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Abstract

In classification, feature selection is an important data pre-processing tech-
nique, but it is a difficult problem due mainly to the large search space.
Particle swarm optimisation (PSO) is an efficient evolutionary computation
technique. However, the traditional personal best and global best updating
mechanism in PSO limits its performance for feature selection and the poten-
tial of PSO for feature selection has not been fully investigated. This paper
proposes three new initialisation strategies and three new personal best and
global best updating mechanisms in PSO to develop novel feature selection
approaches with the goals of maximising the classification performance, min-
imising the number of features and reducing the computational time. The
proposed initialisation strategies and updating mechanisms are compared
with the traditional initialisation and the traditional updating mechanism.
Meanwhile, the most promising initialisation strategy and updating mecha-
nism are combined to form a new approach (PSO(4-2)) to address feature
selection problems and it is compared with two traditional feature selection
methods and two PSO based methods. Experiments on twenty benchmark
datasets show that PSO with the new initialisation strategies and/or the
new updating mechanisms can automatically evolve a feature subset with a
smaller number of features and higher classification performance than using
all features. PSO(4-2) outperforms the two traditional methods and two PSO
based algorithm in terms of the computational time, the number of features
and the classification performance. The superior performance of this algo-
rithm is due mainly to both the proposed initialisation strategy, which aims
to take the advantages of both the forward selection and backward selec-
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tion to decrease the number of features and the computational time, and the
new updating mechanism, which can overcome the limitations of traditional
updating mechanisms by taking the number of features into account, which
reduces the number of features and the computational time.
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1. Introduction

In classification problems, a dataset usually involves a large number of
features, often including relevant, irrelevant and redundant features. How-
ever, irrelevant and redundant features are not useful for classification and
they may even reduce the classification performance due to the large search
space, which is termed “the curse of dimensionality” [1, 2]. Feature selec-
tion is proposed to select a subset of relevant features from a large number
of available features to achieve similar or even better classification perfor-
mance than using all features [2]. By eliminating/reducing irrelevant and
redundant features, feature selection could reduce the number of features,
shorten the training time, simplify the learned classifiers, and/or improve
the classification performance [2]. Existing feature selection algorithms can
be broadly classified into two categories [3, 4]: filter approaches and wrap-
per approaches. Filter approaches are independent of a learning algorithm
and they are argued to be computationally cheaper and more general than
wrappers. Wrapper approaches include a learning algorithm as part of the
evaluation function. Therefore, wrappers can often achieve better results
than filter approaches.

Feature selection is a difficult combinatorial problem. The best feature
subset is usually a group of features with the presence of feature complemen-
tarity because of the feature interaction problem. There could be two-way
or multi-way interactions among features [1, 5|. As a result, an individ-
ually relevant feature may become redundant when working together with
other features so that eliminating some such features will remove or reduce
unnecessary complexity. On the other hand, an individually redundant or
weakly relevant feature may become highly relevant when working with oth-
ers. Therefore, an optimal feature subset should be a group of complemen-
tary features. The feature selection task is challenging due mainly to the
large search space. The size of the search space increases exponentially with
respect to the number of available features in the dataset [1]. Therefore,



an exhaustive search is practically impossible in most situations. Although
many different search techniques have been applied to feature selection, most
of these algorithms still suffer from the problems of stagnation in local op-
tima or being computationally expensive [2, 1, 4]. In order to better address
feature selection problems, an efficient global search technique is needed.

Evolutionary computation (EC) techniques are well-known for their global
search ability. Particle swarm optimisation (PSO) [6, 7] is a relatively re-
cent EC technique, which is computationally less expensive than some other
EC algorithms. Therefore, PSO has been used as an effective technique in
feature selection [8, 4]. However, there are a number of limitations about
current PSO for feature selection. Firstly, PSO has not been tuned to the
feature selection task. Gutierrez et al. [9] show that initialisation strate-
gies in PSO perform differently in different problems with high dimensional
search spaces. However, no existing initialisation strategies are specifically
proposed for feature selection problems except our previous work [10]. Sec-
ondly, the traditional personal and global best updating mechanism may
miss some feature subsets with high classification performance, but a small
number of features (detailed discussions in Section 3.2). Therefore, the po-
tential of PSO for feature selection has not been fully investigated and we
will continue our previous work [10] to further study the initialisation and
the updating mechanism in PSO for feature selection.

1.1. Goals

The overall goal of this paper is to propose a new PSO based feature
selection approach to selecting a smaller number of features and achieving
similar or even better classification performance than using all features and
traditional /existing feature selection methods. In order to achieve this goal,
we propose three new initialisation strategies, which are motivated by for-
ward selection and backward selection, and three new personal and global
best updating mechanisms, which consider both the number of feature and
the classification performance to overcome the limitation of the traditional
updating mechanism. Specifically, we will:

e propose new initialisation strategies in PSO to reduce the number of
features without decreasing the classification performance of the feature
subsets achieved by using traditional initialisation strategy,

e develop new updating mechanisms in PSO to guide the algorithm to
search for the feature subsets with high classification performance and a



smaller number of features, and to outperform the traditional updating
mechanism,

e develop a new PSO based feature selection algorithm using one of the
proposed initialisation strategies and one of the proposed updating
mechanisms, and

e investigate whether the proposed feature selection algorithm can obtain
a feature subset with a smaller number of features and better classifi-
cation performance than using all features, and outperform two tradi-
tional feature selection methods, the standard PSO based algorithm,
and a PSO based algorithm using a single fitness function combining
both the number of features and the classification performance.

1.2. Organisation

The remainder of the paper is organised as follows. Section 2 provides
background information. Section 3 describes the proposed new initialisation
strategies, the proposed personal best and global best updating mechanisms,
and the pseudo-code of the proposed algorithm. Section 4 describes experi-
mental design and Section 5 presents experimental results with discussions.
Section 6 provides conclusions and future work.

2. Background

2.1. Particle Swarm Optimisation (PSO)

PSO is an EC technique proposed by Kennedy and Eberhart in 1995
6, 7. PSO simulates the social behaviour such as birds flocking and fish
schooling. In PSO, a population, also called a swarm, of candidate solutions
are encoded as particles in the search space. PSO starts with the random
initialisation of a population of particles. Particles move in the search space
to search for the optimal solution by updating the position of each particle
based on the experience of its own and its neighbouring particles. During
the movement, the current position of particle 7 is represented by a vector
x; = (2, 2, ..., Tip), where D is the dimensionality of the search space. The
velocity of particle i is represented as v; = (v, V42, ..., U;p), which is limited
by a predefined maximum velocity, Ve and vl € [—Umaz, Vmaz). The best
previous position of a particle is recorded as the personal best called pbest
and the best position obtained by the swarm so far is the global best called



gbest. PSO searches for the optimal solution by updating the position and
the velocity of each particle according to the following equations:

zigt = iy + vt (1)
Vi = wkvly 4 e x1y x (i — @lg) + co % o+ (Pga — Tly) (2)

where ¢ denotes the tth iteration in the evolutionary process. d € D denotes
the dth dimension in the search space. w is inertia weight. ¢; and cy are
acceleration constants. rq; and ro; are random values uniformly distributed
in [0, 1]. piq and pyq represent the elements of pbest and gbest in the dth
dimension.

2.2. Related Work on Feature Selection

1) Traditional Feature Selection Approaches

Relief [11] is a filter feature selection algorithm, which assigns a weight
to each feature to denote the relevance of the feature to the target concept.
However, Relief does not deal with redundant features because it attempts to
find all relevant features regardless of the redundancy between them. FOCUS
[12], also a filter algorithm, exhaustively examines all possible feature subsets,
then selects the smallest feature subset. However, the FOCUS algorithm is
computationally inefficient because of the exhaustive search.

Greedy search based sequential forward selection (SFS) [13] and sequen-
tial backward selection (SBS) [14] are two typical wrapper methods. SFS
(SBS) starts with no features (all features), then candidate features are se-
quentially added to (removed from) the subset until the further addition
(removal) does not increase the classification performance. However, these
two methods suffer from the problem of so-called nesting effect, which means
once a feature is selected (eliminated) it cannot be eliminated (selected) later.
This problem can be solved by combining both SFS and SBS into one algo-
rithm. Therefore, Stearns [15] proposes a “plus-I-take away-r” method, which
performs [ times forward selection followed by r times backward elimination.
However, it is difficult to determine the optimal values of (I, r).

2) Evolutionary Computation Techniques for Feature Selection

EC techniques have been applied to feature selection problems, such as
genetic algorithms (GAs), genetic programming (GP), ant colony optimisa-

tion (ACO) and PSO.



Zhu et al. [16] propose a feature selection method using a memetic al-
gorithm that is a combination of local search and GA. In this algorithm,
individual features are firstly ranked according to a filter measure. GA em-
ploys the classification accuracy as the fitness function and deletes or adds
a feature according to the ranking information. The experiments show that
this algorithm outperforms GA alone and other algorithms. Neshatian and
Zhang [17] propose a GP based filter model as a multi-objective algorithm for
feature selection in binary classification problems. Muni et al. [18] develop
a multi-tree GP algorithm for feature selection (GPmtfs) to simultaneously
select a feature subset and design a classifier using the selected features. For
a problem with c classes, each classifier in GPmtfs has ¢ trees. Comparisons
suggest GPmtfs achieves better results than SFS, SBS and other methods.
However, the number of features selected increases when there are (synthet-
ically added) noisy features. There are also some other GP related works,
which can be seen from [19, 20, 21]. Jensen and Shen [22] apply ACO to
find a small reduct in rough set theory to address feature selection prob-
lems. Later, Ke et al. [23], [24], and Chen et al. [25] also successfully use
ACO and rough set theory to solve feature selection problems. However, the
datasets used in these papers have a relatively small number of features (the
maximum number is 70).

