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Abstract. This paper presents a particle swarm optimisation (PSO) based
multi-objective feature selection approach to evolving a set of non-dominated
feature subsets and achieving high classification performance. Firstly, a pure
multi-objective PSO (named MOPSO-SRD) algorithm, is applied to solve
feature selection problems. The results of this algorithm is then used to com-
pare with the proposed a multi-objective PSO algorithm, called MOPSO-
SiD. MOPSO-SiD is specially designed for feature selection problems, in
which the similarity distance in the feature space is used to select a leader
for each particle in the swarm. This distance measure is also used to update
the archive set, which will be the final solution for a MOPSO algorithm. The
results show that both algorithms successfully evolve a set of non-dominated
solutions, which select a small number of features while achieving similar
or better performance than using all features. In addition, in most case
MOPSO-SiD selects smaller number of features than MOPSO-SRD, and
outperforms single objective PSO for feature selection and two traditional
feature selection methods.
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1 Introduction

Classification is one of the most important tasks in machine learning, which aims
to predict the class label of an instance based on the value of instance’s features.
In the learning process, a set of instances, called the training set, is used to train a
classification algorithm, which is tested on an unseen dataset, called the test set. In
many problems, a large number of features is used to well describe the instances.
Unfortunately, due to “the curse of dimensionality”, the larger a set of features is,
the longer time the training process takes. In addition, relevant features are often
unknown without prior knowledge. Therefore, a large number of features often
contains irrelevant or redundant features, which are not useful for classification.
Those features might lower the quality of the whole feature set [4], because they
usually conceal the useful information from the relevant features. Feature selection
methods [4, 8] are used to remove those redundant and irrelevant features, which
will not only speed up the learning/classification process but also maintain or even
increase the classification performance over using all features. However, due to the
complex interaction between features and the huge search space, it is hard to develop
a good feature selection approach.
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The main goal of feature selection is finding a small feature subset from a large
set of original features to achieve similar or even better classification performance
than using all features. In feature selection, suppose there are n features introduced,
then the total number of possible subsets is 2n. It can be seen that over the large
search space, the exhaustive search is too slow to perform in most situations. In
order to reduce the searching time, some greedy algorithms such as sequential for-
ward selection [17] and sequential backward selection [10] are developed. However,
these methods easily get stuck at the local optima. Because of the global search
ability, evolutionary computation (EC) techniques, such as genetic programming
(GP) [11], genetic algorithm (GAs) [7] and particle swarm optimization (PSO) [15],
have been applied to solve the feature selection problem. Compared with GA and
GP, PSO is more preferable because it is simple and easy to implement. In addition,
PSO not only uses fewer parameter but also converge more quickly.

Feature selection can be viewed as a multi-objective problem because it needs to
maximize the classification accuracy and simultaneously minimize the dimensional-
ity of the selected subset. However, with fewer features being used for classification,
the classification accuracy is likely decreased. Those two objectives often conflict
with each other and the searching process needs to consider the trade-off between
them. EC techniques are particularly suitable for multi-objective optmisation since
their population based mechanism can produce multiple trade-off solutions in a sin-
gle run. However, directly using existing multi-objective approaches to feature se-
lection problems may not achieve promising performance since feature selection has
a very complex search space, which requires a specifically designed multi-objective
algorithm to solve the problem.

1.1 Goals

The overall goal of this study is to develop a PSO based multi-objective feature
selection approach, which can produce a set of non-dominated solutions that select
a small number of features and achieve better classification performance than using
all features. To achieve this goal, we firstly directly apply a very recently developed
multi-objective PSO (MOPSO), called MOPSO-SRD [6] to solve feature selection
problem. After that, we develop a new MOPSO algorithm, called MOPSO-SiD,
which is specifically designed for feature selection problems. This algorithm will
then be compared with MOPSO-SRD results. Specifically, we will investigate

– whether two multi-objective PSO algorithms (MOPSOs) can be applied to
evolve a set of non-dominated solutions with a small number of features and
better classification performance than using all features and single objective
feature selection methods;

– whether MOPSO-SiD, a MOPSO algorithm is designed specifically for feature
selection problems, can produce better Pareto front than MOPSO-SRD.

