
A Dimension Reduction Approach to

Classification Based on Particle Swarm

Optimisation and Rough Set Theory

Liam Cervante1, Bing Xue1, Lin Shang2, and Mengjie Zhang1

1 Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
2 State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing

210046, China
{Bing.Xue, Liam.Cervante, Mengjie.Zhang}@ecs.vuw.ac.nz, shanglin@nju.edu.cn

Abstract. Dimension reduction aims to remove unnecessary attributes
from datasets to overcome the problem of “the curse of dimensionality”,
which is an obstacle in classification. Based on the analysis of the limita-
tions of the original rough set theory, we propose a new dimension reduc-
tion approach based on binary particle swarm optimisation (BPSO) and
probabilistic rough set theory. The new approach includes two new spe-
cific algorithms, which are PSOPRS using only the probabilistic rough
set in the fitness function and PSOPRSN adding the number of at-
tributes in the fitness function. Decision trees, naive Bayes and nearest
neighbour algorithms are employed to evaluate the classification accu-
racy of the reduct achieved by the proposed algorithms on five datasets.
Experimental results show that the two new algorithms outperform the
algorithm using BPSO with original rough set and two traditional di-
mension reduction algorithms. PSOPRSN obtains a smaller number of
features than PSOPRS with the same or slightly worse classification per-
formance. This work represents the first study on probabilistic rough set
theory for for filter dimension reduction in classification problems.

Keywords: Dimension reduction, Particle Swarm Optimisation, Filter
Approaches, Classification.

1 Introduction

Classification is an important task in machine learning and data mining. How-
ever, it often involves a large number of attributes in the datasets. The large
attribute dimension causes the problem of “the curse of dimensionality” [1].
Dimension reduction, also called attribute reduction, aims to reduce the unnec-
essary attributes to reduce the attribute dimension while preserving the classi-
fication power of original attributes to maintain the classification performance
[2]. By removing the unnecessary attributes, dimension reduction can reduce the
training time of a learning algorithm and simplify the learnt classifier [3, 4].

Existing dimension reduction algorithms can be broadly classified into two
categories: wrapper approaches and filter approaches [3, 5]. Wrapper approaches
include a learning algorithm as part of the evaluation function to determine the
goodness of the reduct. Therefore, wrappers can often achieve better results than



filters [6]. Filter approaches are independent of a learning algorithm. Therefore,
they are argued to be computationally cheaper and more general than wrappers.

Dimension reduction is a difficult task, where the size of the search space
grows exponentially along with the number of attributes in the dataset. Although
many different search techniques have been applied to dimension reduction, most
of these algorithms suffer from the problems of stagnation in local optima or
being computationally expensive [3, 7]. In order to better address dimension re-
duction problems, an efficient global search technique is needed. Evolutionary
computation (EC) techniques are well-known for their global search ability. Par-
ticle swarm optimisation (PSO) [8, 9] is a relatively recent EC technique, which
is computationally less expensive than other EC algorithms. Therefore, PSO has
been used as an effective technique in dimension reduction [4, 10, 11].

EC algorithms (including PSO) have been successfully applied to address di-
mension reduction problems. However, most of the existing EC based dimension
reduction algorithms are wrapper approaches. Although wrappers can achieve
better classification performance, the use of wrappers is limited in real-world ap-
plications because of the high computational cost. The development of EC based
filter dimension reduction approaches still remains an open issue. On the other
hand, rough set theory has been applied to attribute reduction [12]. However,
original rough set has limitations [13]. Probabilistic rough set can overcome such
limitations and from a theoretical point of view, Yao and Zhao [13] have shown
that probabilistic rough set can be a good measure in dimension reduction, but
its performance has not been reported.

1.1 Goals

The overall goal of this paper is to develop a PSO based filter dimension reduc-
tion approach to classification to reduce the number of attributes and achieve
similar classification performance to that of using all original attributes. To
achieve this goal, we develop a new filter dimension reduction approach (with
three new algorithms) based on PSO and probabilistic rough set theory. The
proposed two dimension reduction algorithms will be examined and compared
with a filter algorithm using original rough set theory and two traditional al-
gorithms on five different benchmark datasets. Specifically, we will investigate

– whether using PSO and original rough set theory can reduce the number of
attributes and maintain the classification performance,

– whether using PSO and probabilistic rough set theory can further reduce the
number of attributes without decreasing the classification performance,

– whether considering the number of attributes in the fitness function can fur-
ther reduce the number of attributes and maintain the classification perfor-
mance.