Chuang et al. [26] develop a strategy for gbest in PSO for feature selection
in which gbest will be reset to zero if it maintains the same value for sev-
eral iterations. However, the proposed algorithm is only compared with one
traditional method in terms of the classification performance and no PSO or
EC based algorithms are used for comparisons. Chuang et al. [4] apply the
so-called catfish effect to PSO for feature selection, which is to introduce new
particles into the swarm by re-initialising the worst particles when gbest has
not improved for a number of iterations. The authors claimed that the intro-
duced catfish particles could help PSO avoid premature convergence and lead
to better results than sequential GA, SFS, SFFS and other methods. Wang
et al. [27] propose a filter feature selection algorithm based on an improved
binary PSO and rough set. However, the classification performance of the
feature subset is only tested on one learning algorithm, the LEM2 algorithm,
which has some bias for rough set based algorithms.

Based on binary PSO, Iswandy and Koenig [28] develop a filter based
algorithm. The proposed algorithm employs different weights to linearly
combine three objectives, which are evaluated by three filter criteria, into
a single fitness function. The results suggest that this algorithm improved
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the classification performance over using all the available features. Lin and
Chen [8] propose a wrapper feature selection algorithm (PSOLDA) based on
PSO and a linear discrimination analysis algorithm (LDA), which aims to
maximise the classification performance evaluated by LDA. Different param-
eters are tuned to obtain the best settings for PSOLDA. Experimental results
show that PSOLDA outperforms LDA using all features, LDA with principal
components analysis (PCA), and LDA with forward and backward selection
in almost all cases. However, PSOLDA is sensitive to parameter setting and
the datasets in the experiments have a small number of features. Based
on a filter measure and PSO, a filter-wrapper feature selection algorithm is
proposed in [29], with the goal of integrating their advantages. The filter
measure is used to encode the position of each particle and the classification
performance is used in the fitness function. The experiments show that the
proposed method slightly outperforms a binary PSO based filter method.
However, it has not been compared with any wrapper algorithm, which can
usually obtain higher classification performance than a filter algorithm.

Marinakis et al. [30] propose a wrapper approach based on binary PSO
and K-nearest neighbour (KNN) for a real-world medical diagnosis prob-
lem called Pap-smear cell classification. The results show that this method
removes around half of the features and achieves good classification per-
formance. Huang and Dun [31] propose a wrapper algorithm for feature
selection and parameter optimisation in a support vector machine (SVM).
In the proposed algorithm, each particle is encoded by two parts, where the
first part represents the features in a dataset, which are optimised by binary
PSO, and the second part is the parameters in SVM, where are evaluated by
continuous PSO. However, only one dataset with a small number of features
is used in the experiments, which can not demonstrate the full performance
of the proposed algorithm. Fdhila et al. [32] apply a multi-swarm PSO
algorithm to solve feature selection problems. However, the computational
cost of the proposed algorithm is also high because it involves parallel evo-
lutionary processes and multiple subswarms with a relative large number of
particles.

3) Initialisation and Updating Mechanisms in PSO

Recently, many initialisation strategies have been proposed in PSO to
improve its performance. Parsopoulos and Vrahatis [33] use the Nonlinear
Simplex method (NSM) [34] to generate initial particles in PSO. Experiments
show that the NSM based initialisation can improve the performance of PSO
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on 14 benchmark functions. Since NSM is slow and can be applied only
to the problems with low dimensionality, this initialisation method may not
be appropriate for feature selection problems, where the dimensionality is
typically large. Richards and Ventura [35] propose an initialisation strategy
for PSO based on centroidal Voronoi tessellations (CVTs). The goal of this
CV'Ts based initialisation is to evenly initialise the particles’ positions. This
is clearly different from our new initialisation strategies, which aim to re-
duce the number of features and also reduce the computational cost of each
evaluation. The evenly distributed positions generated by CVTs does not
help reduce the number of features. Jabeen et al. [36] propose an oppo-
sition based initialisation strategy in PSO. The experiments show that the
proposed opposition based PSO achieves better performance than random
initialisation. Later, Wang et al. [37] propose an initialisation method based
on space transformation search (STS) strategy by evaluating the solutions in
both original and transformed spaces to get a better set of initial particles.
Gutierrez et al. [9] assume that uniformly distributed particles in the initial-
isation can improve the performance of PSO. Three different initialisation
strategies, the orthogonal array initialisation, a chaotic technique and the
opposition-based initialisation in PSO are compared on problems with high
dimensional search space. The experiments show that the three initialisa-
tion strategies perform differently on different problems. However, all these
strategies are general methods and no existing initialisation strategies are
specifically proposed for feature selection.

Some researchers also work on developing new gbest updating mecha-
nisms. Wang et al. [38] apply a dynamic Cauchy mutation to gbest, where if
the new gbest is better after the application of the mutation operator then
it is replaced by the mutated gbest. However, the proposed algorithm does
not work well on multi-modal problems and it may also not perform well
for feature selection problems, which have many local optiman in the search
space. Chuang et al. [26] propose a gbest updating mechanism, but it simply
sets gbest to zero and can not be applied to pbest. Chen et al. [39] and Qi
and Ding [40] also develop new gbest updating mechanisms in PSO. However,
there has been no existing work that proposes a pbest updating mechanism
in PSO specifically for feature selection to date.

Many studies have shown that PSO is an efficient search technique for
feature selection. However, the potential of PSO for feature selection has not
been fully investigated. This paper will work on developing a new initiali-
sation strategy and a new pbest and gbest updating mechanism in PSO for
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feature selection to further reduce the number of features without decreasing
or probably increasing the classification performance.

3. Proposed Approach

In this section, we will propose three new different initialisation strategies
and three new pbest and gbest updating mechanisms in PSO for feature
selection with the goals of increasing the classification performance, reducing
the number of features and reducing the computational time.

PSO has two versions, which are continuous PSO [6, 7] and binary PSO
[41]. Both of them have been applied in feature selection problems and
achieve good results [26, 4, 31]. However, binary PSO is not developed as well
as continuous PSO and does not follow the main principles of the standard
PSO algorithm [42, 43|, for example, the position of a particle in binary PSO
is updated solely based on the velocity while the position in standard PSO
is updated based on both the velocity and current position. Therefore, we
will use continuous PSO to propose a novel feature selection approach.

3.1. New Initialisation Strategies

Two commonly used wrapper feature selection algorithms are forward
selection [13] and backward selection [14]. Forward selection starts with an
empty feature set (no features) and firstly searches for a feature subset (.59)
with one feature by selecting the feature that achieves the highest classifi-
cation performance. Then the algorithm selects another feature from the
candidate features to add to S. Feature i is selected if adding ¢ to S achieves
the largest improvement in classification accuracy. The candidate features
are sequentially added to S until the further addition of any feature does
not increase the classification performance. On the other hand, backward
selection starts with all the available features, then candidate features are
sequentially removed from the feature subset until the further removal of
any feature does not increase the classification performance. The main dif-
ference between them is their starting points (initialisation). Forward selec-
tion starts with an empty set of features while backward selection starts with
all available features. Forward selection usually selects a smaller number of
features and is computationally less than backward selection, but when the
best feature subset contains a relatively large number of features, backward
selection has a larger chance to obtain the best solution.



Hence, we propose three new initialisation strategies in PSO for feature
selection, which are small initialisation motivated by forward selection,
large initialisation motivated by backward selection and mixed initiali-
sation aiming to take the advantages of forward and backward selection to
avoid their disadvantages. To examine the influence of initialisation strat-
egy in PSO for feature selection, we will test the performance of the three
new initialisation strategies and compare them with the traditional random
initialisation strategy. Details of these four strategies are as follows:

e Traditional initialisation: Each particle is randomly initialised in
terms of both the number of features and the combination of individual
features.

e Small initialisation: This is motivated by forward selection to ini-
tialise each particle using a small number of features, but random (dif-
ferent in most cases) combinations of features.

e Large initialisation: This is motivated by backward selection to ini-
tialise each particle using a large number of features, but random (dif-
ferent in most cases) combinations of features.

e Mixed initialisation: This initialisation strategy combines both the
small initialisation and large initialisation strategies. In this proposed
initialisation strategy, most particles are initialised using a small num-
ber of features (simulating forward selection) and other particles are
initialised using large feature subsets (simulating backward selection).
Meanwhile, through social interaction (updating pbest and gbest), PSO
is expected to be able to reach and search the solution space with
medium size feature subsets if these feature subsets can achieve better
classification performance.

3.2. New pbest and gbest Updating Mechanism

Sharing information through pbest and gbest is an important factor in
PSO, as it influences the behaviour of the swarm during the evolutionary
process. Traditionally, the pbest and gbest are updated solely based on the
fitness value of the particles (i.e. classification performance in feature se-
lection problems). pbest of a particle is updated only when the fitness of
the new position of the particle is better than the current pbest. In feature
selection, the traditional updating mechanism has a potential limitation. If
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the classification performance of the particle’s new position is the same as
the current pbest, but the number of features is smaller, the particle’s new
position corresponds to a better feature subset. However, according to the
traditional updating mechanism, the pbest will not be updated because their
classification performance is the same.

In order to overcome this limitation, we propose three new pbest and
gbest updating mechanisms, which now considers the number of features
when updating pbest and gbest, to reduce the number of features. The three
newly proposed pbest or gbest updating mechanisms are compared with the
traditional updating mechanism and the detailed description of these four
mechanisms are shown as follows.

e Traditional updating mechanism: If the classification performance
of the particle’s new position is better than pbest, pbest is updated. If
the new pbest is better than gbest, gbest is updated (see Pseudo-code
1). The number of features is not considered and it can be increased,
decreased or the same.