2 Background

2.1 Particle Swarm Optimisation (PSO)

Particle Swarm Optimisation (PSO) [5] is an evolutionary computation method,
which is inspired by social behaviours such as bird flocking and fish schooling.
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In PSO, a problem is optimized by using a population, called swarm, of candi-
date solutions, which are called particles. In order to find the optimal solution,
each particle moves around the search space by updating its position as well as
velocity. Particularly, the current position of particle is represented by a vector
xi = (xi1, xi2, . . . , xiD), where D is the dimensionality of the search space. These po-
sitions are updated by using another vector, called velocity vi = (vi1, vi2, . . . , viD),
which is limited by a predefined maximum velocity, vmax and vid ∈ [−vmax, vmax].
During the search process, each particle maintains a record of the position of its
previous best performance, called pbest. The best position of its neighbours is also
recorded, which is called gbest. The position and velocity of each particle are up-
dated according to the following equations:

vt+1
id = w ∗ vtid + c1 ∗ ri1 ∗ (pid − xt

id) + c2 ∗ ri2 ∗ (pgd − xt
id) (1)

xt+1
id = xt

id + vt+1
id (2)

where t denotes the tth iteration in the search process, d is the dth dimension in the
search space, i is the index of particle, w is inertia weight, c1 and c2 are acceleration
constants, ri1 and ri2 are random values uniformly distributed in [0,1], pid and pgd
represent the position entry of pbest and gbest in the dth dimension, respectively.

2.2 Related Work on Feature Selection

Traditional Feature Selection Methods Sequential search techniques are also
applied to solve feature selection problems. In particular, sequential forward selec-
tion (SFS) [17] and sequential backward selection (SBS) [10] are proposed. At each
step of selection process, SFS (or SBS) adds (or removes) a feature from an empty
(full) feature set. Although these local search techniques achieve better performance
than the feature ranking method, they might suffer “nesting” problem, in which
once a feature is added (or removed) from the feature set, it cannot be removed
(or added) later. In order to avoid nesting effect, Stearns [14] proposed a “plus-l-
takeaway-r” method in which SFS was applied l times forward and then SBS was
applied for r back tracking steps. However, it is challenge to determine the best
values of (l,r). This problem is addressed by sequential backward floating selection
(SBFS) and sequential forward floating selection (SFFS), proposed by Pudil, et
al.[12]. In SBFS ad SFFS, the values (l, r) are dynamically determined rather than
being fixed in the “plus-l-takeaway-r” method.

EC Approaches to Feature Selection EC techniques have recently been used
to solve feature selection problems due to their powerful global search abilities, such
as GAs [7], GP [11], and PSO [15]. Muni et al. [11] developed a wrapper feature
selection model based on multi-tree GP, which simultaneously selected a good fea-
ture subset and learned a classifier using the selected features. Two new crossover
operations were introduced to increase the performance of GP for feature selection.
Based on the two crossover operations introduced by Muni et al. [11], Purohit et al.
[13] further introduced another crossover operator, which was randomly performed
for selecting a subtree from the first parent and finding its best place in the second
parent. Lin et al. [7] proposed a GA-based feature selection algorithm adopting do-
main knowledge of financial distress prediction, where features were classified into
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different groups and a GA was used to search for subsets consisting of top candidate
features from each group.

To avoid premature convergence in PSO, Chuang, et al. [2] proposed a new
gbest updating mechanism, which resets gbest elements to zero if it maintains the
same value after several iterations. However, the performance of this algorithm is
not compared with other PSO based algorithms. Tran et al. [15] used the gbest
resetting mechanism in [3] to reduce the number of features and performed a local
search process on pbest to increase the classification performance of PSO for fea-
ture selection. Each evaluation in the local search was sped up by calculating fitness
based only on the features being changed (from selected to not selected or from not
selected to selected) instead of based on all the selected features. The proposed
algorithm further reduced the number of features and improved the classification
performance over [3] and standard PSO. PSO with multiple swarms to share expe-
rience has also been applied to feature selection [9], but may lead to the problem
of high computational cost.

