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Abstract: Inertia weight is one of the most important
adjustable parameter of particle swarm optimization (PSO). The
proper selection of inertia weight can prove a right balance
between global search and local search. In this paper, two novel
PSOs with non-linear inertia weight based on the tangent
function and the arc tangent function are provided, respectively.
The performance of the proposed PSO model is compared with
standard PSO with linearly-decrease inertia weight. The
experimental results demonstrated that our proposed PSO model
is better than standard PSO in terms of convergence rate and
solution precision.
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1. INTRODUCTION

The particle swarm optimization (PSO)[1], [2] is a
population-based global optimization method proposed by
Kennedy and Eberhart, which motivated by the group
organism behavior such as bee swarm and bird flock.
Compared with other evolutionary computation techniques
such as genetic algorithms (GA), PSO is easy in
implementation and there are few parameters to adjust, and it
has faster convergence rate[3]-{6]. PSO has been successfully
applied in science and engineering [7], [8].

As a new algorithm, PSO still has many disadvantages. For
instance, it show significant performance in initial iterations,
however, the particles are more and more familiar and the
swarm loses its diversity along with the developing of the
computation. So there may be premature convergence and it is
hard to escape the local optimal. Among the adjustable
parameters of PSO, the inertia weight is the most important
one[9], [10], and lots of investigations have been undertaken
to provide the improved ways of the inertia weight to enhance
the performance of PSO, including the linearly-decrease
inertia weight (LIW)[11], the nonlinearly-decrease inertia
weight (NTW)[12]-[14], the random inertia weight (RTW)[15],
and so on. In this paper, we analyze the features of PSO and
the importance of the inertia weight. Based on the traits of the
tangent function and the arc tangent function, two new non-
linear strategies about the inertia weight are produced. In
order to illustrate the effectiveness and performance of the
two strategies for optimization problems, a set of four
benchmark functions are used.
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1I. STANDARD PARTICLE SWARM OPTIMIZATION

In PSO, each potential solution is called a bird or particle
with no weight and no volume. The ith particle flies in the
n dimension search space to find the optimization. There is a

vector x, =(x,x,....,x,) presenting the position of the ith

article, where are the lower and
p ’ Yid E[]d’ud] ’ dE[[,I’l] ’ ld’ud

upper bounds of the dth dimension. The velocity for the ith
particle is represented as », -, Wiy eenvy,)» Which controls the

distance and the direction when i is flying and it is clamped to
a maximum velocity v _specified by the problem to be solved.

Moreover, the best previous position of the ith particle is
individual best called Pbest. The best one of all the Pbest is
colonial best called Gbest denoting the best previous position
of the swarm. The system is initialized with a population of
random solutions, and based on the Pbest and Gbest, the
algorithm searches for the optimization by updating
generations according to the following formulas:

Vet D=wl )+ ey -rand()-(pyy =%,y () + ey rand () (Pgy = x,4(0)° ()

)

+ means algorithm is going on the #th generation.

X (1) = x;(D)+1(0+1)
-]
where

¢ and ©2 are set to constant value, which are normally taken
as 2. rand() is random value, uniformly distributed in [0, 1].

Pia presents the Pbest while Pgq presents the Gbest. w is

inertia weight, which controls the influence of previous
velocity on the new velocity, and it can make a balance
between the global search and the local search: Global search
performance is good with large while a small facilitates the
local search.

III. THE NOVEL NON-LINEAR INERTIA WEIGHT PSO

Based on the researches on w , it has been proved there will
be a faster convergence rate with a larger w , but the precision
of the result can not be guaranteed. While a smaller one can
get more precise result, but the convergence rate is too slow
and the algorithm may get into the local optimal. So a proper
variation of w can improve the performance of PSO. During
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the past studies, we tried to introduce monotone increasing or
decreasing strategy to update w .
In the tangent function y=tan(x) , the result y increases

along with the independent variable » , and the speed of
increase also increases. When x - .875, y = | . According to

these features, we can use the tangent function to build a new
strategy of the w . After a large scale of experiments, the final
equation for the w is:

3
*tan(0.875* (1 - (——)")) + w, )
’ma\

where Wyt is the initial value of the w , which is also the

w(l) = (”"xrurt = “'end) nd

largest value and normally

s =095 W, is the final value of

the w , which also is the smallest one and normally ,, =04
ena

Inax 1S the maximum number of iterations. According to the

Eq.(3), w is nonlinearly-decrease along with the increase of
the iteration. The algorithm facilitates global search in the
initial iteration, so the particles can fly around the total search
space quickly, then the local search become stronger. The new
strategy enhances the capability of the algorithm. avoids
premature convergence and escapes the local optimal. There is
a coefficient 0.875 in the Eq.(3) to guarantee the w
distributed in [0.4, 09]: When =1, . _o0o and when

Wetart =
t=type> w(t) = Wond = 0.4-
There is a control variable &, , which can control the

smoothness of the curve that reflects the relationship between
the w and ¢ . Figs 1-3 show the three different curves
respectively when k=02, k =1,k =3. It can be found that:

whenk, =02, the functions between the w and 7 is convex
function. When f =1, it is almost a linear one leaning to
concave. and when k =3 it is a concave function.