Pseudo-code 1: Traditional updating mechanism

if accuracy of particle i (x;) is better than pbest then
L pbest = x; ; // Update the pbest

if accuracy of any pbest is better than gbest then
L gbest = pbest ; // Update the gbest

e Classification performance as the first priority: pbest and gbest
are updated in two situations (see Pseudo-code 2). The first situation
is that if the classification performance of the particle’s new position
is better than pbest, pbest will be updated and replaced by the new
position. In this case, the number of features selected will be ignored
as in the traditional updating mechanism. The second situation is that
if the classification performance is the same as pbest and the number of
features is smaller, the current pbest will be replaced by the particle’s
new position. After updating the pbest of each particle, gbest of each
particle is updated in the same way by comparing gbest with the pbest
of the particle and its neighbours.

e Improve both the number of features and the classification
performance: pbest and gbest are updated in two situations (see
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Pseudo-code 2: Classification performance as the first priority

if accuracy of particle © (x;) is better than pbest then
| pbest = a; ; // Update the pbest

else if accuracy of x; is the same as pbest and |z;| < |pbest| then
L pbest = x; ; // Update the pbest

if accuracy of any pbest is better than gbest then
L gbest = pbest ; // Update the gbest

else if accuracy of any pbest is the same as gbest and |pbest| < |gbest| then

L gbest = pbest ; // Update the gbest

Pseudo-code 3). The first situation is that if the classification per-
formance of the particle’s new position is better than that of pbest and
the number of features is not larger than pbest, pbest is updated. The
second situation is that if the number of features is smaller than pbest
and if the number of features becomes smaller and the classification
performance of the new position is not worse (the same or better) than
current pbest, pbest is updated. gbest is updated in the same way by
comparing gbest with the pbest of the particle and its neighbours.

Pseudo-code 3: Improving both the number of features and the
classification performance

begin
if accuracy of particle i (x;) is better than pbest and |z;| < |pbest| then
L pbest = ; ; // Update the pbest

else if accuracy of x; is the same as pbest and |z;| < |pbest| then
L pbest = x; ; // Update the pbest

if accuracy of any pbest is better than gbest and |pbest| < |gbest| then
L gbest = pbest ; // Update the gbest

else if accuracy of any pbest is the same as gbest and |pbest| < |gbest| then
L gbest = pbest ; // Update the gbest

e Compromise between the classification performance and the
number of features: pbest and gbest are also updated in two situa-
tions (see Pseudo-code 4). The first situation is that if the classifica-
tion performance is better than pbest and the number of features is not
larger than pbest, pbest is updated. The second situation is that if the
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classification performance decreases by less than 5% and the number of
features is smaller, pbest is updated. gbest is updated in the same way
by comparing gbest with the pbest of the particle and its neighbours.

Pseudo-code 4: Compromise between the classification performance and the
number of features

begin

if accuracy of particle i (x;) is better than pbest and |z;| < |pbest| then

L pbest = x; ; // Update the pbest
else if accuracy of x; is better than pbest x 0.95 and |x;| < |pbest| then

L pbest = x; ; // Update the pbest
if accuracy of any pbest is better than gbest and |pbest| < |gbest| then

L gbest = pbest ; // Update the gbest
else if accuracy of any pbest is better than gbest x 0.95 and |pbest| < |gbest|
then

L gbest = pbest ; // Update the gbest

All these three new updating mechanisms include the traditional updat-
ing mechanism and add other situations in updating pbest and gbest. Where
available, it will always select a better feature subset to be the pbest or gbest,
which either has better classification performance or the same classification
performance with a smaller number of features. This can help the algorithm
filter out redundant features and make the feature subset with good classi-
fication performance and a small number of features to be the leader (pbest
or gbest) of each particle and the whole swarm.

The proposed pbest and gbest updating mechanisms are similar to parsi-
mony pressure used in GP. In GP, each individual can be represented as a
tree. The size of the trees can be considered in the selection process, where
the selection operator prefers smaller trees only when their fitnesses are equal,
known as parsimony pressure [44]. However, the proposed updating mech-
anisms are different from parsimony pressure in two aspects. Firstly, the
parsimony pressure in GP changes the size of the trees while the proposed
pbest and gbest updating mechanisms do not change the size of the particles
that is always the total number of features in the dataset. Secondly, the
parsimony pressure is to control the size of the trees in GP, which was not
designed for any problem domain, but the number of features considered in
the proposed pbest and gbest updating mechanisms are particular for feature
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selection problems to optimise one of the two main objectives, i.e. minimising
the number of features.

3.3. Pseudo-code of A Proposed Feature Selection Algorithm

Based on the three new initialisation strategies and the three new pbest
and gbest updating mechanisms, new PSO based feature selection algorithms
can be proposed by using one new initialisation strategy or/and one new
updating mechanism. The fitness function, which measures the classification
performance, is used in the proposed algorithms and shown by Equation 3.

FP+ FN
Fitness; = ErrorRate = TPLTN 1 FPLIEN (3)

where FP, FN, TP and TN stand for false positives, false negatives, true
positives, and true negatives, respectively. For example, in an binary classi-
fication problem with a class Positive and a class Negative, for an instance a,
TP increases 1 when a is predicted as class Positive and a’s true class label
is also class Positive. FP increases 1 when a is predicted as Positive while a’s
true class label is Negative. TN increases 1 when a is predicted as Negative
and a’s true class label is also Negative. FN increases 1 when a is predicted
as Negative, but a’s true class label is Positive.

In this work, we will investigate the performance of the standard PSO us-
ing the traditional initialisation with traditional updating mechanism for fea-
ture selection (named PSO(1-1)). We will only investigate the performance of
PSO using three new initialisation strategies with traditional updating mech-
anism, which are PSO(2-1) using small initialisation, PSO(3-1) using large
initialisation and PSO(4-1) using mixed initialisation, and PSO using the
traditional initialisation strategy with one of the three new updating mech-
anisms, which are PSO(1-2) treats the classification performance as the first
priority, PSO(1-3) aims to improve both the classification performance and
the number of features, and PSO(1-4) compromises between the classification
performance and the number of features. In order to test the combination
of new initialisation strategies and updating mechanisms, we also investi-
gate the performance of PSO using the mixed initialisation and the pbest
and gbest updating mechanism treating the classification performance as the
first priority for feature selection (named PSO(4-2)). The reason is that the
mixed initialisation is proposed to utilise the advantages and avoid the dis-
advantages of both forward selection and backward selection, and considers
that the classification performance is more important than the number of
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Algorithm 1: The pseudo-code of the proposed algorithm (PSO(4-2))
begin
divide Dataset into a Training set and a Test set;
initialise most of the particles using small feature subsets and the others
particles using relatively large feature subsets;
initialise the velocity of each particle;
while Maximum Iterations or the stopping criterion is not met do
evaluate the fitness (classification performance, i.e. error rate) of each
particle on the Training set;
for i=1 to Population Size do
if accuracy of particle © (x;) is better than that of pbest then
L pbest = z; ; // Update the pbest of particle 4

else if accuracy of x; is the same as pbest and |z;| < |pbest| then
L pbest = x; ; // Update the pbest of particle 4

if accuracy of any pbest is better than that of gbest then
L gbest = pbest ; // Update the gbest of particle 1

else if accuracy of any pbest is the same as gbest and
|pbest| < |gbest| then
L gbest = pbest ; // Update the gbest of particle 1

for i=1 to Population Size do
| update the velocity and the position of particle ¢

calculate the classification accuracy of the selected feature subset on the Test
set;

return the position of gbest (the selected feature subset);

return the training and test classification accuracies;

features in feature selection problems. Therefore, PSO(4-2) is expected to
simultaneously increase the classification performance, reduce the number of
features and reduce the computationally time. The pseudo-code of PSO(4-2)
can be seen in Algorithm 1. The pseudo-code of the other new algorithms
is similar to PSO(4-2) except for the initialisation and the pbest and gbest
updating mechanism procedure.

4. Design of Experiments

4.1. Benchmark Techniques

To examine the performance of the proposed initialisation strategies, we
will firstly compare PSO(2-1), PSO(3-1) and PSO(4-1) with PSO(1-1), all
of which use the traditional pbest and gbest updating mechanism. We also
compare PSO(1-2), PSO(1-3) and PSO(1-4) with PSO(1-1), all of which use
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the traditional random initialisation strategy. Meanwhile, we compare the
proposed PSO(4-2) with two traditional wrapper feature selection methods,
PSO(1-1), and a PSO based algorithm with a single fitness function combin-
ing both the classification performance and the number of features (PSO-No,
defined below).

The two traditional methods are linear forward selection (LFS) and greedy
stepwise backward selection (GSBS), which were derived from SFS and SBS,
respectively. LFS [45] restricts the number of features that is considered in
each step of the forward selection, which can reduce the number of eval-
uations. Therefore, LFS is computationally less expensive than SFS and
can usually obtain good results. More details can be seen in the literature
[45]. The greedy stepwise based feature selection algorithm can move either
forward or backward in the search space [46]. Given that LFS performs a
forward selection, a backward search is chosen in greedy stepwise to conduct
a greedy stepwise backward selection (GSBS). GSBS starts with all available
features and stops when the deletion of any remaining feature results in a
decrease in classification performance.

PSO-No uses a single fitness function to combine both the classification
performance and the number of features, where the weight for the number
of features is very small. The fitness function is shown by Equation 4.

Fitnessy = ErrorRate + o x # Features (4)

where ErrorRate means the training classification error of the selected fea-
tures and # Features presents the number of features selected. « shows the
relative importance of the number of features. « is designed to be an ex-
tremely small value to ensure that the second component in Equation 4 is
always smaller than the first component. Therefore, the classification perfor-
mance can dominate Equation 4 to lead PSO-No to search for feature subsets
with low classification error rates. Since the datasets used in this paper do
not have a huge number of features (over 10 000), for the purpose of letting
the classification performance dominate Equation 4, o can be a fixed, small
number (i.e. 1.0E-6). Note that the purpose of Equation 4 is different from
a typical way of combing the classification performance and the number of
features into a single fitness function [47, 48], where the relative importance
of these two parts are not necessarily significantly different. Equation (4)
aims to make the classification quality significantly more important than the
number of features. This purpose is achieved by using the very small o in
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Table 1: Datasets

Dataset No. of No. of No. of Dataset No. of No. of No. of
Features Classes Instances Features Classes Instances

Wine 13 3 178 Z.00 17 7 101
Vehicle 18 4 846 German 24 2 1000
WBCD 30 2 569 Tonosphere 34 2 351
Lung 56 3 32 Sonar 60 2 208
Movementlibras 90 15 360 Hillvalley 100 2 606
Musk Version1(Musk1) 166 2 476 Arrhythmia279 16 452
Madelon 500 2 4400 Isoleth 617 2 1559

Equation (4), which make the classification quality 10° times more important
than the number of features (and the total number of features in the dataset
can be ignored).