Two multi-objective PSO algorithms were used to solve feature selection prob-
lems [18]. The first algorithm applied the idea of non-dominated sorting based
multi-objective genetic algorithm II (NSGAII) into PSO for feature selection. The
other algorithm bases on the idea of crowding, mutation and dominance to evolve
the Pareto front solutions. According to the experimental results, both algorithms
can select a small number of features while achieving better classification perfor-
mance than using all features. However, the above algorithms did not propose any
specific design for feature selection problems. Therefore , this work will propose a
new multi-objective PSO algorithm, which is specifically designed for feature selec-
tion problems.

3 Proposed approach

In feature selection problems, there are two main goals, which are minimising the
number of selected features while maximising the classification performance. How-
ever these objectives are usually conflicting and there is trade-off between them.
Particle Swarm Optimisation (PSO) is originally proposed to deal with single objec-
tive problems, therefore some multi-objective PSO approaches (MOPSO) are pro-
posed to solve multi-objective problems. In MOPSO algorithms, instead of recording
gbest for each particle, an archive set is used to maintain a set of non-dominated
solutions being discovered so far. Most of the existing MOPSO algorithms are dif-
ferent in terms of the way to control this archive set as well as how to select a good
leader (gbest) for the swarm among the archive set.

Although there are many works which apply MOPSO to solve feature selection
problems, most of them do not consider the properties of feature selection problems.
For example, in the normal MOPSO approach, if two particles have exactly same
objective values, they are considered identical particles. Therefore one of the particle
will not be added into the archive set. Meanwhile, in feature selection problems,
two particles might select the same number of features as well as achieve the same
classification accuracy, but the features being selected by each particle might be
different. From the perspective of feature selection problems, these particles are still
different in term of which features being selected. In feature selection problems,
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beside the two main objectives, which features being selected is also important.
Therefore, in this study we propose a new algorithm called MOPSO using the
Similarity Distance (MOPSO-SiD). This algorithm makes two main contributions
by adding a new leader selection algorithm and a new control mechanism for the
archive set.

3.1 Leader Selection Algorithm

The main difference between PSO and MOPSO is how each particle selects its
gbest. In PSO, each particle records its own gbest, which is the best position being
discover by it and its neighbours. However in MOPSO, each particle will select
its gbest from an archive set, which contains all non-dominated solutions being
discovered so far. In MOPSO-SiD, for each generation, each particle freely selects
its own leader by using the similarity distance calculation. Given two particles p1
and p2, the similarity distance (SiD) between these particles is calculated according
to the Equation 3.

SiD(p1, p2) =

n∑
i=1

√
(x1i − x2i)2 (3)

where n is the total number of features (i.e. length of each position vector), x1i, x2i
are the ith position entries of two particles p1, p2 respectively.

In each generation, for each particle in the search swarm, the similarity distance
(SiD) between the particle and all archive members is calculated. After that, the
archive member with the shortest SiD is chosen as the leader of that particle.

This distance measure (SiD) is especially good at the early iterations comparing
with SRD in MOPSO-SRD. As mentioned above, MOPSO-SRD selects the leader
basing on the distance of objective values. In other word, MOPSO-SRD or even
MOPSO-CD only consider the objective space. For example, in MOPSO-SRD, a
particle might select a archive member, which is the closest to it in the objective
space. However in the feature space (search space), the selected archive member
might be very far way from the particle if their selected features are different.
Comparing with MOPSO-SRD, MOPSO-SiD provides more exploitation ability by
selecting the closest archive member in terms of the position distance rather than
the objective distance.