2 Background

2.1 Particle Swarm Optimisation (PSO)

PSO is an evolutionary computation technique inspired by social behaviours
of birds flocking and fish schooling [8, 9]. In PSO, each candidate solution is



represented as a particle in the swarm and PSO starts with a number of randomly
generated particles. All the particles move in the search space to find the optimal
solutions. During the movement, each particle (i.e., particle i) has a position
and velocity, which are represented by vectors xi = (xi1, xi2, ..., xiD) and vi =
(vi1, vi2, ..., viD), respectively, where D is the dimensionality of the search space.
A particle can remember the best positions it visits so far, which is called personal
best pbest. The best position obtained by the population thus far is called gbest,
based on which a particle can share information with its neighbours. A particle
iteratively updates its position and velocity to search for the optimal solutions
based on pbest and gbest according to the following equations:

x
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id = x
t
id + v

t+1

id (1)

v
t+1

id = w ∗ vtid + c1 ∗ r1 ∗ (pid − x
t
id) + c2 ∗ r2 ∗ (pgd − x

t
id) (2)

where t represents the tth iteration in the evolutionary process. d ∈ D represents
the dth dimension in the search space. w is the inertia weight, which can balance
the local search and global search abilities of the algorithm. c1 and c2 are accel-
eration constants. r1 and r2 are random constants uniformly distributed in [0,
1]. pid and pgd denote the values of pbest and gbest in the dth dimension. vt+1

id

is limited by a predefined maximum velocity, vmax and vt+1
id ∈ [−vmax, vmax].

In order to extend PSO to address discrete problems. Kennedy and Eberhart
[14] developed a binary particle swarm optimisation (BPSO). In BPSO, xid,
pid and pgd are restricted to 1 or 0. The velocity is still updated according to
Equation (2), but it indicates the probability of the position in the corresponding
dimension taking value 1. BPSO updates the position of each particle according
to the following formula:

xid =

{

1, if rand() <= 1

1+e−vid

0, otherwise
(3)

where rand() is a random number selected from a uniform distribution in [0,1].

2.2 Rough Set Theory

Rough set theory developed by Pawlak [15] is a mathematical tool, which is
able to deal with uncertainty, imprecision and vagueness. The main advantage
of rough set theory is that it does not need any prior knowledge about the data.

In rough set theory, an information system can be denoted as I = (U,A),
where U is the universe of objects in the system and A is the set of attributes
that describe each object. Equivalence relation is a relation that partitions a
set so that every element of the set is a member of one and only one cell of
the partition. Based on all equivalence relations described by A, the equivalence
class relation partitions of U is U1, U2, U3, ..., Un, where n is the number of classes
that objects in U may belong to.

For any P ⊆ A and X ⊆ U , the equivalence relation is defined as IND(P ) =
{(x, y) ∈ U

2|∀a ∈ P, a(x) = a(y)}. An equivalence class of IND(P ) are denoted
as [x]P , which means that ∀y ∈ [x]P (x, y) are indiscernible with regards to



P . Based on the equivalent classes described by P , rough set theory defines a
lower approximation (PX) and an upper approximation (PX) of X [15], where
PX = {x ∈ U |[x]P ⊆ X} and PX = {x ∈ U |[x]P ∩ X 6= ∅}. PX contains all
the objects, which can be surely classified to the target set X. PX contains the
objects, which probably belong to the target set X.

An ordered pair (PX,PX) is called a rough set. The concept of the reduct
is fundamental for rough sets theory. A reduct is the essential part of an in-
formation system (related to a subset of attributes), which can achieve similar
approximation power of classification as all the original attributes A. There can
be many different reducts in a rough set and attribute reduction aims to search
for the smallest reduct.

In the original rough set theory [15], PX and PX were defined as two extreme
cases in terms of the relationships between an equivalence class defined by P

and the target set X. PX requires that the equivalence class is a subset of X
while PX requires the equivalence class must have a non-empty overlap with X.
However, the degree of their overlap is not taken into account, which will limit
its applications. Therefore, researchers investigate probabilistic rough set theory
to relax the definitions of the lower and upper approximations [13].

In probabilistic rough set theory, µP [x] (See Equation 4) is defined as a way
to measure the fitness of a given instance x ∈ X.

