
A Multi-objective Genetic Programming Biomarker
Detection Approach in Mass Spectrometry Data

Abstract Mass spectrometry is currently the most commonly used tech-
nology in biochemical research for proteomic analysis. The main goal of
proteomic profiling using mass spectrometry is the classification of sam-
ples from different clinical states. This requires the identification of pro-
teins or peptides (biomarkers) that are expressed differentially between
different clinical states. However, due to the high dimensionality of the
data and the small number of samples, classification of mass spectrome-
try data is a challenging task. Therefore, an effective feature manipulation
algorithm either through feature selection or construction is needed to
enhance the classification performance and at the same time minimise the
number of features. Most of the feature manipulation methods for mass
spectrometry data treat this problem as a single objective task which fo-
cuses on improving the classification performance. This paper presents
two new methods for biomarker detection through multi-objective fea-
ture selection and feature construction. The results show that the pro-
posed multi-objective feature selection method can obtain better subsets
of features than the single-objective algorithm and two traditional multi-
objective approaches for feature selection. Moreover, the multi-objective
feature construction algorithm further improves the perfomance over the
multi-objective feature selection algorithm. The paper is the first multi-
objective genetic programming approach for biomarker detection in mass
spectrometry data.

1 Introduction
Nowadays, much attention is given to the high-throughput mass spectrometry
(MS) technology in proteomics. MS enables the detection and the discrimina-
tion of patterns between diseased and healthy samples of complex mixtures
of proteins [1]. MS datasets typically consist of tens or thousands of mass to
charge (m/z) ratios. Each m/z value corresponds to a mass of a certain pep-
tide and reflects the abundance of this peptide through an intensity value [2].
From machine learning perspective, each of the abundances of the peptides is a
feature for classification. This causes the critical issue of curse of dimensionality,
which leads to the degradation of classification performance due to the large
number of features and the small number of examples.

Feature manipulation can help solving the biomarker detection problem [1].
It provides means to transform the representation of the input to a classifica-
tion algorithm to improve its performance [3]. Feature manipulation consists of
feature selection and feature construction.

While feature selectin aims at selecting a subset of relevant original features,
feature construction aims at generating new high-level features. Generally, fea-
ture selection and construction methods can be divided into filter, wrapper



2

or embedded approaches [3]. In filter approaches, features are evaluated with
some relevance measure such as, t-statistics [4] and mutual information [5]. Al-
though the filter approach is efficient in terms of computational cost, most of
the features selected by the filter approach are still correlated [2]. Therefore, fea-
tures are mostly redundant and include some sort of data noise, which leads to
the reduction of their effectiveness in terms of classification accuracy. In wrap-
per approaches, an inductive algorithm (mostly a classifier) is wrapped as an
evaluation criterion to the selected features. Although a wrapper approach is
more effective than a filter approach, its computational cost is a major obsta-
cle to the use of this approach. Moreover, in high feature-to-sample ratio data,
the wrapper approach may face the problem of overfitting [2]. The embedded
approach also uses an inductive algorithm but the main difference from the
wrapper approach is that the inductive algorithm is used for both feature se-
lection and classification. Therefore, embedded approaches can overcome the
disadvantages of wrapper approaches.

When two or more conflicting objectives occur and an optimal decision is
needed to be taken, this results in a multi-objective problem. Multi-objective
optimization is evaluated in terms of the trade-off between the conflicting ob-
jectives, which have to be minimised or maximised.

Genetic programming (GP) is an algorithm which, inspired by natural evo-
lution, searches for good solutions in a population of programs. GP proved to
be an effective technique for feature selection, feature construction and classifi-
cation especially for high dimensional data [6].

Many feature selection techniques have been proposed to detect the poten-
tial biomarkers in MS data [7, 8]. Despite the great promise of the previously
proposed methods, none of these methods considered the number of features
as an important objective to optimise. Although some studies considered the
relative importance of the number of features to classification accuracy [9, 10],
the major limitation of these approaches is the prior specification of the relative
importance of each objective. More related work can be seen from [11]„ which
are not detailed here due to the page limit.