3.2 Archive Control Algorithm

Controlling the archive set is also an important part of a MOPSO algorithms. The
controlling mechanism aims to decide whether or not a solution is added to the
archive set or which solution should be removed from the archive set when this set
is full. In general, a solution S is added to the archive set if it is not dominated by
any archive members. This rule is still applied in MOPSO-Sid. However, if there is
at least one archive member, which has the same objective values as the solution S,
whether or not S will be added into the archive set. In MOPSO-SRD and MOPSO-
CD, S will not be added to the archive set since these algorithm only consider
the objective values. In feature selection problems, the situation can be different.
Suppose that two particles might select the same number of features and achieve
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the same classification, their selected features can still be different. This mean that
those particles might be at the same position in the objective space but they are on
different position in the feature space (search space). Compare with MOPSO-SRD
and MOPSO-CD, MOPSO-SiD does consider about this problem. In particular,
if there is an archive member, called A, which has the same objective values as S
(solution to be added), MOPSO-SiD will further check the features being selected by
both A and S. If the selected features of A and S are different, S will be added into
the archive set, otherwise S will be discarded. Once more, MOPSO-SiD considers
not only the objective space but also the feature space (search space).

Beside adding solutions, removing solutions from the archive set is also im-
portant in a MOPSO algorithms. In general, each MOPSO approach will have a
measure to rank all solutions with in an archive set. For example, MOPSO-CD uses
crowding distance (CD) to rank the solutions to improve the diversity of the archive
set. Meanwhile, MOPSO-SRD ranks the archive members according to the square
root distance (SRD). However these distance measures only considers the objective
space, which might not be sufficient in feature selection problems. For instance, two
particles which are close in the feature space (similar selected features) usually have
similar classification accuracy as well as the number of selected features. However,
two particles which are close in the objective space (similar classification accuracy
and number of selected features) might select very different features. Therefore in-
stead of using the crowding (CD) or square root distance (SRD), MOPOS-SiD uses
the similarity between particles in the feature space to rank all archive members.

In particular, when the archive set is full, the similarity distance between each
pair of archive members are calculated according to the Equation 3. After that,
MOPSO-SiD will select a pair of archive members with the shortest similarity dis-
tance, which means that these members are the most similar pair in terms of fea-
ture being selected. Since in feature selection problems, the classification accuracy
is preferable when the number of selected features is similar, MOPSO-SiD will
remove the archive member with lower classification accuracy among the above
selected pair of archive members. In general, MOPSO-SiD considers not only the
objective values but also which features are selected by each particle, which is also
important in feature selection problems.

3.3 The MOPSO-SiD Agorithm
In MOPSO-SiD for feature selection, the similarity distance (SiD) and the continu-
ous multi-objective PSO is applied to search for the non-dominated solutions. The
representation of each particle is a vector of n real numbers, where n is the total
number of features. Each position entry xi ∈ [0, 1] corresponds to the ith feature
in the original feature set. A threshold θ is used to decide whether or not a feature
is selected. In particular, the ith feature is selected if and only if θ < xi. The two
objective is to minimise the number of features and the classification performance.
Algorithm 1 shows the pseudo-code of MOPSO-SiD.

4 Experimental Design

Eight datasets (Table 1) chosen from the UCI machine learning repository [1] are
used in the experiments. These datasets have different number of features, classes
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Algorithm 1 : Pseudo-code of MOPSO-SiD

1: begin

2: initialize the swarm and Archive A = {};
3: while Maximum iterations is not reached do

4: for each particle i in the swarm do

5: update the pbest of particle i;

6: select the archive member with the shortest SiD as its gbest;

7: update the velocity and the position of particle i;

8: mutation;

9: evaluate particles;

10: if the ith particle is not dominated by any archive members then

11: insert ithparticleintoA;

12: end if

13: end for

14: if A is full then

15: compute SiD between all pairs of archive members;

16: select a pair with the shortest SiD;

17: remove the archive member (among the selected pair) with lower accuracy;

18: end if

19: end while

20: calculate the testing classification error rate of the solutions in A (archive set);

21: return the position of particles in A;

22: return the training and test classification error rates of the solutions in A; end

Table 1: Datasets.
Dataset #features #classes #instances

Vehicle 18 4 946

WBCD 30 2 569

Ionosphere 34 2 351

Lung 56 4 32

Sonar 60 2 208

Movementlibras 90 15 360

Musk1 166 2 476

Arrhythmia 279 16 452

and instances. For each dataset, all instances are randomly divided into a training
set and a test set, which contains 70% and 30% of the instances, respectively. In the
experiments, the classification/learning algorithm is K-nearest neighbour (KNN)
where K = 5.