Equation 4 is a typical way to optimise two objectives, where one objective
is often more important than the other objective. Feature selection involves
two goals of maximising the classification performance and minimising the
number of features, but the classification performance is more important
than the number of features. However, this typical way of combining two
objectives into one single fitness function with a very small o has not been
applied to feature selection. In this work, we applied it to feature selection
to develop PSO-No and compare its performance with that of PSO(1-1) and
PSO(4-2). The basic steps of PSO-No are the same as PSO(4-2) except
for the fitness function, the initialisation strategy and the pbest and gbest
updating mechanism.

4.2. Datasets and Parameter Settings

Fourteen datasets (Table 1) chosen from the UCI machine learning repos-
itory [49] are used in the main experiments and six additional datasets in Ta-
ble 8 in Section 6.2 are used for further comparisons. The fourteen datasets
are chosen to have different numbers of features, classes and instances as
representatives of different types of problems that the proposed algorithms
will be tested on. For each dataset, the instances are randomly divided into
two sets: 70% as the training set and 30% as the test set.

As a wrapper approach, the proposed algorithms requires a learning al-
gorithm. A simple and commonly used learning algorithm [26], KNN is used
in the experiments and K=5 (5NN). Waikato Environment for Knowledge
Analysis (Weka) [50] is used to run the experiments using LF'S and GSBS.
All the settings in LFS and GSBS are kept to the defaults. During the train-
ing process, each particle (individual) represents one feature subset. The
classification performance of a selected feature subset is evaluated by 10-fold
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cross-validation on the training set. Note that 10-fold cross-validation is per-
formed as an inner loop in the training process to evaluate the classification
performance of a single feature subset on the training set and it does not
generate 10 feature subsets. After the training process, the selected features
are evaluated on the test set to obtain the testing classification error rate. A
detailed discussion of why and how 10-fold cross-validation is applied in this
way is given by [3].

Feature selection is a binary problem, but continuous PSO is used in this
work because there are some limitations in the current version of binary PSO
[43]. The representation of a particle is an “n-bit” string, where “n” is the
total number of features in the dataset. The position value in each dimension
(x;4) is in [0,1]. A threshold 6 is needed to compare with the value of ;4. If
T;q > 0, the dth feature is selected. Otherwise, the dth feature is not selected.
The parameters are selected according to common settings proposed by Clerc
and Kennedy [51]. The common settings are used here because using them
can clearly test whether the improvement of the performance is caused by the
newly proposed mechanisms rather than other factors. The detailed settings
are shown as follows: w = 0.7298, ¢; = ¢ = 1.49618, population size is
30, and the maximum iteration is 100. The fully connected topology is used.
According to our preliminary experiments [52, 53], the threshold € is set as 0.6
to determine whether a feature is selected or not. In PSO(2-1), all particles
are initialised using a small number of features, which is around 10% of the
total number of features in the dataset, but the combination of individual
features are randomly selected. In PSO(3-1), all particles are initialised using
a large number of features (more than half of the total number of features),
where for one particle, a random number (e.g. m, where m is between half
and the total number of features) is firstly generated and m features are
randomly selected to initialise this particle. In PSO(4-1) and PSO(4-2), a
major part of the swarm (2/3) is initialised using small feature subsets like
PSO(2-1), and the other minor part of the swarm (1/3) is initialised using
more than half of the total number of features like PSO(3-1). In PSO-No,
a = 1.0E—6, which is very small to ensure that the classification performance
is always much more important than the number of features.

For each dataset, the experiments to examine the feature selection per-
formance of each algorithm has been conducted for 50 independent runs. A
statistical significance test, pairwise Student’s T-test, is performed between
the testing classification performance of different algorithms. The signifi-
cance level in the T-tests is selected as 0.05 (or confidence interval is 95%).

18



Meanwhile, the non-parametric statistical significance test, Wilcoxon test, is
also performed with the significance level of 0.05. The results of the Wilcoxon
test is similar to that of T-test. Therefore, the results of the Wilcoxon test
are not listed in the next section.

5. Experimental Results and Discussions

Table 2 shows the experimental results of PSO(1-1), PSO(2-1), PSO(3-
1), and PSO(4-1). Table 3 shows the experimental results of PSO(1-1),
PSO(1-2), PSO(1-3), and PSO(1-4). The results of PSO(4-2), PSO(4-3),
and PSO(4-4) are shown in 4. Table 5 shows the experimental results of
PSO(1-1), PSO(4-2), and the benchmark techniques.

5.1. Influence of the initialisation strategy in PSO for feature selection

Table 2 shows the experimental results of using the four different initial-
isation strategies with the traditional pbest and gbest updating mechanism.
In both Table 2 and Table 3, “All” shows the total number of features in
the dataset. “AveNQ.” represents the average number of features selected
by each algorithm in 50 independent runs. “Ave”, “Best” and “StdDev”
indicate the average, the best and the standard deviation of the classifica-
tion accuracy obtained from the 50 runs on each test set. “T1” shows the
results of T-test between the classification performance of using all the avail-
able features and that of a PSO based feature selection algorithm, and “T2”
shows the results of T-test between the classification performance achieved
by PSO(1-1) and another algorithm. In both “T1” and “T27, “47 (“-7)
means that the classification performance of the feature selection algorithm
is significantly better (worse) than that of all features or PSO(1-1). “="
indicates they are similar.

5.1.1. Results of random initialisation

According to Table 2, on 13 of the 14 cases, standard PSO(1-1) using
traditional random initialisation strategy selected around half of the avail-
able features and achieved better classification performance than using all
features. Only on the Movementlibras, where the classification performance
of using all features was already very high (94.81%), the average classification
accuracy of PSO(1-1) was slightly worse (94.51%), but its best classification
accuracy (95.31%) is better than using all features and PSO(1-1) removed
around two thirds of the available features. The results suggest that stan-
dard PSO with traditional initialisation and updating mechanism can be
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Table 2: Experimental Results of New Initialisation Strategies

Dataset Method AveNO. Ave(Best) StdDevT1T2Dataset Method AveNO. Ave(Best) StdDevT1T2
All 13 76.54 All 17 80.95
1-1 7.24 95.95(100) 2.2 + 1-1 8.16 95.47(97.14)0.77 +
Wine 21 358  96.1(100) 246  + =Zoo 21 3.2 04.08(97.14)1.62  + -
3-1 9.44 96.62(98.77)2.3 + = 3-1 9.96 95.62(97.14)0.89 +
4-1 8.1 96.15(98.77)1.92 + = 4-1 7.98 95.64(97.14)0.71 + =
All 18 83.86 All 24 68.0
1-1 9.06 85.07(87.01)0.87 + 1-1 12.42  68.47(72) 1.89 =
Vehicle  2-1 3.6 81.7(85.24) 1.84 - -|German 2-1 2.34 67.35(72)  6.46 = =
3-1 10.58  85.26(87.99)0.96 + = 3-1 16.82  69.13(71.67)1.22 + +
4-1 9.54 85.06(86.61)0.99 + = 4-1 13.68 69.27(74.33)1.78 + +
All 30 92.98 All 34 83.81
1-1 11.82  93.34(94.74)0.52 + 1-1 8.74 88.86(93.33) 2.04 +
WBCD  2-1 3.04 93.05(94.74)2.43 = =|lonosphere 2-1 3.36 88.06(92.38)2.15 + =
3-1 19.06  93.02(94.15)0.36 = - 3-1 18.38  86.5(94.29) 1.97 +
4-1 8.12 93.78(94.74)0.76 + + 4-1 3.26 87.45(92.38)2.38 + -
All 56 70.0 All 60 76.19
11 2358  74(90) 748+ 11 2204 78.64(85.71)3.32  +
Lung 2-1 2.86 79(90) 8.77 + +{Sonar 2-1 6.18 76.83(85.71)5.07 = -
3-1 37.16  73.2(90) 5.46 + = 3-1 31.76  78.03(85.71)3.69 + =
4-1 1596 75.8(90) 777+ = 41 113 77A(87.3) 411 4 =
All 90 94.81 All 100 56.59
1-1 37.96  94.51(95.31)0.33 - 1-1 40.54  58.13(60.99)1.35 +
Movement2-1  11.84 94.28(95.19)0.44 - -|Hillvalley 2-1  6.74  56.98(61.81)2 = -
3-1 50.62  94.42(95.06)0.25 - = 3-1 60.56  57.78(60.71)1.27 + =
4-1 27.12  94.52(95.19)0.32 - = 4-1 13.16  57.68(61.26)1.85 + =
All 166 83.92 All 278 94.46
1-1 74.26  84.6(91.61) 2.23 + 1-1 120.22 94.54(95.14)0.35 =
Musk1 2-1 16.66  81.57(89.51)3.12 - -|Arrhythmia2-1 14.36  94.4(95.36) 0.62 = =
3-1 107.14 85.51(90.21)2.17 + + 3-1 171.98 94.32(95.02)0.26 - -
41 8354 84.62(90.21)2.32  + = 41 8172 94.69(95.59)0.36  + -+
All 500 70.9 All 617 98.45
1-1 235.2  76.93(79.87)1.54 + 1-1 283.3  98.59(98.78)0.09 +
Madelon 2-1 16.32  77.22(89.23)9.01 + =|Isolet5 2-1 115.4  98.44(98.69)0.13 = -
3-1 336.9 74.32(78.85)1.58 - 3-1 395.64 98.54(98.77)0.1 + -
4-1 267.36 76.54(83.85)2.65 + = 4-1 337.6  98.58(98.85)0.1 + =

successfully applied to feature selection problems to select a smaller num-
ber of features and achieve better classification performance than using all
features.