µP [x] =
|[x]P ∩X|

|[x]P |
(4)

The lower approximation is defined as Equation 5.

apr
P
X = {x|µP [x] ≥ α} (5)

where α can be adjusted to restrict or relax the lower and upper approximations.
Note that apr

P
X = PX when α = 1. apr

P
X loosens the boundaries of the rough

set. In a given equivalence class, if a large number of instances are in the target
set X, but a small number of instances are not, apr

P
X will include them in the

lower approximation.
From theoretical point of view, Yao and Zhao have claimed that probabilistic

rough set can be a good way for attribute reduction problems [13]. However, it
has not been proved by any experiment.

2.3 Related Work on Dimension Reduction

A number of dimension reduction algorithms have been proposed in recent years
[3, 1, 10]. Typical dimension reduction algorithms are reviewed in this section.

Traditional Dimension Reduction Approaches. A traditional filter dimen-
sion reduction approach is principal components analysis (PCA), which con-
structs a low-dimensional representation of the data by finding a few orthogonal
linear combinations of the original variables with the largest variance [16]. Due to
its conceptual simplicity and being relatively efficient, PCA has been widely used
in practice. However, PCA increases the dimensionality of the data in some cases.
Decision trees (DT) use only relevant attributes that are required to completely



classify the training set and remove all other attributes. Cardie [17] proposes a
filter based dimension reduction algorithm that uses a decision tree algorithm
to remove unnecessary attributes for a nearest neighbourhood algorithm.

Two commonly used wrapper methods are SFS [18] and SBS [19]. SFS (SBS)
starts with no attributes (all attributes), then candidate attributes are sequen-
tially added to (removed from) the initial attribute subset until the further ad-
dition (removal) does not increase the classification performance. However, both
SFS and SBS suffer from the problem of nesting effect, because an attribute is
selected (eliminated) it cannot be eliminated (selected) later, which is so-called
nesting effect [7]. The “plus-l-take away-r” method proposed by Stearns [20]
could overcome this limitation by performing l times forward selection followed
by r times backward elimination. However, the determination of the optimal
values of (l, r) is a difficult problem.

EC Algorithms for Dimension Reduction. Evolutionary computation tech-
niques have been applied to address dimension reduction problems, such as GAs,
GP, ant colony optimisation (ACO) and PSO.

Based on GAs, Chakraborty [21] proposes a dimension reduction algorithm
using a fuzzy sets based fitness function. However, PSO with the same fit-
ness function in [22] achieve better performance than this GA based algorithm.
Kourosh and Zhang [23] propose a dimension reduction algorithm using GP and
näıve bayes (NB), where GP is used to combine attribute subsets and a set of
operators together to find the optimal attribute subset. Ming [24] proposes a
dimension reduction method based on ACO and rough set theory. Experimental
results show that the proposed algorithm achieves better classification perfor-
mance with fewer attributes than a C4.5 based dimension reduction algorithm.

As an EC technique, PSO has recently gained more attention for solving
dimension reduction problems. Wang et al. [12] propose a filter dimension re-
duction algorithm based on an improved BPSO and rough set. However, the
classification performance of the reduct was only tested on one learning algo-
rithm, the LEM2 algorithm, which originally is specific used for rough set and
has some bias for the proposed algorithm. Meanwhile, only using one learning
algorithm can not show the advantage that filter algorithms is more general.
Mohemmed et al. [11] propose a hybrid method (PSOAdaBoost) that incorpo-
rates PSO with an AdaBoost framework for face detection. PSOAdaBoost aims
to search for the best attribute subset and determine the decision threshold of
AdaBoost simultaneously, which speeds up the training process and increase the
accuracy of weak classifiers in AdaBoost.

Chuang et al. [5] apply the so-called catfish effect to PSO for dimension
reduction, which is to introduce new particles into the swarm by re-initialising
the worst particles when gbest has not improved for a number of iterations. The
introduced catfish particles could help PSO avoid premature convergence. Liu
et al. [10] introduce a multi-swarm PSO (MSPSO) algorithm to search for the
optimal attribute subset and optimise the parameters of SVM simultaneously.
Experiments show that MSPSO could achieve higher classification accuracy than
grid search, standard PSO and GA. However, MSPSO is computationally more



expensive than the other three methods because of the large population size
and complicated communication rules between different subswarms. Based on
PSO, Unler and Murat [4] propose a dimension reduction algorithm with an
adaptive selection strategy, where an attribute is chosen not only according to
the likelihood calculated by PSO, but also to its contribution to the attributes
already selected. Experiments suggest that the proposed method outperforms
the tabu search and scatter search algorithms.