Multi-objective optimisation offers solutions to the optimisation of different
conflicting objectives.

Biomarker detection must consider the trade-off between the classification
performance and the number of features. The number of features should be as
small as possible to be able to pass them to experimental validation. Therefore,
for evaluation of biomarker detection, two objectives should be considered,
which are maximizing the classification performance and at the same time min-
imising the number of features. This paper represents the first attempt to use
GP as a multi-objective approach to biomarker detection.

1.1 Goals

The overall goal of this paper is to develop GP-based multi-objective feature
selection and construction approaches to classification of MS data. In feature
selection, the proposed GP method uses the ideas of NSGAII [12] and SPEA2
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[13] to evolve models that keep the balance between the conflicting objectives.
We notate these methods as NS-GPMOFS and SP -GPMOFS. The main goal
here is to evolve a Pareto front of non-dominated solutions, which include a
small number of selected original features and achieve a better classification
accuracy than using the whole set of features.

In feature construction, a single evolved tree is used to construct multiple
features to replace the original features by combining them using the GP func-
tions. Multi-objective optimisation is used to reduce the number of constructed
features while keeping the high classification accuracy. We notate these meth-
ods as NS-GPMOFC and SP -GPMOFC.

In both approaches, an embedded approach is used to take advantages of
the low computational cost and better classification accuracy.

Precisely, we will investigate the followings:

– whether using GP as a multi-objective approach to feature selection can
produce better solutions than using the single objective GP algorithm,

– whether using multi-objective GP feature selection methods (NS-GPMOFS
and SP -GPMOFS) can select feature subsets that improve the classifica-
tion performance and reduce the number of features than using the tradi-
tional multi-objective algorithms (NSGAII and SPEA2), and

– whether the GP-based methods (NS-GPMOFC and SP -GPMOFC) can
further improve the performance feature subset evolved by the multi-objective
GP feature selection methods (NS-GPMOFS and SP -GPMOFS).

1.2 Organisation

The rest of the paper is organised as follows. Section 2 describes the GP-based
multi-objective feature selection and the GP-based multi-objective feature con-
struction approaches. Section 3 describes the experimental design that includes
the settings and the MS datasets used. Section 4 presents the experimental re-
sults and discussions. Section 5 concludes the paper.

2 The GP Multi-Objective Approaches

This section describes the two multi-objective GP approaches.

2.1 The GP Multi-objective Feature Selection Approach
In this section, we propose a new approach to feature selection for MS data
with the aim of biomarker detection using multi-objective GP, with two main
objectives to explore the Pareto front of feature subsets. The objectives here are
maximising the classification accuracy and minimising the number of features
used in each individual of the population. As mentioned earlier, an embedded
approach is taken in the proposed algorithm. GP is employed here as a classifier
as well, and the number of correctly classified instances in the training set is
stored in an external archive. The classification accuracy is used to assess the



4

first objective. The second objective here is to minimise the cardinality of the
selected features (number of features selected automatically in the GP tree).
When a new solution is evolved, it is compared to the other solutions stored
in the archive. If the evolved solution is not worse in both objectives and it is
better than a solution in the list in at least one of the objectives, it will dominate
that solution. Pareto optimal contains the set of non-dominated solutions where
a specific solution can not improve any of the objectives without degrading at
least one of the other conflicting objectives [14]. The non-dominated solution
forms the Pareto front in which no solution can be judged better than the others.

2.1.1 Pareto Fitness Assignment in NS-GPMOFS and SP -GPMOFS
In evolutionary multi-objective optimisation, solutions are usually ranked ac-
cording to their performance on the different objectives to measure the Pareto
dominance. The Pareto dominance is measured through the dominance rank
or dominance count [13] (or both) of a certain solution. Dominance rank of
a solution is the number of solutions that dominates this solution, while the
dominance count is the number of solutions that a given solution dominates. A
solution with a smaller number of solutions that dominate it (lower rank) and
a higher count is a better solution.

