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Abstract: Inertia weight is one of the most important 

adjustable parameter of particle swarm optimization (PSO). The 
proper selection of inertia weight can prove a right balance 
between global search and local search. In this paper, two novel 

PSOs with non-linear inertia weight based on the tangent 

function and the arc tangent function are provided, respectively. 
The performance of the proposed PSO model is compared with 

standard PSO with linearly-decrease inertia weight. The 

experimental results demonstrated that our proposed PSO model 
is better than standard PSO in terms of convergence rate and 
solution precision. 

Keywords-Particle swarm optimization, inertia weight, tangent 
function, arc tangent function. 

I. INTRODUCTION 

The particle swann optimization (PSO)[I], [2] is a 
population-based global optimization method proposed by 
Kennedy and Eberhart, which motivated by the group 
organism behavior such as bee swarm and bird flock. 
Compared with other evolutionary computation techniques 
such as genetic algorithms (GA), PSO is easy in 
implementation and there are few parameters to adjust, and it 
has faster convergence rate[3]-[6]. PSO has been successfully 
applied in science and engineering [7], [8]. 

As a new algorithm, PSO still has many disadvantages. For 
instance, it show significant perfonnance in initial iterations, 
however, the particles are more and more familiar and the 
swarm loses its diversity along with the developing of the 
computation. So there may be premature convergence and it is 
hard to escape the local optimal. Among the adjustable 

parameters of PSO, the inertia weight is the most important 

one[9], [10], and lots of investigations have been undertaken 
to provide the improved ways of the inertia weight to enhance 
the performance of PSO, including the linearly-decrease 
inertia weight (UW)[ll], the nonlinearly-decrease inertia 
weight (NIW)[12]-[14], the random inertia weight (RIW)[15], 
and so on. In this paper, we analyze the features of PSO and 
the importance of the inertia weight. Based on the traits of the 
tangent function and the arc tangent function, two new non­
linear strategies about the inertia weight are produced. In 
order to illustrate the effectiveness and performance of the 
two strategies for optimization problems, a set of four 
benchmark functions are used. 
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II. STANDARD PARTICLE SWARM OPTIMIZATION 

In PSO, each potential solution is called a bird or particle 
with no weight and no volume. The ith particle flies in the 
n dimension search space to find the optimization. There is a 

vector Xj = (Xji'xi2 . •  _ .  ,xin) presenting the position of the ith 

particle, where r E [/ u ], dE' [I n], I u are the lower and 
. id d' d ' d' d 

upper bounds of the dth dimension. The velocity for the ith 
particle is represented as Vi � (ViI 'V;2 ...... ,Vin) , which controls the 

distance and the direction when i is flying and it is clamped to 

a maximum velocity Vmax specified by the problem to be solved. 

Moreover, the best previous position of the ith particle is 
individual best called Pbest. The best one of all the Pbest is 
colonial best called Gbest denoting the best previous position 
of the swann. The system is initialized with a population of 
random solutions, and based on the Pbest and Gbest, the 
algorithm searches for the optImIzation by updating 
generations according to the following fonnulas: 

Vjd(t+ 1)=wVjit)+cI·randO·(Pid -xid(I»+C2 . randO'(p gd -xiiI»' 
xi(t+l) � xi(t)+Vi(t+l) 

(I) 

(2) 
where t means algorithm is going on the tth generation. 

Cl and C2 are set to constant value, which are nonnally taken 

as 2. randO is random value, uniformly distributed in [0, 1]. 