5.1.2. Small initialisation

According to Table 2, PSO(2-1) further reduced the number of features
selected by PSO(1-1), which was less than 20% of the available features.
PSO(2-1) achieved similar or better classification performance than using all
features in most cases. The classification performance of PSO(2-1) was simi-
lar to PSO(1-1) on five datasets, better than PSO(1-1) on two datasets, but
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worse than PSO(1-1) on six datasets. The results suggests that PSO(2-1)
has the advantage of the forward selection to select a small number of fea-
tures. However, for the datasets in which the best classification performance
was achieved by a large number of features, PSO(2-1) achieved slightly worse
classification performance than other three algorithms, such as in the Move-
mentlibras dataset, Muskl, and German datasets. The main reason is that
the number of features was not considered or evolved during the evolutionary
training process. If two feature subsets have the same (high) classification
performance, but have different numbers of features, PSO(2-1) will be more
likely to reach the smaller feature subset first and keep it as pbset or gbest.
Even if PSO(2-1) reaches the larger feature subsets, pbset or gbest will not
be replaced. Therefore, the number of features in PSO(2-1) is usually small,
but this may also limit PSO(2-1) to search for the space containing solutions
with a larger number of features, which results in slightly worse classification
performance than PSO(1-1) in some cases. Although increasing the number
of iterations might address this limitation in some cases, it will also increase
the computational cost.

5.1.3. Large initialisation

According to Table 2, PSO(3-1) selected a larger number of features
than PSO(1-1) and PSO(2-1). PSO(3-1) achieved better classification perfor-
mance than using all features on 11 of the 14 datasets, similar classification
performance to PSO(1-1) on seven datasets, better classification performance
than PSO(1-1) on two datasets, but worse than PSO(1-1) on five datasets.
The results suggest that PSO(3-1), which simulates the backward selection,
also suffers from the problem of selecting a relatively large number of features.
The main reason is that pbest and gbest in PSO(3-1) are firstly assigned by
feature subsets with a large number of features. Even if PSO(3-1) reaches
a smaller feature subset with the same classification performance, pbest and
gbest will not be updated. Therefore, this may limit PSO(3-1) to search for
the space containing solutions with a smaller number of features, and also
results slightly worse classification performance than PSO(1-1) in some cases.

5.1.4. Mized initialisation

According to Table 2, PSO(4-1) achieved better classification performance
than using all features on 13 of 14 datasets (except for the Movementlibras
dataset). On 13 of the 14 datasets, PSO(4-1) achieved similar or better clas-
sification performance than PSO(1-1), while in most cases, the number of
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features selected by PSO(4-1) was larger than PSO(2-1) but smaller than
PSO(1-1) and PSO(3-1). This might be because PSO(4-1) was proposed to
simulate both forward and backward selection to utilise their advantages and
avoid their disadvantages. By initialising particles using both a small num-
ber and a large number of features, PSO(4-1) can avoid the limitations of
PSO(2-1) and PSO(3-1) as it achieved at least as good a classification perfor-
mance as PSO(1-1), but selected a smaller number of features in most cases.
Meanwhile, as the number of features selected is smaller, the computational
time of PSO(4-1) is usually shorter than PSO(1-1) and PSO(3-1).

Generally, all these four methods using different initialisation strategies
selected a smaller number of features and achieved better classification per-
formance than using all features. Although the classification performance is
slightly different, the main difference between the above four algorithms are
the number of features. The main reason is that all these four algorithms
do not consider (or evolve) the number of features during the evolutionary
training process. Therefore, the initialisation of the number of features can
significantly influence the final solutions. PSO(4-1) simulates both forward
selection and backward selection in the initialisation procedure, which results
in at least as good classification performance as PSO(1-1), but it selected a
smaller number of features in eight of the 14 cases and also reduced the
computational time. The results and comparisons suggest that the initiali-
sation strategy is important in PSO for feature selection, and it should not
be ignored.

5.2. Influence of pbset and gbest updating mechanism in PSO for feature
selection

Table 3 shows the experimental results of PSO using the traditional ini-
tialisation strategy (random initialisation) and different pbset and gbest up-
dating mechanisms for feature selection. The performance of PSO(1-1) has
been discussed in Section 5.1 and will not be repeated here.

5.2.1. Classification performance as the first priority

According to Table 3, PSO(1-2) selected less than half or even less than
one third of the available features and achieved significantly better or similar
classification than using all features on 13 of the 14 datasets. The excep-
tion being the Movementlibras dataset, where PSO(1-2) selected around one
third of the available features, but achieved slightly worse average classifi-
cation performance (94.56%) than using all features (94.81%), although the

22



Table 3: Experimental Results of New pbest and gbest Updating Mechanisms

Dataset Method AveNO. Ave(Best) StdDevT1T2[Dataset Method AveNO. Ave(Best) StdDevT1T2
All 13 76.54 All 17 80.95
11 724  95.95(100) 2.2 + 11 816  95.47(97.14)0.77  +
Wine 1-2 5.9 95.16(98.77)2.19 + =[Zoo 1-2 4.98 95.3(97.14) 0.55 + =
1-3 4.64 96.87(100) 2.78 + = 1-3 4.04 95.2(96.19) 0.42 + -
1-4 4.58 96.72(100) 2.82 + = 1-4 4.28 95.24(96.19) 0.5 + =
All 18 83.86 All 24 68.0
1-1 9.06 85.07(87.01)0.87 + 1-1 12.42 68.47(72) 1.89 =
Vehicle  1-2 9.16 85.13(87.01)0.85 + =|German 1-2 11.78 68.57(72.33)2.05 = =
1-3 5.48 84.15(86.81)1.26 = - 1-3 6.38 68.95(72) 2.02 + =
14 448  83.68(86.81)1.26 = - 14 446  68.81(72) 1.97 + =
All 30 92.98 All 34 83.81
1-1 11.82  93.34(94.74)0.52 + 1-1 8.74 88.86(93.33) 2.04 +
WBCD 1-2 418  93.72(94.74)0.85  + +[lonosphere 1-2  8.18  88.91(92.38)2.04  + =
1-3 3.02 93.91(94.74)1.43 + + 1-3 3.5 88.53(95.24)2.86 + =
14 254 93.63(94.74)1.9  + = 14 338  88.08(91.43)2.12 + =
All 56 70.0 All 60 76.19
1-1 23.58  74(90) 7.48 + 1-1 22.04 78.64(85.71)3.32 +
Lung 1-2 12.62  75.4(90) 7.27 + =[Sonar 1-2 17.98 78.03(85.71)3.76 + =
1-3 5.12 79.8(90) 6.16 + + 1-3 9.06 77.78(87.3) 3.8 + =
1-4 5.52 79.6(90) 6.31 + + 1-4 7.86 77.46(87.3) 3.63 + =
All 90 94.81 All 100 56.59
1-1 37.96 94.51(95.31)0.33 1-1 40.54  58.13(60.99)1.35 +
Movement 1-2 36.72  94.56(95.31)0.32 - =Hillvalley 1-2 40.74  58.04(60.44)1.24 + =
1-3 18.28  94.47(95.31)0.39 - = 1-3 18.6 57.98(60.16) 1.46 + =
1-4 11.84  94.42(95.19)0.35 - = 1-4 4.42 56.18(60.16) 1.96 = -
All 166 83.92 All 278 94.46
1-1 74.26  84.6(91.61) 2.23 + 1-1 120.22 94.54(95.14)0.35 =
Musk1 1-2 72.3 84.69(90.91) 2.24 + =[Arrhythmial-2 108.52 94.44(95.14)0.3 = =
13 381  82.84(88.112.77 - - 13 4834 94.78(95.81)0.38  + +
1-4 30.2 82.88(88.11) 2.69 - - 1-4 20.74  94.68(95.59)0.37 + +
All 500 70.9 All 617 98.45
11 2352 76.93(79.87)1.54  + 11 283.3 98.59(98.78)0.09  +
Madelon 1-2 233.94 77.08(80.64)1.66 + =|Isolet5 1-2 282.8  98.6(98.85) 0.09 + =
1-3 104.82 80.06(85.77)2.33 + + 1-3 149.4  98.56(98.95)0.12 + =
1-4 73.14  81.74(86.41)1.9 + + 1-4 98.34  98.59(98.8) 0.11 + =

best classification performance (95.31%) of PSO(1-2) was better than using
all features. Compared with PSO(1-1), PSO(1-2) achieved similar or better
classification performance on all datasets and a smaller number of features
on 12 of the 14 datasets. The main reason is that PSO(1-2) takes the classifi-
cation performance as the first priority, which can firstly guarantee PSO(1-2)
achieve at least as good classification performance as PSO(1-1), and PSO(1-
2) also considers the number of features if the classification performance is
the same value, which can remove redundant or irrelevant features to reduce
the number of features selected and may further improve the classification
performance, such as on the WBCD dataset.
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5.2.2. Improve both the number of features and the classification performance

According to Table 3, PSO(1-3) selected around a quarter (or less) of the
available features and achieved significantly better or similar classification
performance than using all features on 12 of the 14 datasets. On the Move-
mentlibras and Muskl datasets, although PSO(1-3) achieved slightly worse
classification performance on average than using all features, its best classi-
fication performance was higher and the number of features was significantly
reduced to less than a quarter of the total number of features. The num-
ber of features selected by PSO(1-3) is much smaller than that of PSO(1-1)
and PSO(1-2). The classification performance of PSO(1-3) was similar to
that of PSO(1-1) on six of the 14 datasets, slightly worse than PSO(1-1) on
four datasets and slightly better on four datasets. This might be because
in PSO(1-1) and PSO(1-2), if the classification performance was increased,
the number of features was ignored. PSO(1-3) aims to guarantee both the
classification performance was not reduced and the number of features was
not increased when updating pbest or gbest, which can further reduce the
number of features without decreasing the classification performance on 10
of the 14 datasets, but it might also cause the algorithm to miss the feature
subsets with high classification performance and a large number of features.

