GP-criptorri). The methods are uniform local
binary pattern (LBPu2

p,r) [18], uniform and rotation-invariant LBP (LBPu2ri
p,r ) [18],

completed LBP (CLBPp,r) [9], local binary count (LBCp,r) and completed LBC
(CLBCp,r) [22], and dominant rotation LBP (DRLBPp,r) [15].

4.3 Parameter Settings

Both MGPDri
t,w and GP-criptorri are evolutionary-based methods. The evolu-

tionary parameters for both methods were kept identical as summarised in
Table 1. Moreover, these methods comprise other non-evolutionary parameters.
The window size (w) and number of trees (t), which is also the number of children
of code in GP-criptorri, are experimentally set to 5×5 pixels and 9, respectively.
The value of α in the fitness function of MGPDri

t,w ranges between 0 and 1, which
specifies the importance of the within-class and between-class distance compo-
nents. Hence, 11 different values with a step of size 0.1 are used as shown in
Fig. 9. As depicted in Fig. 9, the value of α ∈ [0.0, 0.6] gives good performance;
therefore, the scale factor has been set to 0.1 in this study.

Table 1. The GP parameters

Parameter Value Parameter Value

Generations 50 Minimum tree depth 2

Population size 300 Maximum tree depth 10

Crossover rate 80% Mutation rate 20%

Selection type Tournament Tournament size 7

Elitism Keep the best 10
individuals

Initial population Ramped half-and-half



508 H. Al-Sahaf et al.

Fig. 9. The sensitivity of the scale factor (α) on KyNoRo.

Parameters of the benchmark methods have been investigated in [1], and
therefore, they have been set at those values were observed to give the best
performance. For LBPu2ri

p,r , CLBPp,r, LBCp,r and CLBCp,r methods, the radius
(r) and number of neighbouring pixels (p) parameters have been, respectively,
set to 3 and 24, i.e., LBPu2ri

24,3, CLBP24,3, LBC24,3 and CLBC24,3; whereas LBPu2
p,r

and DRLBPp,r are set to p = 8 and r = 1, i.e., LBPu2
8,1 and DRLBP8,1.

4.4 Experiments

The main role of an image descriptor is to generate the feature vector for an
image. The classification accuracy is widely adopted to measure the goodness
of a descriptor [18]. Hence, the k-Nearest Neighbours classifier with k = 1 (1-
NN) is used in this study. Apart from GP-criptorri and MGPDri

t,w, all other
methods are deterministic that require only a single run. The run for each of the
stochastic methods, i.e., GP-criptorri and MGPDri

t,w, is repeated independently
30 times using different seed values and the average performance is reported.
The training set (Str) is formed by randomly selecting two instances from each
class (Sect. 3.1); therefore, the same process is further repeated 10 times and
the mean and standard deviation are reported. In total, there are 4620 runs (=
[(30 (runs)×2 (methods))+(1 (run)×6 (methods))]×10 (repeats)×7 (datasets)).

5 Results and Discussions

The results of the eight methods on the seven datasets are presented in Fig. 10.
Each block in this figure groups the results of a single dataset. To test the
significance of the obtained results, Mann-Whitney-Wilcoxon Test is used with
0.05 significance level. The symbols “+”, “−” and “=” are used in Fig. 10 to
indicate that the proposed method is significantly better, significantly worse,
and not significant, respectively, compared to the corresponding method.



A Multitree GP Representation for Automatically Evolving 509

Fig. 10. The average accuracy (%) of eight image descriptors on seven texture datasets.

On the first dataset (BrNoRo), the proposed method has significantly out-
performed all the other image descriptors, and achieved on average 93.00% accu-
racy. The minimum difference between MGPDri

9,5 and the other methods ranges
between 2.08% (GP-criptorri) and 29.38% (CLBP24,3).

The results on the second dataset (BrWiRo) show that MGPDri
9,5 has

achieved the best performance (92.94%). Apart from GP-criptorri, MGPDri
9,5

has significantly outperformed the other methods.
The results on the third dataset (OutexTC00) show that MGPDri

9,5 has
achieved on average 89.75% accuracy, which is significantly better than the per-
formance of the competitor methods, apart from LBPu2

8,1 and GP-criptorri.
The results on the fourth dataset (OutexTC10) show similar pattern com-

pared to that of the rotation-free dataset (OutexTC00) with on average perfor-
mance of 87.82%, where MGPDri

9,5 has significantly outperformed five methods
and show comparable, yet better, result to CLBP24,3 and GP-criptorri.

The proposed method has achieved the second best performance (95.88%)
on the fifth dataset (KySinHw), which is significantly outperformed the other
methods apart from CLBP24,3 (97.31%).

The results on the sixth (KyNoRo) and seventh (KyWiRo) datasets show that
MGPDri

9,5 has significantly outperformed the competitor methods apart from
CLBP24,3. The proposed method has achieved on average 90.53% on KyNoRo
and 90.91% on KyWiRo.

6 Conclusions

This paper has successfully utilised multitree GP to automatically evolve
rotation-invariant image descriptors. Relying on the between-class and within-
class distances, the proposed method uses only two instances per class to evolve
a descriptor. The results of the experiments on seven texture datasets show that
the proposed method has significantly outperformed, or achieved comparable



510 H. Al-Sahaf et al.

performance to, six hand-crafted state-of-the-art methods and the baseline
method (GP-criptorri).