We investigate two mechanisms to measure the Pareto fitness. The first uses
the dominance rank of a solution Si for evaluating the fitness which is similar
to the idea of NSGAII [12], i.e., the number of other solutions in the population
that dominate Si, and we call this method as NS-GPMOFS. Similar to SPEA2
[13], the second mechanism uses both dominance rank and dominance count
in the Pareto refined fitness, and this method is named as SP -GPMOFS.

2.1.2 Crowding Distance Measure In addition to the previously mentioned
Pareto dominance measures used in the fitness, a crowding distance measure
is used to generate more diversity among the population [15]. The crowding
distance used is the Manhattan distance between the solutions. This distance
measure is used only when two or more solutions have the same Pareto domi-
nance measures, which means that if solutions have an equal rank, then the so-
lution with smaller crowding distance is selected. The crowding distance is the
average distance between the two solutions with each of the objectives, where
a lower distance indicates a better result.

2.1.3 NS-GPMOFS and SP -GPMOFS Algorithms Algorithm 1 shows
the pseudocode of GPMOFS algorithms. The input is D, the dataset, and the
output is the Pareto front archive of solutions (PF ). At each generation, the
parent and offspring populations are merged. The fittest individuals (according
to the two objectives) in this merged population acts as the new population
(CHILD) in the next generation. The population is reduced to size N (original
size of the population) using dominance rank and crowding distance for NS-
GPMOFS. While for SP -GPMOFS dominance rank, dominance count and
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the crowding distance are measured. The size of CHILD is the same as the
size of the original population and it is produced using the traditional genetic
operators (crossover and mutation operators). In case of SP -GPMOFS, the
size of PF (Pareto front solutions) is kept fixed while in NS-GPMOFS it does
not have a specific size. Another difference between using NS-GPMOFS and
SP -GPMOFS is the use of elitism in SP -GPMOFS, which is not used in NS-
GPMOFS. The non-dominated solutions in CHILD are identified and copied
to PF . These steps are repeated until the maximum number of generations is
reached. At the end of the evolutionary search, the solutions of PF are used to
project the datasets and passed for evaluation. The evaluation is done through
both classification accuracy and the number of features used in each solution in
the archive.

Algorithm 1 Pseudo-Code of NS-GPMOFS and SP -GPMOFS

Require: D, a dataset that contains a vector of instances with m original features.
Ensure: PF , a Pareto front (PF ) of a set of solutions (low-level features).

begin
Divide D into training and test sets.
Initialise the population (P )

while Maximum generation is not reached do
Evaluate the two objectives of each individual { // Acc, |F |}
Select the individuals using the selection method
Generate new population (CHILD) using the genetic operators

if NS-GPMOFS is used then
Non-dominated sorting of the individuals based on ranking and the crowding distance

else if SP -GPMOFS then
evaluate the individuals based on ranking, count, and the crowding distance

end if
Copy both CHILD and P to Archive
Identify the individuals who have non-dominated solutions in Archive and add to Pareto front (PF )
Select a population of size N based upon ranking and crowding distance
Generate new population (CHILD) using the genetic operators

end while
Use the solutions in PF to project the test set
Calculate the test set classification accuracy of the different solutions
Calculate the number of selected features in each solution in PF
return a vector S that contain the number of features and classification accuracy of each solution in PF

2.2 The GP Multi-objective Feature Construction Approach

GPMOFC constructs new high-level features from the original features (re-
sulted features from the tree branches). In addition to the features constructed
from the branches (all the internal function nodes), the final feature constructed
from the root node of the tree is also used.

2.2.1 SP -GPMOFC and NS-GPMOFC Algorithm Algorithm 2 describes
the pseudocode of SP -GPMOFC and NS-GPMOFC. The two algorithms are
similar to the feature selection algorithms (SP -GPMOFS and NS-GPMOFS)
except for the feature sets. The difference between the two algorithms for fea-
ture selection and construction is that instead of using the original features se-
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lected in SP -GPMOFS and NS-GPMOFS, the high-level features are con-
structed to optimise the second objectives in SP -GPMOFC and NS-GPMOFC.