5.2.8. Classification performance compromises the number of features
According to Table 3, in most datasets, PSO(1-4) selected around one fifth
(or less) of the available features and achieved similar or even better classi-
fication performance than using all features. PSO(1-4) further reduced the
number of features selected by PSO(1-1), PSO(1-2), and PSO(1-3). PSO(1-
4) achieved similar classification performance to PSO(1-1) on six datasets,
slightly worse than PSO(1-1) on five datasets and slightly better than PSO(1-
1) on three datasets. The reason might be that when updating pbest or gbest,
the number of features in PSO(1-4) was treated as more important than in
PSO(1-1), PSO(1-2) and PSO(1-3), which guides PSO(1-4) to search for the
feature subsets with a small number of features. Meanwhile, the classifi-
cation performance in PSO(1-4) compromises the number of features to a
very small extent. Therefore, the classification performance of PSO(1-4) was
slightly worse than PSO(1-1), PSO(1-2) and PSO(1-3) in many cases.
Generally, all these four methods using the new pbset and gbest updating
mechanisms can select a smaller number of features and achieve better classi-
fication performance than using all features. PSO(1-2) takes the classification
performance as the first priority and considers the number of features only if
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the classification performance is the same. Therefore, PSO(1-2) achieved at
least as good a classification performance as PSO(1-1), but selected a smaller
number of features. PSO(1-3) aims to not reduce the classification perfor-
mance and also not increase the number of features, which may results in
missing the feature subset with high classification performance and a large
number of features. In PSO(1-4), the classification performance was com-
promised by the requirement to reduce the number of features. Therefore,
PSO(1-4) selected a smaller number of features than PSO(1-1), but the classi-
fication performance was worse than PSO(1-1) in some cases. The results and
comparisons show that the pbset and gbest updating mechanism can signifi-
cantly influence the performance of PSO for feature selection in terms of both
the classification performance and the number of features. The results also
show that the updating mechanism is more important than the initialisation
strategy in PSO for feature selection. Therefore, to improve the performance
of PSO for feature selection, the updating mechanism should be naturally
considered first. Meanwhile, since the initialisation strategy is simple and
easy to implement, we should combine them together to further improve the
feature selection performance and reduce the computational cost.

5.2.4. Comparisons Between PSO(4-2), PSO(4-3) and PSO(4-4)

From Section 5.1, it can be seen that the mixed initialisation strategy
outperformed the others strategies. Therefore, the performance of using the
mixed initialisation and new updating mechanisms are investigated and Table
4 shows comparisons between PSO(4-2), PSO(4-3) and PSO(4-4).

According to Table 4, the feature subsets selected by PSO(4-2) was larger
than PSO(4-3) on eight of the 14 datasets and larger than PSO(4-4) on 13
of the 14 datasets. The main reasons are the same as discussed before,
which was PSO(4-3) and PSO(4-4) treat the number of features with higher
weighting than PSO(4-2). On the other hand, PSO(4-2) treats the classifica-
tion performance with higher emphasis than PSO(4-3) and PSO(4-4). The
classification performance achieved by PSO(4-2) was at least similar to that
of PSO(4-3) and PSO(4-4). It also significantly better than PSO(4-3) on 10
datasets and PSO(4-4) on nine datasets of the 14 datasets. Meanwhile, on
the datasets including a large number of features (larger than 100), PSO(4-2)
achieved significantly better classification performance than both PSO(4-3)
and PSO(4-4). Since the classification performance is usually more impor-
tant than the number of features, we choose PSO(4-2) as a representative
method to compare with other methods.
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Table 4: Comparisons Between PSO(4-3), PSO(4-4) and PSO(4-2)

Dataset Method AveNO. Ave(Best) StdDev T-testDataset Method AveNO. Ave(Best) StdDev T-test

42 6.84  95.26(98.77)1.75E0 42 646  95.52(97.14)71.7E-2
Wine 43 6.5 94.79(100) 3.37E0 = 4-3 588  95.05(98.1) 1.32E0 -
4-4 642  94.4(100) 3.93E0 = |Zoo 4-4 57  95.14(98.1) 1.31E0 =
42 10.16 85.3(87.01) 94.7E-2 4-2 1276 68.47(70.67)1.45E0
Vehicle 4-3 812  84.7(87.99) 1.35E0 - 4-3 1114 68.93(70.67)1.61E0 =
4-4  7.08 84.53(87.8) 1.52E0 - |German 44 278  67.21(71) 9.77TE0 =
42 346  93.98(94.74)85.6E-2 42 326  87.27(91.43)1.84E0
WBCD 4-3 24  91.88(94.74)2.81E0 - 4-3 24 87.03(93.33)2.33E0 =
44 25 90.96(94.74)2.61E0 - [lonosphere 4-4  2.34  86.57(91.43)2.02E0 =
42 6.74 78.4(90)  6.44E0 4-2  11.24 78.16(85.71)3.18E0

Lung 43 944  78.8(100) 9.93E0

4-3 8.98 74.54(85.71)5.02E0 -

44 944  788(100) 9.93E0 = [|Sonar 44 6.1  73.21(85.71)5.07TE0 -
12 27.46 94.58(95.19)37.65-2 12 1222 57.77(60.71) LATEO
Movement4-3  39.08 94.41(95.06)31E-2 - 43 3.02  55.62(59.62)1.85E0 -
44 2664 94.4(94.94) 29.9E-2 - [Hillvalley 4-4 214  54.96(59.07)1.84E0 -
12 76.54 84.94(89.51)2.52E0 12 70.02 94.77(95.59)39.6E-2
Muskl 4-3  77.36  83.02(90.21)2.52E0 - 4-3  97.44  94.41(95.36)39.3E-2 -
44 6226 82.76(90.91)2.72E0 - |Arrhythmiad-4  29.36 94.25(95.02)47.3E-2 -
42 203.32 78.86(84.23)3.15E0 12 283.22 98.63(98.87)11.76-2
Madelon 4-3  214.76 76.54(87.56)3.03E0 - 4-3 3214 98.45(98.65)11.7TE-2 -
4-4 18112 75.31(82.05)2.61E0 - [lsolet5  4-4  260.58 98.34(98.69)14.2E-2 -

5.3. Results of PSO(4-2)

Table 5 shows the experimental results of the proposed algorithm and
the benchmark techniques. “T-test” shows the result of the T-test between a
benchmark technique and PSO(4-2), where “+” (“-”) means that the classifi-
cation performance of the benchmark technique is significantly better (worse)
than that of PSO(4-2). “=" indicates they are similar.

5.3.1. Results of LFS and GSBS

According to Table 5, LFS selected a smaller number of features and
achieved a similar or higher classification accuracy than using all features in
most cases. GSBS could reduce the number of features, but could not im-
prove the classification performance on many datasets. In most cases, LFS
outperformed GSBS in terms of both the number of features and the clas-
sification performance. The results indicate that LFS as a forward selection
algorithm is more likely to obtain good feature subsets with a small num-
ber of features than GSBS (backward selection) because of different starting
points. However, in some cases, GSBS achieved better classification perfor-
mance than LFS.

5.3.2. Results of PSO-No

According to Table 5, PSO-No evolved feature subsets with a small num-
ber of features and achieved better classification performance than using all
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Table 5: Comparisons Between PSO(4-2) and Benchmark Methods

Dataset Method AveNO.Ave(Best) StdDev T-testDataset Method AveNO.Ave(Best) StdDev T-test
All 13 76.54 - All 17 80.95 -
Wine LFS 7 74.07 - LFS 8 79.05 -
GSBS 8 85.19 = 1700 GSBS 7 80.0 -
PSO(1-1)7.24 95.95(100) 2.2E0 = PSO(1-1)8.16 95.47(97.14)77.3E-2 =
PSO-No 5.86 95.33(98.77)2.13E0 = PSO-No 4.86 95.18(96.19)51.7E-2 -
PSO(4-2)6.84  95.26(98.77) 1.75E0 PSO(4-2)6.46  95.52(97.14) 71.7E-2
All 18 83.86 - All 24 68.0 -
LFS 9 83.07 - LFS 3 68.67 =
Vehicle GSBS 16 75.79 * |German GSBS 18 64.33 -
PSO(1-1)9.06  85.07(87.01)86.9E-2 = PSO(1-1)12.42  68.47(72) 1.89E0 =
PSO-No 8.96 85.15(87.01)88.8E-2 = PSO-No 11.52 68.37(74.33)2.2E0 =
PSO(4-2)10.16  85.3(87.01) 94.7E-2 PSO(4-2)12.76  68.47(70.67) 1.45E0
All 30 92.98 - All 34 83.81 -
LFS 10 88.89 - LFS 4 86.67 -
WBCD GSBS 25 83.63 ~ |fonosphere GSBS 30 78.1 -
PSO(1-1)11.82  93.34(94.74)52.2E-2 - PSO(1-1)8.74  88.86(93.33)2.04E0 +
PSO-No 4.18 93.73(94.74)84.6E-2 = PSO-No 8.36 89.26(95.24)2.27TE0  +
PSO(4-2)3.46  93.98(94.74) 85.6E-2 PSO(4-2)3.26  87.27(91.43) 1.84E0
All 56 70.0 - All 60 76.19 -
LFS 6 90.0 + LFS 3 77.78 =
Lung GSBS 33 90.0 + Sonar GSBS 48 68.25 -
PSO(1-1)23.58  74(90) 7.48E0 - PSO(1-1)22.04  78.64(85.71)3.32E0 =
PSO-No 11.82  74.8(90) 8.06E0 - PSO-No 17.66 78.29(85.71)3.67TE0 =
PSO(4-2)6.74  78.4(90)  6.44E0 PSO(4-2)11.24  78.16(85.71)3.18E0
All 90 94.81 + All 100 56.59 -
LFS 14 95.06 + LFS 8 57.69 =
Movement GSBS 80 93.46 " |Hillvalley GSBS 90 49.45 -
PSO(1-1)37.96 94.51(95.31)32.8E-2 = PSO(1-1)40.54 58.13(60.99)1.35E0 =
PSO-No 36.24 94.52(95.31)34.6E-2 = PSO-No 40.38 57.93(60.71)1.32E0 =
PSO(4-2)27.46  94.58(95.19) 37.6E-2 PSO(4-2)12.22  57.77(60.71) 1.47TEQ
All 166 83.92 - All 279 94.46 -
LFS 10 85.31 = LFS 11 94.46 -
Musk1 GSBS 122 76.22 - ArrhythmiaGSBS 130 93.55 -
PSO(1-1)74.26  84.6(91.61) 2.23E0 = PSO(1-1)120.22 94.54(95.14)35.1E-2 -
PSO-No 71.52 84.76(89.51)2.27TE0 = PSO-No 98.08 94.51(95.14)32.9E-2 -
PSO(4-2)76.54  84.94(89.51)2.52E0 PSO(4-2)70.02  94.77(95.59) 39.6E-2
All 500 70.9 - All 617 98.45 -
LFS 7 64.62 - LFS 24 98.34 -
Madelon GSBS 489 51.28 ~ lisolets GSBS 560 97.16 -

PSO(1-1)235.2
PSO-No 232.86
PSO(4-2) 203.32

76.93(79.87) 1.54E0
76.98(80.64) 1.64E0
78.86(84.23) 3.15E0

PSO(1-1)283.3
PSO-No 272.46
PSO(4-2) 283.22

98.59(98.78) 8.79E-2
98.6(98.8) 10.4E-2
98.63(98.87) 11.7E-2

features in 12 of the 14 cases. PSO-No outperformed PSO(1-1) in terms of
the number of features in all cases and the classification performance in 8

of the 14 cases.