PSO has been shown to be an efficient search technique for dimension re-
duction by many existing studies. However, most of the existing approaches are
wrappers, which are computationally more expensive and less general than filter
approaches. Therefore, investigation of an effective PSO based filter dimension
reduction algorithm is still an open issue. Probabilistic rough set was claimed to
be a good way for dimension reduction problems [13], but its real performance
has not been investigated. Therefore, it is thought to investigate the performance
of probabilistic rough set and PSO for filter dimension reduction.

3 Proposed Filter Based Methods

Base on rough set theory and BPSO, we will propose a filter dimension reduction
approach. Firstly, we use original rough set theory and BPSO for dimension
reduction to see whether it can achieve good results. Then, we will develop a
new approach based on probabilistic rough set theory and BPSO to further
reduce the dimensionality.

3.1 BPSO and Original Rough Set Theory for Dimension
Reduction(PSORS)

When using rough set theory for dimension reduction, the datasets for a classifi-
cation problem can be regarded as an information system I = (U,A), where all
available attributes can be considered as A in the rough set theory. Based on the
equivalence described by A, U can be partitioned to U1, U2, U3, ..., Un, where n

is the number of classes in the dataset. After dimension reduction, the achieved
reduct can be considered as P ∈ A. Therefore, the fitness of P can be evaluated
by how well P represents each target set in U , which is a class in the dataset.

For U1 ∈ U , let PU1 = {x ∈ U |[x]P ⊆ U1} be the lower approximation
of P according to U1 if [x]P only contains instances in U1. Let PU1 = {x ∈
U |[x]P ∩ U1 6= ∅} be the upper approximation of P according to U1 if [x]P
contains at least one element not in U1. The rough set, PU1 − PU1, contains
every instance in U1, but PU1 contains instances from other classes that are
indiscernible with instances in U1. Therefore, the purity of [x]P according to U1

can be measured by PU1

PU1

, which shows how well P represents the target set U1.

Therefore, how well P describe each target in U can be calculated by Equation
6, which is the fitness function in PSORS:

Fitness1(P ) =

∑

Ui∈U
|PUi|

|U|
(6)

If the dimension reduction algorithm achieves a reduct with Fitness1(P ) =
1.0, it means the reduct can completely separate each class from other classes.



3.2 New Dimension Reduction Algorithm 1 (PSOPRS): Based on
Probabilistic Rough Set Theory

As discussed in Section 2.2, the definitions of lower approximation and upper ap-
proximation limit the application of rough set theory. In classification problems,
it may happen that two or more instances might have the same attribute values
but be classified in different classes. This is possibly because incorrect values are
entered or one instance is an exception to a class. Therefore, it is impossible to
achieve the Fitness1(P ) = 1.0 in Equation 6. A set of attributes could be ade-
quate, but erroneous or unusual values prevent these attributes being included
in a reduct. This problem can be addressed by relaxing the definitions of lower
and upper approximations in probabilistic rough set theory. Therefore, we pro-
pose a new filter attributes reduction algorithm (PSOPRS) based on BPSO and
probabilistic rough set theory [25].

In PSOPRS, for the target set U1, µP [x] =
|[x]P∩U1|

|[x]P | , which quantifies the

proportion of [x]P is in U1. Here [x]P does not have to be completely contained
in U1. aprPU1 = {x|µP [x] ≥ α} defines the lower approximation of P according
to U1, where α can be adjusted to restrict or relax the lower or upper approx-
imations. When α = 1.0, apr

P
U1 = PU1. The fitness function of PSOPRS is

shown by Equation 7.

