LINKAGES IN A DIRECTED GRAPH WITH PARITY
RESTRICTIONS

RUTGER CAMPBELL AND PETER NELSON

ABSTRACT. Given a digraph D and a graph G with common ver-
tex set V and a set T of terminals in V', we give a necessary and suf-
ficient condition for the existence of a k-edge matching of G whose
vertex set is linked to T" by vertex-disjoint dipaths of D. The result
we obtain is a common generalisation of the Tutte-Berge formula
and Menger’s Theorem.

1. INTRODUCTION

If D= (V,A)is adigraph and S and T are subsets of V', we say that
S is T-linked in D if there is a collection of |S| vertex-disjoint directed
paths from S to T in D. We write D7 for the digraph obtained from
D by removing all arcs with head in S or tail in 7T; note that S is
T-linked in D if and only if it is 7-linked in D%7. Given a partition P
of the vertex set of a graph or digraph, an edge or arc crosses P if its
ends lie in different blocks of P. We prove the following:

Theorem 1.1. Let G = (V, E) be a graph and D = (V, A) be a digraph.
If T CV and k > 0, then exactly one of the following holds:

(1) G has a k-edge matching M so that V(M) is T-linked in D.

(2) There are sets S',T" with S CV and T C T" C V and a
partition P of V' such that no edge of G — S' or arc of DT
crosses P and Y pep |3 ([P N S|+ |[PNT))| < k.

The T-linked subsets of V' are the independent sets of a representable
matroid known as a strict gammoid [2 p.659], so the above can be
stated as a matroid matching problem. Tong, Lawler and Vazirani
[3] observed that this problem can be reduced to a graph matching
problem in an auxiliary graph H. We derive Theorem 1.1 by applying
the Tutte-Berge formula (which is straightforward to recover by setting
T =V in the above) to H. In fact, we prove a slightly more general
result:
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Theorem 1.2. Let G = (V, E) be a graph and D = (V, A) be a digraph.
If S, T CV and k > 0 then exactly one of the following holds:
(1) There is a matching M of G and a set X C S\V (M) such that
M|+ |X| =k and V(M) U X is T-linked in D.
(2) There are sets S',T" with S CS" CV and T CT' CV and a
partition P of V' such that no edge of G — S' or arc of DT
crosses P and Y pep |3 ([P N S|+ |[PNT))| < k.

It is fairly easy to check (and will be proved later) that the sum-
mation in (2) for any admissible P is an upper bound for the size
of [M]|+ |X| as in (1). Setting S = & yields Theorem 1.1; we con-
sider other applications, including a derivation of Menger’s theorem
for vertex-disjoint paths in a digraph, in Section 4.

2. PRELIMINARIES

All graphs and digraphs are simple. For X C V(G) we write G — X
for the graph obtained by deleting the vertices in X. For a matching
M, we write V(M) for the set of vertices saturated by M. For a digraph
D = (V,A) and subsets S and T of V', an (S,T)-linkage in D is a set
Q of |S| vertex-disjoint (S, T')-dipaths in D. We phrase the following
well-known result [2 p. 413] in a convenient form.

Theorem 2.1 (Tutte-Berge Formula). If G = (V, E) is a graph, then

— m3 1
v(G) = min (\Z| + ZC: b\V(C)H) :
where the summation is taken over the components C of G — Z.

As usual, v(G) denotes the size of a maximum matching of G; we
now extend this notation to deal with linked matchings. If G = (V, E)
is a graph with a set S C V of ‘roots’ and D = (V, A) is a digraph
with a set 7" C V of ‘terminals’, then we write v(G, D; S, T') for the
maximum of | M|+ |X| such that M is a matching of G, X C S\V (M)
and X U V(M) is T-linked in D.

We now define the auxiliary graph to which Theorem 2.1 will be
applied. Let G = (V, E) be a graph, D = (V, A) be a digraph, and S, T
be subsets of V. Let V = {v : v € V} be a disjoint copy of V' and let
U={t:ueU}foreach UCV. Let F = {Gw: (u,v) € A} U {ui :
weVYUE. Let H(G,D;S,T) = (VUV,F)— (SUT); note that
V(H) = VUTV\((T\S)U(S\T)) and [V(H)| = 2[V| - |S| - |7

If P = (vg,v1,...,v;) is a dipath of D with end vertex in 7" and
no internal vertex in S U T, then pgy(P) will denote the set of edges
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{vov1, U1va, ..., U;_1v;}. Note that this is a matching of H saturating
exactly {vg,v1,01,...,vj-1,0;-1,v;}. If vg = v; then py(P) is empty.