A multimode Griewank function is employed to choose the
best k, . k, is confined in [0.1~2.0] in the experiments. The

experimental results are listed in Table I.
From Table I, it shows that when k, is during [0.4~0.6]

and [1.4~1.7], the mean and the standard deviations of the
function values are both stable. Through other experiments, it
has been proved that the algorithm produces better result and
convergence rate when k, =0 for many other functions. So

k, should be chose during [0.4~0.6]. In the following

experiments in this paper TANW is used to represent PSO

algorithm proposed above andf, =6
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TABLEI RESULTS OF THE GRIEWANK WITHDIFFERENT &,

k. | Mean Std k, Mean Std
0.1 | 0.0294 0.0276 1.1 0.0302 0.0230
0.2 | 0.0300 0.0223 1.2 0.0355 0.0194
0.3 | 0.0329 0.0248 1.3 0.0413 0.0291
0.4 | 0.0266 0.0191 1.4 0.0230 0.0212
0.5 | 0.0258 0.0278 1.5 0.0289 0.0273
0.6 | 0.0254 0.0207 1.6 0.0263 0.0200
0.7 | 0.0315 0.0307 1.7 0.0261 0.0198
0.8 | 0.0300 0.0343 1.8 0.0334 0.0219
0.9 | 0.0301 0.0235 1.9 0.0257 0.0253
1.0 | 0.0264 0.0267 2.0 0.0280 0.0256

For the same reason, the arc tangent function 5 = arcran(x)

is also an increasing one, however the speed of increase is
slower and slower. When the independent variable x = 1 56 , the
result y =1 . As the tangent function and the arc tangent

function are reciprocal functions, they show the familiar law
and also must be a little different. So the arc tangent function
also can be used to build a new improvement of w , as the
following equation shows:

@)

k
L2y

w(t) = Weum “Wond) *arctan(1.56 * (1—( end

max

where w t

seart> Wond 2 denotes the same meanings as in the

? tmax

Eq.(3). w is decreasing along with ¢ . The difference is that
the speed of decrease is slower in prior period and faster in
later period. The w is also not too small in later period, so it
guarantee the convergence rate in prior period and the
exploration in later period. The algorithm can escape the local
optimal effectively. There is also a coeftficient 1.56 in the Eq.
(4) to guarantee the w distributed in [0.4, 0.9]: When ¢=1,

W) =Vygy =09, and when ¢ = Imax "(l):Wmd =04-

Like the Eq.(3), there is a control variable t,, which can
control the smoothness of the curve that reflects the
relationship between the w and ¢ . Figs 4-6 show the three



different curves respectively whens, =02, k, =1, k, =3. It
can be found that; when k =02, the function between the w
and ¢ is convex function. When k=1, it is almost a linear
one leaning to convex. wheny _3, it is a concave function.

Compared Figs1-6, the two functions about the w and ¢ both
are from the convex function to concave one along with the
increase of the control variable, and the former one is faster.
The shape of two kinds of curves is different, too.

The experiments about the multimode function Griewank
were done to choose the best 4, confined in [0.1~2.0]. The
experimental results (i.e., the mean and the standard

deviations of the function values found in 20 runs) are listed
in Table L.

In Table II, when k, is during [0.4~0.7], the mean and the

standard deviations of the function values are both stable. So
k, should be chose during [0.4~0.7]. In the following

experiments in this paper ATW is used to represent the
improved PSO based on this strategy and k, = 0.4

TABLEII RESULTS OF THE GRIEWANK WITH DIFFERENT kz

TABLE [II BENCHMARK FUNCTIONS AND PARAMETERS SETTING

k, Mean Std k, Mean Std

0.1 0.0280 0.0280 1.1 0.0453 0.0629
0.2 0.0273 0.0256 1.2 0.0352 0.0284
0.3 0.0331 0.0251 1.3 0.0292 0.0379
0.4 0.0245 0.0202 1.4 0.0354 0.0388
0.5 0.0270 0.0232 1.5 0.0384 0.0373
0.6 0.0247 0.0243 1.6 0.0538 0.0707
0.7 0.0245 0.0251 1.7 0.0745 0.0850
0.8 0.0287 0.0232 1.8 0.0617 0.0769
0.9 0.0304 0.0343 1.9 0.0748 0.1130
1.0 0.0262 0.0206 2.0 0.1779 0.2043

IV.EXPERIMENTAL STUDY

A. Test Functions and Parameters Setting

To illustrate performance of the novel ways, four nonlinear
benchmark functions that are commonly used in evolutionary
computation literature [16]-[19] were performed, and also
compared with the performance of improved PSO based on a
linearly-decrease inertia weight (LIW), which is the most
widely used nowadays, and the expression for LIW is showing
in Eq.(5). The four test functions are listed in Table TII.