Pid presents the Pbest while Pgd presents the Gbest. w IS 

inertia weight, which controls the influence of previous 
velocity on the new velocity, and it can make a balance 
between the global search and the local search: Global search 
performance is good with large while a small facilitates the 
local search. 

m. THE NOVEL NON-LINEAR INERTIA WEIGHT PSO 

Based on the researches on w , it has been proved there will 

be a faster convergence rate with a larger w , but the precision 

of the result can not be guaranteed. While a smaller one can 
get more precise result, but the convergence rate is too slow 
and the algorithm may get into the local optimal. So a proper 
variation of w can improve the performance of PSO. During 
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the past studies, we tried to introduce monotone increasing or 
decreasing strategy to update w • 

In the tangent function y = tan(x) , the result y increases 

along with the independent variable x , and the speed of 

increase also increases. When x = 0.875, Y = 1 . According to 

these features, we can use the tangent function to build a new 
strategy of the W . After a large scale of experiments, the final 

equation for the w is: 

w(l) � (WHart - we nd ) * tan(0.875 * (] - (_t _)k] » + wend ' 
(max 

(3) 

where W,tart is the initial value of the w , which is also the 

largest value and normaIlYwstart=0.9, wend is the final value of 

the w , which also is the smallest one and normally W = OA. end 
1max is the maximum number of iterations. According to the 

Eq.(3), w is nonlinearly-decrease along with the increase of 

the iteration. The algorithm facilitates global search in the 
initial iteration, so the particles can fly around the total search 
space quickly, then the local search become stronger. The new 
strategy enhances the capability of the algorithm. avoids 
premature convergence and escapes the local optimal. There is 
a coefficient 0.875 in the Eq.(3) to guarantee the w 

distributed in [0.4, 0.9]: When t = I, w(t)�w =0.9 and when starf 
t=�, wet) = Wen d = 0.4· 

There is a control variable k1 ' which can control the 

smoothness of the curve that reflects the relationship between 
the w and t . Figs 1-3 show the three different curves 

respectively when k] = 0.2, k] = 1, k] = 3. It can be found that: 

when k] = 0.2, the functions between the w and t is convex 

function. When k] = I, it is almost a linear one leaning to 

concave. and when k] = 3, it is a concave function. 

A multimode Griewank function is employed to choose the 
best kl . kl is confined in [0.1 �2.0] in the experiments. The 

experimental results are listed in Table 1. 
From Table 1, it shows that when k1 is during [0.4�0.6] 

and [1 .4� I. 7], the mean and the standard deviations of the 
function values are both stable. Through other experiments, it 
has been proved that the algorithm produces better result and 
convergence rate when k] = 0.6 for many other functions. So 

kl should be chose during [0.4�0.6]. Tn the following 

experiments in this paper TANW is used to represent PSO 
algorithm proposed above and k] = 0.6 . 

3 
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TABLE I RESULTS OF THE GRIEWANK WITH DIFFERENT kl 

k] Mean Std k] Mean Std 

0..1 0..0.294 0..0.276 1.1 0..030.2 0..0.230. 

0..2 0..030.0. 0..0.223 1.2 0..0355 0..0.194 

0..3 0..0329 0..0.248 1.3 0..0.413 0..0.291 

0..4 0..0.266 0..0.191 1.4 0..0.230. 0..0.212 

0..5 0..0.258 0..0.278 1.5 0..0.289 0..0.273 

0..6 0..0.254 0..0.20.7 1.6 0..0.263 0..0.20.0. 

0..7 0..0315 0..0.30.7 1.7 0..0.261 0..0.198 

0..8 0..030.0. 0..0.343 1.8 0..0334 0..0.219 

0..9 0..030.1 0..0.235 1.9 0..0.257 0..0.253 

1.0. 0..0.264 0..0.267 2.0. 0..0.280. 0..0.256 

For the same reason, the arc tangent function y = arctan(x) 
is also an increasing one, however the speed of increase is 
slower and slower. When the independent variable x = 1.56 , the 

result y = 1 • As the tangent function and the arc tangent 

function are reciprocal functions, they show the familiar law 
and also must be a little different. So the arc tangent function 
also can be used to build a new improvement of w , as the 

following equation shows: 

t k 
wet) � (Wstart -wend) * arctan (1.56 *(1- (-) 2)) + wend fmax 

(4) 

where Wstart' wend' t ,tmax denotes the same meanings as in the 

Eq.(3). w is decreasing along with t . The difference is that 

the speed of decrease is slower in prior period and faster in 
later period. The w is also not too small in later period, so it 

guarantee the convergence rate in prior period and the 
exploration in later period. The algorithm can escape the local 
optimal effectively. There is also a coefficient 1.56 in the Eq. 
(4) to guarantee the w distributed in [0.4, 0.9]: When 1=1, 
w(1)=�'1art =0..9, and when {= (max' l1(I)=Wend=OA. 