Algorithm 2 Algorithm of NS-GPMOFC and SP -GPMOFC

Require: D, a dataset that contains a vector of instances with m original features.
Ensure: PF , A Pareto front (PF ) (solutions with high-level features).

begin
Divide D into 50% for training and 50% testing.
Randomly Initialise the population (P )
Save the high-level features resulting from the branches and the root of the individual tree

while Maximum generation is not reached do do
Evaluate the number of constructed features and Acc of each individual
Select the individuals using the selection method
Generate new population (CHILD) using the genetic operators

if NS-GPMOFC then
Non-dominated sorting of the individuals based on ranking and the crowding distance

else if SP -GPMOFC then
Non-dominated sorting of the individuals based on ranking, count and the crowding distance

end if
Copy both CHILD and P to Archive
Identify the individuals who have non-dominated solutions in Archive and add to Pareto front (PF )
Select a population of size N based upon ranking and crowding distance
Generate new population (CHILD) using the genetic operators

end while
Use the solutions in PF to project test set
Calculate the test set classification accuracy of the different solutions
Calculate the number of high-level features in each solution in PF
return a vector S that contain the number of high-level features and classification accuracy of each solution

in PF
end

2.3 Overview of the Two Systems

As shown in Figure 1, after preprocessing of the MS spectra datasets, the sys-
tem for GPMOFS or GPMOFC starts by dividing the dataset into training
and test sets. Each program in the population uses a subset of features in its
tree terminal nodes and generates the objective value. The objective value (clas-
sification accuracy) is measured by GP individual classifier’s accuracy that is
passed as a objective value to measure the dominance. Dominance rank, dom-
inance count and crowding distance are used to measure the dominance of the
solutions. After the objective calculation, the objective value of each solution is
compared to the Pareto front archive. If the solution in the archive is dominated
by the new solution, the new solution will replace it in the archive. Each solu-
tion in the Pareto front has a subset of features that were selected in the terminal
nodes. The Pareto front solutions are used to project the datasets, therefore if the
size of the archive is n, there will be n projected datasets. To test the subsets of
features, the test set is evaluated using GP classifier. As explained earlier, the
main difference between GPMOFS and GPMOFC is the use of low-level and
high-level features.
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Figure 1: General overview of the multi-objective approaches

2.3.1 Objective Functions For both GPMOFS and GPMOFC, the first ob-
jective is to maximise the classification accuracy (Acc). The second objective
used is to minimise the number of features selected or constructed by each GP
tree in the terminal nodes |F |.

Acc is defined as:

Acc =
TP + TN

TP + TN + FP + FN

where TP, TN, FP and FN are the true positives, true negatives, false positives,
and false negatives, respectively. For each instance of the training set, if the
output of the program is less than or equal to zero then the instance is classified
as class 1, otherwise it is classified as class 2.

3 Experiment Design
This section explains the MS datasets used to test GPMOFS and GPMOFC,
GP operators and parameters, benchmark algorithms used for comparison, and
the evaluation criteria.

3.1 MS Datasets
To test the effectiveness of the proposed GP multi-objective approaches, eight
different MS datasets are used.
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– OVA1 and OVA2 [16]: OVA1 is composed of 216 spectra where 121 spectra
are cancerous samples and 95 spectra are healthy ones, while OVA2 consists
of 253 spectra with 162 spectrum are cancerous samples and 91 are healthy
samples. The number of features is 15000 and 15154 in OVA1 and OVA 2,
respectively.

– PAN [17]: The dataset has 181 spectral examples, where 80 are in the af-
fected class and 101 are in the healthy class. The number of features in each
spectrum is 6771.

– TOX [18]: The dataset consists of 62 spectra (28 in the positive and 34 in the
negative class) and each spectrum has 45200 features.