In the future, we would like to investigate the proposed method for non-
texture datasets. We also would like to further investigate the possibility of
completely or partially transfer the evolved descriptors on one dataset to a sim-
ilar domain (texture) or different, but related, domain (non-texture).

References

1. Al-Sahaf, H., Al-Sahaf, A., Xue, B., Johnston, M., Zhang, M.: Automatically evolv-
ing rotation-invariant texture image descriptors by genetic programming. IEEE
Trans. Evol. Comput. 21(1), 83–101 (2016)

2. Bhowan, U., Johnston, M., Zhang, M., Yao, X.: Reusing genetic programming for
ensemble selection in classification of unbalanced data. IEEE Trans. Evol. Comput.
18(6), 893–908 (2014)

3. Boric, N., Estevez, P.A.: Genetic programming-based clustering using an informa-
tion theoretic fitness measure. In: Proceedings of 2007 IEEE Congress on Evolu-
tionary Computation, pp. 31–38. IEEE (2007)

4. Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover
Publications, Mineola (1999)

5. Cha, S.-H.: Comprehensive survey on distance/similarity measures between prob-
ability density functions. Int. J. Math. Models Methods Appl. Sci. 1(4), 300–307
(2007)

6. Cordella, L.P., de Stefano, C., Fontanella, F., Marcelli, A.: Genetic programming
for generating prototypes in classification problems. In: Proceedings of 2005 IEEE
Congress on Evolutionary Computation, pp. 1149–1155. IEEE (2005)

7. Ebner, M., Zell, A.: Evolving a task specific image operator. In: Poli, R., Voigt, H.-M.,
Cagnoni, S., Corne, D., Smith, G.D., Fogarty, T.C. (eds.) EvoWorkshops 1999.
LNCS, vol. 1596, pp. 74–89. Springer, Heidelberg (1999). doi:10.1007/10704703 6

8. Fu, W., Johnston, M., Zhang, M.: Distribution-based invariant feature construction
using genetic programming for edge detection. Soft Comput. 19(8), 2371–2389
(2015)

9. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern
operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663
(2010)

10. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

11. Krig, S.: Computer Vision Metrics: Survey, Taxonomy, and Analysis, 1st edn.
Apress, New York (2014)

12. Kylberg, G.: The Kylberg texture dataset v. 1.0. External report (Blue series)
35, Centre for Image Analysis, Swedish University of Agricultural Sciences and
Uppsala University, Uppsala, Sweden (2011)

13. Kylberg, G.: Automatic virus identification using TEM: image segmentation and
texture analysis. Ph.D. thesis, Division of Visual Information and Interaction,
Uppsala University, Uppsala, Sweden (2014)

14. Lee, J.-H., Ahn, C.W., An, J.: An approach to self-assembling swarm robots using
multitree genetic programming. Sci. World J. 2013, 1–10 (2013)

15. Mehta, R., Egiazarian, K.: Dominant rotated local binary patterns (DRLBP) for
texture classification. Pattern Recogn. Lett. 71(1), 16–22 (2016)

http://dx.doi.org/10.1007/10704703_6


A Multitree GP Representation for Automatically Evolving 511

16. Montana, D.J.: Strongly typed genetic programming. Evol. Comput. 3(2), 199–230
(1995)

17. Ojala, T., Mäenpää, T., Pietikäinen, M., Viertola, J., Kyllonen, J., Huovinen, S.:
Outex - new framework for empirical evaluation of texture analysis algorithms. In:
Proceedings of 16th International Conference on Pattern Recognition, vol. 1, pp.
701–706. IEEE (2002)

18. Ojala, T., Pietikäinen, M., Mäenpää, T.: Gray scale and rotation invariant texture
classification with local binary patterns. In: Vernon, D. (ed.) ECCV 2000. LNCS,
vol. 1842, pp. 404–420. Springer, Heidelberg (2000). doi:10.1007/3-540-45054-8 27

19. Olague, G., Trujillo, L.: A genetic programming approach to the design of interest
point operators. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds.) Bio-inspired Hybrid
Intelligent Systems for Image Analysis and Pattern Recognition. SCI, vol. 256, pp.
49–65. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04516-5 3

20. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming
(2008). Published via http://lulu.com. (With contributions by J.R. Koza)

21. Willis, A., Sui, Y.: An algebraic model for fast corner detection. In: Proceedings
of 12th IEEE International Conference on Computer Vision, pp. 2296–2302. IEEE
(2009)

22. Zhao, Y., Huang, D.-S., Jia, W.: Completed local binary count for rotation invari-
ant texture classification. IEEE Trans. Image Process. 21(10), 4492–4497 (2012)

http://dx.doi.org/10.1007/3-540-45054-8_27
http://dx.doi.org/10.1007/978-3-642-04516-5_3
http://lulu.com

	A Multitree Genetic Programming Representation for Automatically Evolving Texture Image Descriptors
	1 Introduction
	2 Background
	3 The Proposed Method
	3.1 Overall Algorithm
	3.2 Program Representation
	3.3 Fitness Function
	3.4 Feature Vector Extraction

	4 Experiment Design
	4.1 Benchmark Datasets
	4.2 Methods for Comparison
	4.3 Parameter Settings
	4.4 Experiments

	5 Results and Discussions
	6 Conclusions
	References