Like the Eq.(3), there is a control variable k2, which can 

control the smoothness of the curve that reflects the 

relationship between the wand t . Figs 4-6 show the three 



different curves respectively when k2 = 0.2, kz = I , k2 = 3 . It 

can be found that: whenkj = 02, the function between the w 

and t is convex function. When k) = 1, it is almost a linear 

one leaning to convex. when k, = 3, it is a concave function. 

Compared Figs 1-6, the two functions about the w and t both 

are from the convex function to concave one along with the 
increase of the control variable, and the former one is faster. 
The shape of two kinds of curves is different, too. 

The experiments about the multimode function Griewank 

were done to choose the best k2 confined in [0.1 �2.0]. The 

experimental results (i.e., the mean and the standard 
deviations of the function values found in 20 runs) are listed 
in Table 11. 

In Table 11, when k2 is during [OA�0.7], the mean and the 

standard deviations of the function values are both stable. So 
k 2 should be chose during [OA�0.7]. In the following 

experiments in this paper A TW is used to represent the 
improved PSO based on this strategy and k2 = 0.4 . 

TABLE II RESULTS OF THE GRIEWANK WITH DIFFERENT kz 

k2 Mean Std kz Mean Std 

0.1 0.0280 0.0280 1.1 0.0453 0.0629 

0.2 0.0273 0.0256 1.2 0.0352 0.0284 

0.3 0.0331 0.0251 1.3 0.0292 0.0379 

0.4 0.0245 0.0202 1.4 0.0354 0.0388 

0.5 0.0270 0.0232 1.5 0.0384 0.0373 

0.6 0.0247 0.0243 1.6 0.0538 0.0707 

0.7 0.0245 0.0251 1.7 0.0745 0.0850 

0.8 0.0287 0.0232 1.8 0.0617 0.0769 

0.9 0.0304 0.0343 1.9 0.0748 0.1130 

1.0 0.0262 0.0206 2.0 0.1779 0.2043 

TV. EXPERIMENTAL STUDY 

A. Test Functions and Parameters Setting 

To illustrate performance of the novel ways, four nonlinear 
benchmark functions that are commonly used in evolutionary 
computation literature [16]-[19] were performed, and also 
compared with the performance of improved PSO based on a 
linearly-decrease inertia weight (LTW), which is the most 
widely used nowadays, and the expression for LTW is showing 
in Eq.(5). The four test functions are listed in Table TTT. 

( ) _w_s '_a r_' _-_w--"e-",nd",-. x t ' W t = Wstart -
'max 

(5) 

In every experiment, the W III the three methods 

(TANW, ATW and LTW) are all during [0.9, OA], that is 

111 =09' w =04· C =c =20, the population size is 40, the start · mi ' I 2 . 

allowable error O"=le-OO, andtmax = 1500. A total of 50 runs for 

each experimental setting are conducted. 

B. The Result and the Analysis 

The results of the four functions are listed in Tables IV- V11, 
the mean relative performance generated by three algorithms 
are shown in Figs 7-10. 

TABLE III BENCHMARK FUNCTIONS AND PARA METERS SETTING 

Function Dim Search space v max 

Sphere 20 (-100,100) 100 

Rosenbrock 20 (-30,30) 30 

Rastrigrin 

Griewank 

20 (-10,10) 10 

20 (-600,600) 600 
10 
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TABLE IV THE RESULT FOR SPHERE OSENBROCK FUNCTION 