: ©)

W, -w
start end
w(l) = Wergp = 77 xt

max

In every experiment, the w in the three methods
(TANW. ATW and LIW) are all during [0.9, 0.4], that is

Wyan =097 W, ,=04- ¢, =C, =205 the population size is 40, the
allowable error g=le-%, and fmax = 1500 - A total of 50 runs for

each experimental setting are conducted.

B. The Result and the Analysis

The results of the four functions are listed in Tables I1V- VII,
the mean relative performance generated by three algorithms
are shown in Figs 7-10.

Function Dim Search space Y ax
Sphere 20 (-100,100) 100
Rosenbrock 20 (-30,30) 30
Rastrigrin 20 (-10,10) 10
Griewank 20 (-600,600) 600
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TABLE IV THE RESULT FOR SPHERE OSENBROCK FUNCTION

Algorithm | Max Min Std Mean

TANW 2.6552e- 1.2535e- 3.7727e- 9.0940e-
015 020 016 017

ATW 5.0653¢- 3.4536¢- 8.0530e- 3.2708e-
013 017 014 014

LTW 9.7600e- 4.8377e- 1.6531e- 6.8240e-
009 012 009 010

TABLEV THERESULT FOR ROSENBROCK FUNCTION

Algorithm  Max Min Std Mean

TANW 263.8481  0.2125 55.0677 41.0477
ATW 248.3628  1.8195 49.6680 48.9274
LIW 567.3387  4.4772 107.4373  70.1539

TABLE VI THE RESULT FOR RASTRIGIN FUNCTION

Algorithm | Max Min Std Mean

TANW 35.8185 6.9647 5.8282 16.9156
ATW 28.8538 6.9640 5.3089 16.9652
LIW 33.8585 6.9649 5.8284 18.0666

TABLE VII THE RESULT FOR GRIEWANK FUNCTION

Algorithm | Max Min Std Mean

TANW 0.0787 0 0.0208 0.0240

ATW 0.0811 5.7732e- | 0.0205 0.0239
015

LIW 0.1052 9.9886e- | 0.0256 0.0328
011

From the tables and the figures above, we can discovery

that:

1) For the simplest unimodal Sphere function, the
results generated by TANW is the most robustness
(the smallest standard deviations) and the most
precision (the smallest mean fitness value). At the
same time, it can be concluded that the result got
by ATW is worse than by TANW, and better than
by LIW. The two improved algorithms own much
faster convergence rate than LIW. In the Fig. 7, the
three curves show the similar shape, and it can
reflect the features of the unimodal function’s
optimization.

2) For the non-convex and morbid unimodal
Rosenbrock function, the values in Table V
indicated that ATW found the most robustness (the
smallest standard deviations) results, and TANW
found the most precision (the smallest mean fitness
value) ones. On the whole, they both outperformed
LIW. Moreover, the ANTW is most effective in
the convergence rate.

3) Rastrigin function is non-linear and multimodal,
and it has lots of local optimal values. From the
Table VI, it can be observed that the results
generated by ATW is the most robustness (the
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smallest standard deviations). LIW and TANW got
the approximate effectiveness in the robust.
TANW produced the most precision (the smallest
mean fitness value) results, and ATW produced the
second precision ones. The two improved
algorithms presented much faster convergence rate
than LIW.

4)  Griewank function is a typical multimodal one. To
optimize it can test the global search ability of the
algorithm. For this function, the Table VII and Fig.
10 can show that the TANW and ATW improved
the robustness, the convergence rate and the
precision of the result. TANW generated the fast
convergence rate solution, and ATW did better in
the robustness and the precision of the result.

S) From all above tables and figures, we can conclude
that the convergence rate of TANW is faster than
ATW, but in the later period, the exploration
ability of TANW is worse. The convergence ability
of ATW is weak in prior period, but can escape the
local optimal more effectively. From the unimodal
function to the complicated multimodal function,
ATW performances better and better. TANW
works well in unimodal function like Sphere, as it
owns fast convergence and need less generation to
get the best solution. On the other hand, ATW is fit
for optimizing the multimodal function like
Griewank because of the strong ability of escaping
the local optimal in later period. From the figures,
we can found the two new improved algorithms
show the similar shape curves in most cases. The
phenomenon may relate to that the tangent
function and the arc tangent function are reciprocal
functions.

V. CONCLUSION AND FUTUER WORK

This paper presents two novel PSO algorithms with non-
linear inertia weight based on the tangent function and the arc
tangent function. The performance of them is evaluated by the
experiments on four representative instances. They provide
better quality solutions, and it is more efficacious compared
with PSO algorithm with a learning decreasing inertia weight.

Future work is focused on optimizing the performance of
TANW and ATW. TANW should have a stronger ability to
escape the local optimal in later period, and ATW should have
a faster convergence rate. In addition, extensive study of the
applications in more complex practical optimization problems
is necessary to fully investigate the properties and evaluate the
performance of TANW and ATW.
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