The reason is that PSO-No considers both the number of

features and the classification performance in the fitness function, but the
weight for the number of features was much smaller than the classification
performance. Therefore, the PSO-No can guarantee the classification perfor-
mance, but if two feature subsets have the same classification performance,
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PSO-No will prefer the smaller one while PSO(1-1) will not do this.

According to Table 5, PSO(4-2) evolved feature subsets that selected less
than half (or even close to 10% on four datasets) of the available features,
but achieved significantly better classification performance than using all
features on 13 of the 14 datasets. Only in the Movement dataset, the average
classification performance obtained by PSO(4-2) (94.62%) was less, by 0.2%,
than that of using all features (94.81%), but the best accuracy (95.19%) was
higher than using all features.

5.3.8. Comparing PSO(4-2) with LFS and GSBS

PSO(4-2) usually achieved significantly better or similar classification per-
formance to LFS. The number of features in PSO(4-2) was similar or slightly
larger than LFS on the datasets with a relatively small number of features
and much larger on the datasets with a large number of features. The main
reason is that the selecting mechanism of LFS always selected a very small
number of features while the number of features selected by PSO(4-2) in-
creased when the total number of features increased. Comparing PSO(4-2)
with GSBS, the number of features in PSO(4-2) was smaller than GSBS in
all datasets and the classification performance of PSO(4-2) was significantly
better than GSBS on 13 of the 14 datasets. This suggest that PSO(4-2) as
a PSO based algorithm can search the solution space more effectively than
both LFS and GSB. The initialisation strategy motivated by both forward
selection and backward selection can help PSO(4-2) take their advantages to
obtain feature subsets with a smaller number of features and better classifi-
cation performance than LFS and GSBS in most cases.

5.3.4. Comparisons Between PSO(4-2) and PSO(1-1)

According to Table 5, PSO(4-2) selected feature subsets including a smaller
number of features and achieved significantly better classification perfor-
mance than (or similar to) PSO(1-1) on 13 of the 14 datasets except for
the Tonosphere dataset, but the number of features in PSO(4-2) was around
a quarter of that in PSO(1-1). This suggests that although PSO(1-1) and
PSO(4-2) shared the same fitness function (Equation 3), the proposed initial-
isation strategy and pbest and gbest updating mechanism can help PSO(4-2)
to effectively eliminate the redundant and irrelevant features to obtain a

smaller feature subset with similar or significantly better classification per-
formance than PSO(1-1).
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5.8.5. Comparisons Between PSO(4-2) and PSO-No

According to Table 5, on 13 of the 14 datasets, the classification perfor-
mance of PSO(4-2) was similar or significantly better than that of PSO-No.
Only on the Tonosphere dataset, the classification performance of PSO(4-2)
was slightly worse (by 2%) than PSO-No, but PSO(4-2) further removed
61% of the number of features in PSO-No. In most cases, the number of
features in PSO(4-2) was smaller or much smaller than in PSO-No. The
number of features in PSO-No was slightly smaller than in PSO(4-2) in some
cases, but such datasets have a relatively small total number of features and
feature selection is not as important and difficult as on the datasets with a
large number of features. In many cases, PSO(4-2) outperformed PSO-No
in terms of both the number of features and the classification performance.
The reason is that although the weight for the number of features was very
small in PSO-No, the reduction of the number of features still influences the
classification performance in some cases. In PSO(4-2), the fitness function
only includes the classification performance during the whole evolutionary
process. This ensures that the reduction of the number of features in PSO(4-
2) will not reduce the classification performance. Meanwhile, the proposed
mixed initialisation strategy and pbest and gbest updating mechanism can
help PSO(4-2) further remove the irrelevant or redundant features, which in
turn may increase the classification performance.

Note that simply increasing the number of iterations cannot help PSO(1-
1) and PSO-No achieve the same performance obtained by PSO(4-2). The
main reason is that PSO(1-1) does not consider the number of features and
PSO-No takes a trade-off between the classification performance and the
number of features. PSO(4-2) simulates both forward and backward selec-
tion to duplicate their advantages, which helps PSO(4-2) pay more attention
to small feature subsets, but does not miss the large feature subsets with
high classification performance. Meanwhile, because of the proposed pbest
and gbest updating mechanism, for two feature subsets with the same classi-
fication performance, PSO(4-2) will select the smaller one as the new pbest or
gbest. PSO(1-1) using traditional updating mechanism will not do this dur-
ing the evolutionary training process. Therefore, it is most likely PSO(1-1)
and PSO-No can not achieve as good performance as PSO(4-2).
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Table 6: Computational Time (minutes)

Method|Wine|Zoo[Vehicle|German/WBCD|lonosp|Lung|SonarMovement|HillvalMusk1|Arrhy[Madelon|Isolet5

1-1 ]0.25(0.11) 8.08 | 12.85 | 3.92 | 1.35 |0.02]0.75 3.32  [42.28] 10 |11.9| 871.5 |374.4
2-1 |0.22/0.06] 5.41 5.56 2.36 | 0.95 |0.01|0.31 1.51 14.12| 2.63 | 2.62 | 100.42 (143.45
3-1 |0.34|0.1| 8.58 | 15.08 | 5.18 | 1.93 |0.03| 0.98 3.66  [47.74]13.71|20.98|1242.78 |583.32
4-1 |0.33(0.11] 8.06 | 11.98 | 3.23 | 0.98 [0.02] 0.54 2.6 15.82| 9.48 | 8.3 | 856.53 |399.67

1-1 |0.25/0.11 8.08 | 12.85 | 3.92 | 1.35 |0.02]0.75 3.32 [42.28| 10 |11.9| 871.5 |374.4
1-2 10.29(0.1| 6.65 | 12.67 | 2.96 | 1.34 |0.02|0.71 2.82 |34.65|10.35 |13.23| 968.47 | 430.8
1-3 |0.25(0.07| 5.38 | 8.11 2.15 | 0.89 |0.01|0.43 2.21  |26.37| 5.3 | 7.91| 445.6 |212.19
1-4 10.25(0.07| 6.31 7.07 2.1 1.04 {0.010.48 1.8 16.09| 5.41 | 4.49 | 372.7 |166.98

PSO-No|0.24 0.08] 6.63 | 10.68 | 2.45 | 1.13 |0.01]0.59 2.83 |34.83| 8.53 |11.19]| 813.61 |362.17
4-2 10.31(0.11] 8.49 | 13.05 | 2.88 | 1.03 [0.01] 0.54 2.72  |20.17|10.34 | 8.88 | 792.25 |364.07

6. Further Discussions

6.1. Analysis on Computational Time

Table 6 shows the average computational time used by different meth-
ods in 50 independent runs. All the algorithms used in the experiments
are wrapper based feature selection approaches. Therefore, most of their
computational time was spent on the fitness evaluation, i.e calculating the
classification performance of the selected features.

For the algorithms using a new initialisation strategy and traditional pbest
and gbest updating mechanism, from Table 6, it can be seen that PSO(2-
1) with the small initialisation strategy used the shortest time, PSO(3-1)
with the large initialisation strategy used the longest time. PSO(4-1) used
slightly less time than the traditional PSO(1-1). The main reason for the
time differences is that a larger number of features needs longer time for
classification. PSO(2-1) (or PSO(3-1)), which usually selected a smallest (or
largest) number of features, used the shortest (or the longest) time.

For the algorithms using the traditional initialisation strategy and a new
pbest and gbest updating mechanism, from Table 6, it can be seen that
PSO(1-3) and PSO(1-4) used less computational time than PSO(1-1) and
PSO(1-2) and the reason is that they selected a smaller number of features.
On 10 of the 14 datasets, PSO(1-4) used less or the same time as PSO(1-3).
On 8 datasets, PSO(1-1) used the longer time than PSO(1-2). The time
used by these four algorithms also follow the same observations mentioned
above, which is the algorithms selecting more features used longer time. How-
ever, On the Musk1, Arrhy, Madelon and Isolet5 datasets, PSO(1-2) selected
a similar or slightly smaller number of features than PSO(1-1), but used
longer time. This is because when updating pbest and gbest, PSO(1-2) has
a procedure of comparing the number of features while PSO(1-1) does not.

Table 6 also shows that PSO(4-2) took less time than PSO-No on six
datasets with a relatively large number of features. Although PSO-No took
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less time on seven datasets, five of them are datasets with a small number
of features (< 30). PSO(4-2), which usually selected a smaller number of
features, used less time than PSO-No. Meanwhile, PSO-No took less time
than PSO(1-1) because the size of the feature subsets evolved by PSO-No
was smaller than PSO(1-1) during the evolutionary training process. For the
benchmark techniques, LFS usually used less time than the other methods
because the forward selection strategy starts with a small number of features.
GSBS costs less time than the other PSO based algorithms on the datasets
with a small number of features, but more time on the datasets with a large
number of features, such as the Madelon and Isoletb datasets. The reason
is that GSBS starts with the full set of features, which needs much longer
time for each evaluation. The number of evaluations in GSBS substantially
increased on such large datasets while the number of evaluations in PSO
based algorithms still remains the same.