– HCC [19]: HCC has 150 spectra (78 affected and 72 non-affected) with 36802
features in each spectrum.

– DGB [20]. This dataset contains three groups of samples (78 healthy, 25 hep-
atocellular carcinoma and 25 chronic liver diseased). The total number of
features is 16075.

– Pros dataset [21]: This dataset is composed of four classes which are: Healthy
(63 samples), Benign stage1 (190 samples), Prostate Cancer stage2 (26 sam-
ples) and Prostate Cancer stage3 (43 samples). The number of features in
Pros is 15000. For DGB and Pros datasets, we used only two classes of in-
stances.

– Appleminus: This dataset is composed of 365 features with ten instances of
each class. Three classes contain five predefined biomarkers, and the last
class is not spiked-in. Only one of the spiked-in classes and the non-spiked
class are used in our algorithms.

Several preprocessing steps were applied to each of the datasets. The prepro-
cessing of MS data is important to convert the data to a homogeneous matrix
which can be used for feature selection and classification of the data [20]. The
preprocessing steps used in our experiments include baseline adjustment, spec-
trum normalisation, alignment and filtering with different parameters for each
dataset. The baseline removal is used to remove the low-range noise. The base-
line is estimated by passing a window on the spectra and the minimum m/z
values are calculated. A piecewise linear interpolation method is used for the
regression of the baseline. To make the intensity values range the same, normal-
isation is performed. The normalisation of the spectra is done by calculating the
area under the curve [18] and rescaling the spectra to have a maximum inten-
sity value of 300. This is done by using the msnorm function in the Matlab
toolbox [22]. After normalisation is performed, alignment of the peaks is per-
formed to match the similar peaks across all the spectra. Finally, smoothing of
the spectra is done to remove the low signal fluctuation. Smoothing is done
via a Savitzky-Golay filter. Pros and TOX datasets were already baseline ad-
justed. Therefore, both of the datasets were only filtered and normalised. Table
1 shows the running parameters of the preprocessing steps used with each of
the datasets. The parameters are selected based on the original papers of the
datasets [17–20]. The spike-in Appleminus dataset is available in NetCDF for-
mat, and it is preprocessed using XCMS [23] with the settings described in [24].

BingXue


BingXue
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Table 1: Preprocessing parameters
OVA1 & OVA2 TOX PAN HCC DGB Pros

Window size for baseline removal 500 - 200 50 200 -
Smoothing frame size 5 6 3 6 6 3
Maximum intensity after normalisation 300

3.2 Performance Evaluation

GP as a classifier is used to test the selected features in each solution in the
archive on the test sets.The performance is evaluated according to both the clas-
sification accuracy of the test set and the number of features.

3.3 Terminal Set, Function Set, Genetic Operators and Parameters

In the experiments, we adopt standard tree-based GP, which produces a single
floating point number [25] for each instance in the dataset. Each of the out-
put values is then used to determine the classification accuracy of the genetic
program. The initial population is generated using the ramped-half-and-half
method [26]. The function set consists of the four standard elementary mathe-
matical operators {+,�,%,⇥} and also a square root

p
operator. The % andp

are "protected" where % returns zero for division by zero and
p

returns
zero for negative numbers. The terminal set has only variable terminals that
are the feature values. The population size is set to 1024. Crossover and mu-
tation probabilities are 0.8, and 0.2, respectively, and tournament selection is
used with the size of 7. The GP, NSGAII and SPEA2 implementations used in
the experiments are based on the Evolutionary Computing Java-based (ECJ)
package [27]. Other parameters for NSGAII and SPEA2 are set as the default
values in the ECJ library. The evolution terminates at a maximum number of 20
generations.

For each dataset, the experiment is repeated for 30 independent runs with
30 different random seeds. Each run outputs a set of non-dominated solutions
in the Pareto front. The 30 sets of non-dominated solutions from the 30 runs are
combined to one set by removing the dominated solutions from the different
sets.