Algorithm Max Min Std Mean 

TANW 2.6552e- 1.2535e- 3.7727e- 9.0940e-
015 020 016 017 

ATW 5.0653e- 3.4536e- 8.0530e- 3.2708e-
013 017 014 014 

LIW 9.7600e- 4.8377e- 1.6531 e- 6.8240e-
009 012 009 010 

TABLE V THE RESULT FOR ROSENBROCK FUNCTI O N  

Algorithm Max Min Std Mean 

TANW 263.8481 0.2125 55.0677 41.0477 

ATW 248.3628 1.8195 49.6680 48.9274 

LIW 567.3387 4.4772 107.4373 70.1539 

TABLE VI THE RESULT FOR RASTRTGTN FUNCTI O N  

Algorithm Max Min Std Mean 

TANW 35.8185 6.9647 5.8282 16.9156 

ATW 28.8538 6.9640 5.3089 16.9652 

LIW 33.8585 6.9649 5.8284 18.0666 

TABLE VII THE RESULT FOR GRTEWANK FUNCTION 

Algorithm Max Min Std Mean 

TANW 0.0787 0 0.0208 0.0240 

ATW 0.0811 5.7732e- 0.0205 0.0239 
015 

LIW 0.1052 9.9886e- 0.0256 0.0328 
011 

From the tables and the figures above, we can discovery 
that: 

1) 

2) 

3) 
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For the simplest unimodal Sphere function, the 
results generated by T ANW is the most robustness 
(the smallest standard deviations) and the most 
precision (the smallest mean fitness value). At the 
same time, it can be concluded that the result got 
by ATW is worse than by TANW, and better than 
by LlW. The two improved algorithms own much 
faster convergence rate than LlW. In the Fig. 7, the 
three curves show the similar shape, and it can 
reflect the features of the unimodal function's 
optimization. 
For the non-convex and morbid unimodal 
Rosenbrock function, the values in Table V 
indicated that ATW found the most robustness (the 
smallest standard deviations) results, and TANW 
found the most precision (the smallest mean fitness 
value) ones. On the whole, they both outperformed 
LlW. Moreover, the ANTW is most effective in 
the convergence rate. 
Rastrigin function is non-linear and multimodal, 
and it has lots of local optimal values. From the 
Table VI, it can be observed that the results 
generated by ATW is the most robustness (the 

smallest standard deviations). LTW and TANW got 
the approximate effectiveness in the robust. 
T ANW produced the most precision (the smallest 
mean fitness value) results, and ATW produced the 
second precision ones. The two improved 
algorithms presented much faster convergence rate 
than LlW. 

4) Griewank function is a typical multimodal one. To 
optimize it can test the global search ability of the 
algorithm. For this function, the Table VII and Fig. 
10 can show that the T ANW and A TW improved 
the robustness, the convergence rate and the 
precision of the result. T ANW generated the fast 
convergence rate solution, and ATW did better in 
the robustness and the precision of the result. 

5) From all above tables and figures, we can conclude 
that the convergence rate of TANW is faster than 
ATW, but in the later period, the exploration 
ability of TANW is worse. The convergence ability 
of A TW is weak in prior period, but can escape the 
local optimal more effectively. From the unimodal 
function to the complicated multimodal function, 
A TW performances better and better. T ANW 
works well in unimodal function like Sphere, as it 
owns fast convergence and need less generation to 
get the best solution. On the other hand, ATW is fit 
for optimizing the multimodal function like 
Griewank because of the strong ability of escaping 
the local optimal in later period. From the figures, 
we can found the two new improved algorithms 
show the similar shape curves in most cases. The 
phenomenon may relate to that the tangent 
function and the arc tangent function are reciprocal 
functions. 

v. CONCLUSION AND FUTUER WORK 

This paper presents two novel PSO algorithms with non­
linear inertia weight based on the tangent function and the arc 
tangent function. The performance of them is evaluated by the 
experiments on four representative instances. They provide 
better quality solutions, and it is more efficacious compared 
with PSO algorithm with a learning decreasing inertia weight. 

Future work is focused on optimizing the performance of 
T ANW and A TW. T ANW should have a stronger ability to 
escape the local optimal in later period, and ATW should have 
a faster convergence rate. In addition, extensive study of the 
applications in more complex practical optimization problems 
is necessary to fully investigate the properties and evaluate the 
performance of TANW and ATW. 
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