6.2. Comparisons with Other Existing Methods

In order to further test the performance of PSO(4-2), we compare its
performance with four recently published methods from other researchers
8, 54, 29, 4]. The four papers from other researchers used datasets with
a relatively small number of features, which was less than 100. Therefore,
we choose only the six datasets that are used in both our experiments, and
the results are shown in Table 7. We also compare PSO(4-2) with a recent
method from us [47] and the results of the ten datasets that are used in this
paper and our previous paper [47] are also shown in Table 7.

Compared with the methods from others, the results show that PSO(4-2)
achieved better classification performance than two other methods on the
Vehicle and Ionosphere datasets, slightly worse classification performance on
the Wine, German and WBCD datasets. On the Sonar dataset, PSO(4-2)
achieved better classification performance than one method, but worse than
another two methods. However, for all the datasets, PSO(4-2) selected a
smaller or much smaller number of features, such as on the Sonar dataset,
the number of features selected by PSO(4-2) was only one third of the other
three methods. The results also show that the performance of the proposed
algorithms are competitive to the state-of-art methods, but since the number
of features was smaller, the computational time was typically shorter.

Comparing PSO(4-2) with our previous method (named PSO2Stage) [47],
Table 7 shows that PSO(4-2) selected a smaller number of features than

31



Table 7: Comparisons with Other Existing Methods

Dataset Method Classifier ~AveNO. of Ave Best
Features Accuracy  Accuracy
Lin and Chen [8] (2009) LDA 12.3 100
Chuang et al. [4](2011) KNN 8 99.44 99.44
Wine Boubezoul and Paris [54] (2012) KNN 11.9 96.79 99.31
PSO2Stage [47] (2012) KNN 5.1 96.94 98.77
PSO(4-2) KNN 6.84 95.26 98.77
Lin and Chen [8] (2009) LDA 15.5 79.4
Vehicle Chuang et al. [4](2011) KNN 12 75.06 75.06
PSO2Stage [47] (2012) KNN 7.3 84.47 85.04
PSO(4-2) KNN 10.16 85.3 87.01
Lin and Chen [8] (2009) LDA 22.4 75.6
German PSO2Stage [47] (2012) KNN 8.62 68.93 73.67
PSO(4-2) KNN 12.76 68.47 70.67
Chuang et al. [4](2011) KNN 14.2 98.17 98.24
WBCD PSO2Stage [47] (2012) KNN 6.68 92.98 92.98
PSO(4-2) KNN 3.46 93.98 94.74
Lin and Chen [8] (2009) LDA 21.7 92.2
Ionosphere Esseghir et al. [29] (2010) ANN 13.79 87.52 88.47
PSO2Stage [47] (2012) KNN 8.9 89.52 93.33
PSO(4-2) KNN 3.26 87.27 91.43
Lin and Chen [8] (2009) LDA 38.1 90.5
Sonar Esseghir et al. [29] (2010) ANN 30.73 73.59 75.58
Chuang et al. [4](2011) KNN 30.2 96.92 97.12
PSO(4-2) KNN 11.24 78.16 85.71
Lung PSO2Stage [47] (2012) KNN 22.22 73.25 80
PSO(4-2) KNN 6.74 78.4 90
Hillvalley  P902Stage [47] (2012) KNN 371 57.61 60.44
PSO(4-2) KNN 12.22 57.77 60.71
Muskl PSO2Stage [47] (2012) KNN 80.72 85.7 89.51
PSO(4-2) KNN 76.54 84.94 89.51
Madelon  PSO2Stage [47] (2012) KNN 241.35 77.34 79.62
PSO(4-2) KNN 203.32 78.86 84.23
eolets PSO2Stage [47] (2012) KNN 302.55 98.57 98.77
PSO(4-2) KNN 283.22 98.63 98.87

PSO2Stage on seven of the 10 datasets and better classification performance
on six datasets. PSO(4-2) achieved competitive results with PSO2Stage on
datasets with a relatively small number of features, but on the five datasets
that have a relatively large number of features (Lung with 56 features, Hill-
valley with 100 features, Musk1 with 166 features, Madelon with 500 features
and Isolet5 with 614 features), PSO(4-2) selected a smaller number of features
than PSO2Stage in all cases, and achieved better classification performance
than PSO2Stage on four of the five cases. Although all the datasets are
commonly used benchmark problems in the literature, the performance of
an algorithm on datasets with a larger number of features is clearly more
important than on datasets with a smaller number of features. On the five
datasets with a large number of features, PSO(4-2) outperforms PSO2Stage
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Table 8. Datasets

Dataset No. of No. of No. of Dataset No. of No. of No. of
atasel  peatures Classes Instances| atase Features Classes Instances
Spect 22 2 267 Statlog 36 6 6435
Statlog 36 6 6435 Soybean Large 35 19 307
Waveform 40 3 5000 Splice 60 3 3190

in terms of the number of features in all cases and the classification perfor-
mance in almost all cases. A smaller number of selected features will result
in shorter computational time in PSO(4-2) than in PSO2Stage. Therefore,
PSO(4-2) is clearly better than PSO2Stage on datasets with a large number
of features.

6.3. Fxperiments on More Datasets

Since the datasets used in Section 5 are mainly continuous datasets, to
further test the performance of the proposed algorithms, a set of experiments
have been conducted on additional six discrete datasets, which are shown in
Table 8. The results of PSO(1-1), PSO-No and PSO(4-2) are shown in Table
9. The other results show a similar pattern, so will not be presented here.

According to Table 9, it can be seen that all the three PSO based methods
significantly reduced the number of features and achieved better similar or
better classification performance than using all features. The classification
performance of PSO(4-2) was at least as good as PSO(1-1) and PSO-No,
which was significantly better on three datasets and similar on another three
datasets. However, the PSO(4-2) achieved a smaller number of features than
PSO(1-1) on only three datasets. On five of the six datasets, PSO-No selected
a smaller number of features than PSO(1-1) and PSO(4-2). Since the number
of features in Table 9 is less or equal to 60, comparing Table 9 with the
results of datasets having a small number of features, similar patterns can be
observed, where PSO(4-2) achieved better classification performance while
PSO-No selected a smaller number of features.

7. Conclusions

The goal of this paper was to propose a PSO based feature selection ap-
proach to selecting a smaller number of features and achieving similar or
even better classification performance than using all features. The goal was
successfully achieved by developing three new initialisation strategies moti-
vated by forward selection and backward word selection, and three new pbest
and gbest updating mechanisms considering both the number of feature and
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Table 9: Experimental Results on Other Datasets

Dataset Method AveNO.Ave(Best) StdDev T-testDataset Method AveNO.Ave(Best) StdDev T-test
All 22 65.0 = All 24 89.0 -

Spect PSO(1-1)7.6 63.95(70) 4.35E0 = Leddisplay PSO(1-1)9.12 100(100)  1.82E-2 =
PSO-No 7.6 63.68(71.25)4.45E0 = PSO-No 6.56 100(100)  OEO =
PSO(4-2)6.02  64.32(72.5) 5.16E0 PSO(4-2)7.16  99.99(100) 5.61E-2
All 36 90.0 - All 35 89.0

Statlog PSO(1-1)24.38  96.49(96.77) 14.1E-2 - Soybeanlargepsou-l)ml 99.13(99.38) 16.2E-2
PSO-No 24.06 96.47(96.84)16E-2 - PSO-No 20.9  99.11(99.44)19.6E-2
PSO(4-2)29.56  96.61(96.84) 10.8E-2 PSO(4-2)25.42  99.19(99.49) 16.4E-2
All 40 80.0 - All 60 60.0

WaveformPSO(l_l) 22.14  86.79(88.18)65.5E-2 = Splice PSO(1-1)18.7  80.87(91.15)3.46E0
PSO-No 21.82 86.75(88.13)59.4E-2 = PSO-No 19.04 80.72(91.15) 3.46EQ
PSO(4-2)28.9 86.62(87.96) 61.5E-2 PSO(4-2)5.42 89.22(91.99) 2.04E0

the classification performance to overcome the limitation of the traditional
updating mechanism.

A novel algorithm (named PSO(4-2)) using the most promising initiali-
sation strategy and the most promising updating mechanism was compared
with two traditional feature selection methods, a standard PSO based method,
and a PSO based algorithm (PSO-No) with a single fitness function com-
bining the two objectives of maximising the classification performance and
minimising the number of features. The results show that PSO with new ini-
tialisation strategies or/and new updating mechanisms could automatically
evolve a feature subset with a smaller number of features and higher classifi-
cation performance than using all features and also the standard PSO based
algorithm. PSO(4-2) achieved significantly better classification performance
than using all features, the two traditional methods and the standard PSO
based algorithm. In most cases, this proposed algorithm achieved similar or
better classification performance than PSO-No, but using a smaller or much
smaller number of features and shorter computational time.

This study shows that PSO is an effective search technique for feature
selection problems. The experiments show that the initialisation strategy can
influence the number of features selected and the computational time. More
importantly, this work also highlights that pbest and gbest are important
factors to guide the search behaviour of a PSO algorithm. The updating
mechanism of pbest and gbest can be utilised to optimise one objective (i.e.
to reduce the number of features) in the problem without deteriorating the
other objective (to maximise classification performance).

In the future, we will conduct further work on the updating mechanisms
(e.g. the position and velocity updating equations) in PSO to solve feature
selection in order to further reduce the number of features, increase the clas-
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sification performance and reduce the computational time. We also intend
to propose a PSO based multi-objective feature selection approach in order
to simultaneously maximise the classification performance and minimise the
number of features. Meanwhile, we also intend to investigate whether using
one learning algorithm in a wrapper feature selection approach can select a
good or near-optimal feature subset for other learning algorithms for classi-
fication tasks. We will also investigate the use of PSO for feature selection
on datasets with a huge number of features (e.g. over 10 000).
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