3.4 Benchmark Algorithms

GPMOFS and GPMOFC are compared to the following benchmark algo-
rithms:

1. Standard (Single-Objective) GP is the standard GP classification framework
using the overall classification accuracy as a single objective to maximise.
The features selected in the terminal nodes of the tree are treated as the
selected features.

2. NSGAII: Multi-objective optimisation using NSGAII and Fisher criterion
based class separability for feature selection [28]. The evaluation is done
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through both the higher Fisher criterion and the smaller number of fea-
tures. The first objective which is maximising the Fisher criterion or the
class separability, that is defined as,

Fitness function = Fisher criterion =
NX

n=1

| µi � µj

�2
i � �2

j

|

where µi and µj are the means, �2
i and �2

j are the variances of the samples
which belong to class i and class j, respectively. N is the number of sam-
ples in the training set. The second objective is minimising the number of
features.

3. SPEA2: Multi-objective optimisation using SPEA2 where the first objective
is to maximise Fisher criterion and the second objective is to minimise the
number of features.

Similar to GPMOFS and GPMOFC, the population size is set to 1024 and the
number of generations is 20. For both NSGAII and SPEA2, each individual is
encoded as a binary vector. The length of the vector is equal to the total number
of features in the dataset. Hence, if the bit is 1, this means that the feature is
selected and if the bit is 0 the feature is not selected.

4 Results and Discussions
Figure 2 shows the results of GPMOFS compared to using the single objective
GP method, and the SPEA2 and NSGAII, while Figure 3 shows the results of
GPMOFC compared to GPMOFS. The multi-objective methods have differ-
ent numbers of non-dominated solutions. The results are the non-dominated
solutions obtained from the 30 independent runs. The x-axis refers to the num-
ber of features selected by each method, whereas the y-axis indicates the clas-
sification accuracy. Each figure is divided into a number of sub-figures where
each sub-figure represents the results of each dataset.

4.1 Performance of GPMOFS

It can be noticed from Figure 2 that using SP -GPMOFS has the potential to
evolve solutions, which have better classification performance and a smaller
number of features than using NS-GPMOFS in seven out of the eight datasets.
The proposed method also outperformed the single objective GP approach and
the two benchmark multi-objective methods SPEA2 and NSGAII, on all the
eight datasets. This supports our hypothesis that using multi-objective GP can
improve the feature selection performance from both the classification accuracy
and the number of features points of view.

In some cases, NS-GPMOFS and SP -GPMOFS have common solutions
such as in the TOX, and HCC datasets during the left region of the front. Only
in the TOX dataset, NS-GPMOFS evolves solutions at the right region of the
frontier which have better accuracy, but the number of features in these solu-
tions are larger. In the Appleminus dataset, NS-GPMOFS is the best followed
by SP -GPMOFS. The single-objective GP method for the Appleminus dataset
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has evolved solutions with a large number of features and lower accuracy com-
pared to the multi-objective approaches.

The multi-objective approaches SPEA2 and NSGAII for feature selection are
both used with Fisher criterion for comparison to the proposed method. Com-
paring NS-GPMOFS and SP -GPMOFS with SPEA2 and NSGAII, it is clear
that GP has improved the performance of both NSGAII and SPEA2 for feature
selection. This can be explained by the GP capability to select the subsets of fea-
tures that are more relevant to classification. Using multi-objective optimisation
along with GP improves both objectives of reducing the number of features and
having a better performance. This suggests that GP improves the capability of
the multi-objective approaches through its ability to select the better subsets of
features.

4.2 Comparison of GPMOFS and GPMOFC

Considering the experimental results of GPMOFC that are shown in Figure 3,
it can be noticed that the multi-objective feature construction is better than the
multi-objective feature selection in most cases. For OVA1, SP -GPMOFC is the
best with a smaller number of features. For PAN and HCC, feature construc-
tion approaches evolve better solutions than the feature selection algorithms.
In dataset OVA2, SP -GPMOFC is equivalent to SP -GPMOFS and it outper-
forms NS-GPMOFS.