Fitness2(P ) =

∑n

x=1
|apr

P
Xi|

|U|
(7)

3.3 New Dimension Reduction Algorithms 2 (PSOPRSN): Based
on Probabilistic Rough Set Theory and Size of the Reduct

In PSOPRS, although the use of probabilistic rough can avoid the problems
caused by original rough set, the number of attributes is not considered in the
fitness function (Equation 7). For the same α value, if there are more than
one reducts that have the same value of Fitness2(P ), PSOPRS will not have
the intention to search for the smaller reduct. Therefore, we propose a new
algorithm, which searches for a reduct with the two objectives of maximising the
representation power of the reduct (represented by Fitness2(P )) and minimising
the number of attributes in the reduct. A straightforward way to achieve this
goal would be adding one component in fitness function Fitness2(P ) to represent
the number of attributes of the reduct, which is shown as Equation 8 and this
method is called PSOPRSN:

Fitness3(P ) = γ ∗

∑n

x=1
|apr

P
Xi|

|U|
+ (1− γ) ∗ (1−

#attributes

#totalAttributes
) (8)

where γ ∈ (0, 1] shows the relative importance of the representation power of the
reduct while (1− γ) shows the relative importance of the number of attributes.

As the range of
∑

n

x=1
|apr

P
Xi|

|U| is in [0, 1], the number of attributes is converted

to (1− #attributes
#totalAttributes

) to make sure the two components in the same ranges.
In PSORS and the two newly proposed algorithms, PSOPRS and PSOPRSN,

the dimensionality of the search space is the number of attributes included in



Table 1. Datasets

Dataset #Attributes #Classes #Instances

Lymphography (Lymph) 18 4 148
Spect 22 2 267
Dermatology 33 6 366
Soybean Large 35 19 307
Chess 36 2 3196

the dataset. Each particle is encoded in a binary string, where the “1” means
the corresponding attribute is included in the reduct while “0” means the cor-
responding attribute is removed.

4 Experimental Design

Five datasets in Table 1 are used in the experiments, which were chosen from
UCI machine learning repository [26]. They have different numbers of attributes,
classes and instances, which are used as representative samples of the problems
that the proposed algorithms will address. Note that all the five datasets are
categorical data because rough set theory only works on discrete values.

In the experiments, the instances in each dataset are randomly divided into
two sets: 70% as the training set and 30% as the test set. The proposed al-
gorithms firstly run on the training set to obtain a reduct. The classification
performance of the achieved reduct will be evaluated by a learning algorithm
on the unseen test set. As filter algorithms, the learning algorithm only runs
on the test set. Almost all learning algorithms can be used here. In order to
test the claim that filter dimension reduction methods are general, three differ-
ent learning algorithms, decision trees (DT), naive Bayes (NB) and K-nearest
neighbor algorithms with K=5 (5NN), are used in the experiments to evaluate
the classification performance of the achieved reduct on the test set.

In all algorithms, the fully connected topology is used in BPSO, vmax = 6.0,
the population size is 30 and the maximum iteration is 100. w = 0.7298, c1 =
c2 = 1.49618. These values are chosen based on the common settings in the
literature [9]. Each algorithm has been conducted for 30 independent runs.

In PSOPRS, in order to test how the value of α influence the dimension
reduction performance, four different α values are used in the experiments, which
are 1.0, 0.9, 0.8, and 0.75. All the α values are larger than 0.5, because the
lower approximation in probabilistic rough set should have the majority (at
least have half) of the instances that belong to the target set. In PSOPRSN,
α is set as 0.75 and five different γ values are used in the experiments, which
are 1.0, 0.9, 0.8, 0.75, 0.5, to represent the different relative importance of the
number of attributes in the fitness function. When α = 1 in PSOPRS and
γ = 1 in PSOPRSN, PSOPRS and PSOPRSN become the same as PSORS.
Therefore, the results of PSOPRS α = 1 and PSOPRSN with γ = 1 are not
presented in the next section. In order to further examine the performance of
the proposed algorithms, two conventional filter feature selection methods (CfsF
and CfsB) in Weka [27] are used for comparison purposes in the experiments
and the classification performance is calculated by DT.



Table 2. Results of PSORS and PSOPRS with DT as the learning algorithm

Dataset Chess Dermatology Lymph
Method AveSize Ave±Std(Best) AveSize Ave±Std(Best) AveSize Ave±Std(Best)

All 36 0.985 33 0.828 18 0.755
PSORS 30.70 0.983±0.003(0.987) 21.00 0.860±0.048(0.975) 11.73 0.724±0.068(0.796)
PSOPRS
α = 0.9 30.70 0.984±0.002(0.987) 21.00 0.860±0.048(0.975) 11.73 0.724±0.068(0.796)
α = 0.8 29.97 0.983±0.003(0.985) 21.00 0.860±0.048(0.975) 11.77 0.723±0.068(0.796)
α = 0.75 30.30 0.985±0.001(0.987) 21.00 0.860±0.048(0.975) 11.77 0.723±0.068(0.796)