3. THE PROOF

We first show that computing v(G, D; S, T) can be reduced to com-
puting v(H) for the auxiliary graph H.

Lemma 3.1. Let G = (V,E) be a graph, D = (V, A) be a digraph,
and S and T be subsets of V. If H = H(G,D;S,T) then v(H) =
Z/<G7D;S>T)_ ‘S| - ’T’—i_’V’

Proof. We first argue that v(H) > v(G,D;S,T) — |S| — |T| + |V|.
Let M be a matching of G and X C S — V(M) be a set so that
M|+ |X| =v(G,D;S,T) and X UV (M) is T-linked in D. Let Q be
an (X UV(M),T)-linkage in D; by choosing M, X and Q so that the
total length of the paths in Q is minimized, we may assume that O
links every vertex in SNT to itself by a trivial path (so SNT C X)), and
that no path in Q has an internal vertex in SUT. Let Y = X \(SNT)
and let Ty € T be the set of end vertices of dipaths in Q with start
vertex in Y, so |Ty| = |Y| 4+ 2|M|. Let My = Upecoun(P)U E(M) and
My = MyU{vv:v eV —(SUTUV(My))}. The set M, is a matching
of H with V(M) = V(H) — (U\T)\Y) U ((S\T) \Tp). Therefore

v(H) = [Mi] = 5(|V(H)| = [S\T| + [Y] = [T\S| + |To])-

Using |V(H)| = 2V| — |S| = T, |To| = [Y| + 2|M], and |X| = Y| +
T N S|, a computation gives |M;| = |V| — |S| — |T| + |M| + | X| =
V| —|S| —|T| + v(G, D; S, T). This gives the required inequality.

Let My denote the matching {vo:v €V — (SUT)} of H. Let My
be a matching of H of size v(H) for which |My N My| is as large as
possible. Let X = (S\T) NV (My), To = (T \S) N V(M) and let
Mg = MyNE(G). Consider the graph H' = (V(H), (Mpy—Mg)UMy).
The components of H' are either edges of My N My, or paths or even
cycles in which edges alternate between My — Mg and My, and in
which vertices alternate between V' and V. The set of isolated vertices
of H is (T'\Ty) U (S\X). Each vertex in X U T, UV (M) has degree
1in H and each vertex in V(H) \(§U T') has degree at least 1 in H.

If @ is a path component of H with an end edge ut € My \ My and
u ¢ V(Mg), then the corresponding end vertex of @) is unmatched in
My, so My AE(Q) is a matching of size at least v(H) containing more
edges of My than My does, a contradiction. Therefore u € V(M) for
every such component. Moreover, every u € V(M) is contained in a
path component of this sort. Combining the above information with
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the alternating conditions on edges and vertices, it follows that every

component of H is either

(a) an isolated vertex in ((S\7T)\X) U ((T'\:S) \Typ),

(b) an edge in My U My,

(c) an even cycle contained in V(H) \ (5 UTp), or

(d) a path with one end in X U V(Mg), another end in Tp, and no
internal vertex in S U T

Therefore V(My) = V(H) — (S\T)\X)U ((T'\S) \Tp). Moreover, the

set of My-edges in each path @ of type (d) corresponds to a dipath P

in D from the end of @ in XUV (M) to the end of @ in Tp, so the set of

paths of type (d) together imply that X UV (M¢) is T-linked in D and

[To| = 2|Mg|+|X|. Thus v(H) = 5(|V(H)|=|S\T|+|X|=|T\S|+|To]).

Using |V(H)| = 2|V| — |T| — |S] and |Ty| = 2|Mg| + |X|, we get

v(H) = V| =|T| = |S|+|SNT| + |Mg| + |X|. But MU X is T-

linked in D and so is (Mg U X) U (S NT) by adding trivial paths, so

v(G,D;S,T) > |Mg|+ |X| +[SNT| and the lemma follows. O

We now prove Theorem 1.2, rephrasing it as a ‘min-max’ theorem.