The results suggest that multi-objective feature construction tends to achieve
the balance between reducing the dimensionality and improving the perfor-
mance better than multi-objective feature selection. This supports our first hy-
pothesis that feature construction can further improve the multi-objective fea-
ture manipulation performance through the construction of high-level features
that identify the interactions and relations between the original low-level fea-
tures.

The exceptions to the observaton mentioned above that multi-objective fea-
ture construction can achieve better results than the multi-objective feature se-
lection on these datasets are the TOX and Pros datasets. For Appleminus dataset,
NS-GPMOFS has the best set of solutions and the two feature construction
methods come next. For these two datasets, GPMOFS is better than GPMOFC.
GPMOFC tries to reduce the number of constructed features and decreases the
dimensionality better than GPMOFS in these two datasets, but this came on
the account of the classification performance. However, the gap between the
selection and construction is very small. Both selection and construction can
achieve 100% accuracy with a number of features of 10-12 for feature selection
and 12-16 for feature construction, from over 15,000 features in Pros and 45,000
in TOX.

4.3 Comparison of GPMOFC to single objective GP, SPEA2 and NSGAII
approaches

Comparing Figure 2 and Figure 3, GPMOFC is outperforming both SPEA2
and NSGAII in all the cases. If the results of GPMOFC and the single objective
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Figure 2: Experimental Results for GPMOFS
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Figure 3: Experimental Results for GPMOFC
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GP are compared, it is also clear the multi-objective construction is better on all
the tasks.

This indicates the increased effectiveness of using the high-level features
over the selected original features, and gives more credibility to GP as a feature
construction approach.

4.4 Biomarker Detection
We tested the features selected from the Appleminus dataset to check the num-
ber of detected predefined biomarkers by each method. Table 2 shows the se-
lection status of the biomarker by each of the multi-objective feature selection
methods. It can be noticed from Table 2 that SP -GPMOFS has outperformed
the other three methods and managed to detect the five predefined biomarkers.
SPEA2 detected four predefined biomarkers while both NS-GPMOFS and
NSGAII detected three out of the five predefined biomarkers. This suggests
that SP -GPMOFS has better performance in terms of biomarker detection as
well as higher accuracy solutions with a smaller number of features

Table 2: Identified spike-in biomarkers by SP -GPMOFS, NS-GPMOFS,
SPEA2 and NSGAII

m/z value SP -GPMOFS NS-GPMOFS SPEA2 NSGAII
(5 Biomarkers)

463.0 3 3 3 7
447.09 3 3 3 3
273.03 3 3 3 3
435.13 3 7 7 7
227.07 3 7 3 3

5 Conclusions
This paper proposes the first multi-objective biomarker detection approach for
MS data. Moreover, the paper also presents the first multi-objective feature con-
struction algorithm that is applied to MS data.

In Section 2 of the paper, GPMOFS, the proposed GP multi-objective fea-
ture selection method manages the trade-off between the classification accuracy
and the cardinality of features. According to the results, GPMOFS evolves
non-dominated solutions, which has the potential to solve the problem of high
dimensionality and a small number of examples in MS data. The method out-
performs the single-objective feature selection GP method in terms of both ob-
jectives. The method uses the embedded capability of GP to select features with
the dominance rank, dominance count and crowding distance to evaluate the
solutions. The proposed method also outperforms both SPEA2 and NSGAII
multi-objective feature selection approaches using Fisher criterion.

The second part of the paper presents GPMOFC, the first multi-objective
feature construction method on MS data. For the construction of multiple high-
level features, the features generated from the branches of the evolved GP tree
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in addition to the root features are used. This generates a number of new high-
level features, which has the potential to improve the classification performance.
To reduce the dimensionality by generating a smaller number of features, GPMOFC
uses ideas from SPEA2 and NSGAII to keep the trade-off between the number
of features and the classification performance. The results show that GPMOFC
outperformed GPMOFS in almost all the cases, and, it was also better than
SPEA2 and NSGAII approaches and the single objective GP feature selection
method.
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