In both MOPSO-SRD and MOPOS-SiD, the parameters are set as follows [16]:
w = 0.7298, c1 = c2 = 1.49618, vmax = 0.2, population size is 30, the maximum
number of iterations is 100. The threshold used in the continuous version of PSO
for feature selection is set to 0.6. For each dataset, each algorithm has been con-
ducted for 50 independent runs. After each run a set of non-dominated solutions are
obtained. In order to compare MOPSO-SRD and MOPSO-SiD, firstly all 50 archive
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sets are combined together to create an union set. In this union set, the classifi-
cation error rate of feature subsets, which share the same number of features, are
averaged. A set of average solutions is obtained by using the average classification
error rate and the corresponding number of features. This average set is called the
average Pareto front. In addition, for each dataset, all non-dominated solutions are
selected from the union set to create a set of best solutions, called best set. A pure
continuous PSO for feature slection problems is also ran 50 independent times on
these above datasets. Each independent run produces a set of selected features. The
average as well as the best solutions are obtained from the 50 solutions.

5 Results And Discussions

Experiment results of two algorithms on training and test set are shown in Figures
1 and 2, respectively. In each figure, the total number of original features and the
classification error rate when all features being used are shown in the brackets. In
each chart, the horizontal axis shows the number of selected features and the vertical
axis shows the classification error rate. In figure 1, “SRD-Train-Ave” (“SiD-Train-
Ave”) stands for the average Pareto front resulted from MOPSO-SRD (MOPSO-
SiD) in the 50 independent runs. “SRD-Train-Best” (“SiD-Test-Best”) represents
the non-dominated solutions of all solutions resulted from MOPSO-SRD (MOPSO-
SiD). The results of single objective PSO for feature selection is shown as SOPSO in
the figure. Figure 2 shows the same information as in Figure 1 but the classification
error rates are calculated on the test set. The results of SFS are shown in Table 2.

5.1 MOPSO-SiD vs All Features

According to Figure 2, in all datasets, “SRD-Test-Ave” and “SiD-Test-Ave”contain
at least one solution, which selects no more than 30% of the available features and
achieves similar or better performance than using all features. In all datasets, both
“SRD-Test-Best” and “SiD-Test-Best” contains one or more solution, which select
around 8% of the available features and achieves similar or better performance than
using all features.

The results suggest that in all datasets, both MOPSO-SRD and MOPSO-SiD
can evolve a set of features subsets with a small number of features and better
classification performance than using all features.

5.2 MOPSO-SiD vs SOPSO

As can be seen from both Figure 1 and 2, on most of datasets, both MOPSO-SRD
and MOPSO-SiD can evolve at least one solution, which selects smaller number
of features while achieving better classification accuracy than SFS approach. On
Musk1 and Arrhythmia dataset, although SFS selects smaller number of features
than the multi-objective PSO approaches, its solutions’ classification accuracy is
even worse than the worst solution of both MOPSO algorithms. This is because
MOPSO does consider about the interaction between features, which SFS skips.

Comparing with pure PSO for feature selection, on most of datasets, both
MOPSO approaches can find out better solutions. In particular, MOPSO approaches
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Fig. 1: Results of MOPSO-SRD and MOPSO-SiD on training set (In colour).

can evolve at least one solution that selects smaller number features and achieves
better performance than the best solution evolved by the pure PSO.