Dataset Soybean Spect
Method AveSize Ave±Std(Best) AveSize Ave±Std(Best)

All 35 0.819 22 0.809
PSORS 21.53 0.803±0.046(0.872) 21.00 0.860±0.048(0.975)
PSOPRS
α = 0.9 21.60 0.805±0.044(0.872) 17.30 0.806±0.022(0.843)
α = 0.8 21.67 0.805±0.044(0.872) 17.50 0.800±0.020(0.820)
α = 0.75 21.63 0.804±0.043(0.872) 15.57 0.818±0.008(0.820)

5 Experimental Results and Discussions

5.1 Experimental Results of PSORS

Tables 5 shows the experimental results of PSOPRS and PSOPRS on the five
datasets and DT, NB and 5NN were used for classification. Due to page limit,
only the results of using DT for classification are presented here. In Table 5, “All”
means that all of the available attributes are used for classification. “AveSize”
means the average number of attributes selected in the 30 independent runs.
“Ave”, “Std” and “Best” represent the mean, the standard deviation and the
best classification accuracy achieved by DT across the 30 independent runs.

According to Table 5, it can be seen that in most cases, PSORS reduced
around one third of the available attributes. After dimension reduction, the
classification performance achieved by DT is still the similar to that of using all
attributes. In almost all datasets, the best classification performance achieved by
three learning algorithms using the reduct are the better than using all available
attributes. The results suggestion that PSORS based on BPSO and original
rough set theory can be successfully used to reduce the dimensionality and also
improve the classification performance in many cases.

5.2 Experimental Results of PSOPRS

According to Table 5, it can be seen that in most cases, the number of re-
mained attributes decreases when α in PSOPRS reduces. In terms of the clas-
sification performance, for DT, all the reducts can achieve similar classification
performance to using all attributes. Although the mean classification accuracy is
slightly worse than using all attributes in some cases, the best accuracy is better
than using all attributes in all cases. Compared with PSORS, PSOPRS can fur-
ther reduce the number of attributes and maintain the classification performance,
especially when α = 0.75. The results suggests that by using probabilistic rough
set to evaluate the fitness of the attributes, the algorithm can further reducing
the number of remained attributes without reduce its classification performance.
A smaller α means more relax on the lower and upper approximations, which
usually can slightly remove more unnecessary attributes to further reduce di-
mensionality of the datasets.



Table 3. PSOPRSN with α = 0.75

Dataset γ AveSize
DT NB 5NN

Ave±Std(Best) Ave±Std(Best) Ave±Std(Best)

Chess

0.9 12.63 0.977±0.001(0.979) 0.927±0.009(0.945) 0.872±0.054(0.953)
0.8 8.97 0.972±0.013(0.977) 0.929±0.010(0.953) 0.846±0.062(0.925)
0.75 7.73 0.961±0.019(0.977) 0.932±0.009(0.953) 0.821±0.114(0.921)
0.5 4.93 0.931±0.013(0.938) 0.931±0.013(0.941) 0.602±0.198(0.892)

Dermatology

0.9 8.17 0.757±0.068(0.918) 0.816±0.056(0.943) 0.787±0.058(0.877)
0.8 8.07 0.775±0.078(0.967) 0.799±0.056(0.959) 0.784±0.060(0.918)
0.75 7.73 0.743±0.085(0.926) 0.786±0.064(0.910) 0.766±0.073(0.893)
0.5 6.43 0.752±0.093(0.951) 0.783±0.075(0.959) 0.725±0.083(0.943)

Lymph

0.9 5.03 0.667±0.033(0.673) 0.776±0.004(0.796) 0.753±0.011(0.755)
0.8 5.00 0.661±0.046(0.673) 0.777±0.005(0.796) 0.752±0.010(0.755)
0.75 5.00 0.673±0.000(0.673) 0.776±0.000(0.776) 0.755±0.000(0.755)
0.5 4.00 0.714±0.000(0.714) 0.816±0.000(0.816) 0.796±0.000(0.796)