5.3 MOPSO-SiD vs MOPSO-SRD

Firstly, let consider the training results in Figure 1, which show the searching ability
of these two algorithms. As can be seen in Figure 1, the patterns of both “SiD-Train-
Ave” and “SRD-Train-Ave” are similar. However, “SiD-Train-Ave” oscillates more
then “SRD-Train-Ave”, which is due to the gbest selection mechanism. On the
one hand, MOPSO-SRD concentrates more on the objective values to select gbest.
Meanwhile, MOPSO-SiD selects gbest by mainly using the similarity in the fea-
ture search space. In addition, in all dataset, the “SiD-Train-Ave” line is mostly on
the left of “SRD-Train-Ave” line, which means that with MOPSO-SiD usually se-
lects smaller number of features than MOPOS-SRD to achieve similar classification
performance.
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Fig. 2: Results of MOPSO-SRD and MOPSO-SiD on test set (In colour).

In terms of the best solutions, MOPSO-SiD outperforms MOPSO-SRD. As can
be seen from Figure 1, in all datasets, the “SiD-Train-Best” lines are at the same
position or on the left of the “SRD-Train-Best” lines, which indicates that MOPSO-
SiD can evolve a smaller subset of features while achieving similar performance as
MOPSO-SRD.

Figure 2 shows the results on the test set. In this figure, both lines “SRD-Test-
Ave” and “SiD-Test-Ave” are even closer and more similar than in Figure 1. On two
small datasets (WBCD and Movementlibras), “SiD-Test-Best” is at the same posi-
tion or on the left of “SRD-Test-Best”. So for the same number of features, MOPSO-
SiD can achieve better classification performance than MOPSO-SRD. However, in
the Musk1 dataset, when the number of features exceeds about 13% of the avail-
able features, MOPSO-SRD achieves better performance than MOPSO-SiD. These
points with high classification accuracy and a large number of selected features are
usually discovered at the end of each run. The similarity distance is very helpful
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Table 2: Results of SFS.
Dataset #Features Train Error(%) Test Error(%)

Vehicle 5 13.0 18.3

WBCD 1 5.5 11.1

Ionosphere 2 9.4 21.0

Lung 1 13.6 10.0

Sonar 5 19.4 27.0

Movementlibras 7 3.9 7.7

Musk1 1 22.8 27

Arrhythmia 3 5.4 7.0

at the beginning of each run, when most of particles in the swarm are at differ-
ent position and the exploitation ability is more important. However, in the later
iterations, when the particles in the swarm and archive set become similar, the
exploration ability is more important. Compare with MOPSO-SiD, MOPSO-SRD
provides more exploration ability. For instance, in MOPSO-SiD, a particle in the
swarm always selects the closest archive member in the feature space as its leader.
At the end of a run, the leader might be very similar to the particle, and therefore
the particle is trapped at that position. On the other hand, in MOPSO-SRD, a
leader is selected by using the square root distance in the objective space. In this
case, although the particle and its leader are similar in term of objective values,
they still can select very different features (different positions in feature space).
Therefore, the particle has a chance to get out of the current position (probably a
local optima). This explains why on the large datasets, MOPSO-SRD can discover
points on the objective space, where the number of selected features is high and
the classification accuracy is better.

6 Conclusion and Future Work

The goal of this study was to develop a PSO based multi-objective Feature Selection
approach to evolving a set of non-dominated feature subsets and achieving high
classification performance. Firstly, MOPSO-SRD, a pure multi-objective PSO, is
applied to solve feature selection problems. The results of this algorithm is then used
to compare with my proposed MOPSO algorithm, called MOPSO-SiD. MOPSO-
SiD is specially designed for feature selection problems, in which the similarity
distance in the feature space is used to select a leader for each particle in the
swarm. This distance measure is also used to update the archive set, which will be
the final solution for a MOPSO algorithm. The results show that both algorithms
successfully evolve a set of non-dominated solutions, which select a small number
of features while achieving similar or better performance than using all features.
In addition, in most case MOPSO-SiD selects smaller number of features than
MOPSO-SRD but still achieves similar classification performance.

This works starts incorporates the characteristics of feature selection problems
into the multi-objective search to find a better Pareto front, which show some
success. In the future, we will further improve the exploration and exploitation
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abilities of multi-objective PSO for feature selection by embedding some genetic
operators or a local search during the search process.
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