Soybean

0.9 9.70 0.714±0.031(0.767) 0.756±0.036(0.824) 0.675±0.037(0.749)
0.8 9.00 0.705±0.038(0.780) 0.745±0.041(0.846) 0.665±0.039(0.749)
0.75 8.77 0.713±0.043(0.775) 0.747±0.031(0.811) 0.668±0.033(0.749)
0.5 7.47 0.713±0.039(0.802) 0.761±0.042(0.833) 0.670±0.033(0.727)

Spect

0.9 13.97 0.820±0.000(0.820) 0.767±0.010(0.775) 0.818±0.010(0.831)
0.8 8.97 0.799±0.017(0.820) 0.783±0.024(0.820) 0.834±0.021(0.843)
0.75 7.07 0.798±0.012(0.831) 0.797±0.029(0.843) 0.805±0.040(0.843)
0.5 4.63 0.786±0.026(0.843) 0.796±0.025(0.843) 0.739±0.248(0.843)

Table 4. Results of CfsF and CfsB with DT as the learning algorithm

Dataset Chess Dermatology Lymph Soybean Spect
Method Size Accuracy Size Accuracy Size Accuracy Size Accuracy Size Accuracy
CfsF 5 0.781 17 0.873 8 0.733 12 0.805 4 0.70
CfsB 5 0.781 17 0.873 8 0.733 14 0.854 4 0.70

5.3 Experimental Results of PSOPRSN

According to Table 5.2, with a smaller γ can reduce can achieve a smaller the
number of attributes. The reason is that a smaller γ means the number of at-
tributes in PSOPRSN is more important than a relatively large γ. Compared
with PSORS and PSOPRS, PSOPRSN can significantly reduce the number of
attributes although the classification performance is slightly worse in some cases.

The results also show that when the number of attributes is reduced, the
classification performance also decreases in most cases. The reason could be that
Fitness3 does not consider the number of equivalence classes in the dataset. In
rough set, a small number of attributes (e.g. 12) can describe a large number (212)
of equivalence classes. The problem here is that there could be thousands of small
equivalence classes, which only contain one or two instances. If there is another
equivalence class, which has slightly more instances, this class will dominate
others and the obtained reduct will only contain information that can identify
this particular class. Therefore, without considering the size of the equivalence
classes, Fitness3 may achieve a small reduct, but it will loss generality and
performs badly on unseen test data.

5.4 Comparisons With Two Traditional Algorithms

Experiments using CfsF and CfsB for dimension reduction have been conducted
using Weka and DT was used for classification. The results are shown in Table
5.4. Comparing the experimental results of the four rough set theory based al-
gorithm in Tables 5 and 5.2 with the two traditional algorithms, it can be seen
that in almost all cases, although CfsF and CfsB can achieve a smaller size of



attributes, the classification performance of CfsF and CfsB are smaller or much
smaller than the rough set theory based algorithms, PSORS, PSOPRS and PSO-
PRSN. In terms of the computational time, both our proposed algorithms and
two traditional algorithms used a relatively short time (less than 5 minutes in
most cases).

6 Conclusions

This paper developed a new approach using probabilistic rough set theory and
BPSO to remove irrelevant and redundant features and maintain the classifi-
cation performance achieved by using all features. This new approach includes
two new algorithms, which are BPSO and probabilistic rough set theory (PSO-

PRS ) and BPSO with probabilistic rough set theory by adding the number of
attributes in the fitness function (PSOPRSN ). The performance of three new
algorithms were examined and compared to BPSO with original rough set the-
ory (PSORS ) and two traditional methods, CfsF and CfsB, on five datasets. In
order to test the generality of the proposed algorithms, the achieved reduct was
evaluated by three different learning algorithms for classification on the unseen
test sets. Experimental results show that in most cases, the three proposed algo-
rithms can be successfully used for dimension reduction and outperform PSORS
and the two traditional algorithms. PSOPRSN can significantly reduce the num-
ber of attributes in the reduct although the classification performance is slightly
reduced in many cases. The reason might be that PSOPRSN does not consider
the number of equivalence classes in the dataset.

This work represents the first study that successfully uses BPSO with proba-
bilistic rough set for dimension reduction. In future, we will consider the number
of equivalence classes in the dataset to further reduce the number of attributes
without decreasing the classification performance and investigate its performance
for dimension reduction and attribute selection problems on more datasets with
a larger number of attributes. We also intend to investigate multi-objective PSO
and rough set based filter algorithms to better explore the Pareto front of non-
dominated solutions in dimension reduction and attribute selection to provide
more informative solutions for users.
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