Theorem 3.2. Let G = (V, E) be a graph, D = (V, A) be a digraph
and S,T be subsets of V.. Then

. _ : 1 ! /
v(G,D;S8,T) = S;%;}PZ 3(PNS |+ |PNT))]
PeP
where the minimum is taken over all S C S' CV, T CT' CV and
partitions P of V' that are crossed by no edge of G — S or arc of D57

Proof. We first show that for any S’, 7", P chosen as above, the sum-
mation in the formula is an upper bound for v(G,D;S,T). Since
v(G,D;S,T) < v(G,D;S",T') whenever S C S, T C T, it suffices
to assume that S’ =S and 7" = T. Let P be a partition of V' crossed
by no edge of G — S or arc of DT, If v(G, D; S, T) = k, then there is a
matching M of G and a set X C S\V(M) with | X|+ |M| =k and an
(XUV (M), T)-linkage Q in D. It is clear that we can choose X, M and
Q so that SN V(M) = @ and so that no dipath in Q@ has an internal
vertex in S U T therefore each path in Q and edge in M is contained
in a block of P. Let Ty C T be the set of final vertices of paths in 9, so
|To| = | X|+2|M|. Each edge of M contributes two vertices of Tj to its
block and each vertex in X contributes one vertex of each of X and Tj
to its block, so for each P € P the quantity |PNX |+|PNTy| is even and
thus at most 2 |1 (|P N S|+ |P NT|)|. Summing over all P € P, we see
that 2k = 2(|X| +|M]) = |X| +[To] < 25 pep [ (PO S| +|PAT))],
as required.
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It now suffices to show that there exists a partition P where equal-
ity holds. Let H = H(G,D;S,T). By Theorem 2.1, there is a set
Z CV(H) such that v(H) = |Z]| + ), \_%|V(C)|j, where we sum over
components C' of H — 7. Let Z = U U W and let C denote the set
of components of H — Z. For each C € C let P(C) = P, U P,, where
V(C) = PLUP,. Let P = {P(C):C e€C}and P =P U{{v}:
v € 8" N T}, noting that P’ is a partition of V' \ (S’ UT") and P is a
partition of V. By construction of H, no edge of G — U or arc of DUV
crosses P.

Let S"=SUU, T =TUW. The vertices v € V for which {v,v} C
V(H — Z) are exactly those in V' \ (5" UT"), and each such pair v, is
joined by an edge of H — Z. For each C' € C with V(C) = Pl U Py, we
therefore have P, N (V\(S"UT")) =P N (V\(S'UT")), so

L%W(C)” = L% (|1P| + |P2|>J
=L (|ANT |+ |PRNS|+2Pn((V\(SUT)))]
= 2 (|PO)NT |+ |P(C)NS]| + PN (V\(S"UT)),

since P,NT'= PLNS" = @. Summing over all C € C gives

S LBIVE)] = VAU + Y [3(PE@N T +PE) NS
cec cec
=[V\(SUT)+ > 3PS+ |PnT])].

PeP!
Every block in P \ P is a singleton in S N T, so
> pep\pr 2 (IPNS|+|PNT'|)| =[S'NT"|. With the above this gives
>cee BIVO)] = Xpep [ (IPOST+IPAT])| + V] = |5 = |T].
The required equality now follows from definition of S’ and 77,
Lemma 3.1 and the fact that v(H) = [U| + [W|+ > o [5V(O)]].

O

4. APPLICATIONS

We saw earlier that setting U = @ and T' =V in Theorem 1.2 yields
the Tutte-Berge formula; another special case gives Menger’s theorem
for vertex-disjoint paths in a digraph:

Theorem 4.1. Let D = (V, A) be a digraph and S and T be subsets
of V.. FEither there are k vertex-disjoint dipaths from S to T in D or
there is a set X C'V so that |X| < k and there are no dipaths from S
tol in D —X:
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Proof. We set G = (V, @) and apply Theorem 1.2. If there are no
k vertex-disjoint (.S, 7T)-dipaths in D then there are sets S" O S,
T' O T and a partition P of V crossed by no edges of D57 so
that > pep |5 ([N P|+[T"NP|)| < k. Note that each minimal
(S’,T")-dipath in D is contained in a block of P. For each P € P
let Xp=PUS if |[PUS'| <|PUT'| and Xp = PUT’ otherwise. Let
X = UpepXp. Now |Xp| < |2(|S'NP|+|T"N PJ)| for each P € P
so |X| < k. But by construction, no block of P contains both a vertex
of 8"\ X and a vertex of 7"\ X, so there are no (S’,7")-dipaths in
D — X, giving the result. (l

Our next corollary is a ‘qualitative’ version of Theorem 1.2 with a
cleaner statement.

Theorem 4.2. Let G be a graph and D be a digraph with common
vertex set V, let T C V and let k be a positive integer. FEither G has
a k-edge matching whose vertex set is T-linked in D, or there is a set
X CV with | X| < 2k — 2 such that {u,v} is not T-linked in D — X
for any edge uv of G.

Proof. If G has no such matching, then by Theorem 1.1 there are sets
S'CV, T CT CV and a partition P of V crossed by no edge of
G — 8 or arc of DY so that Y pp |3 (|’ NP+ |[T"NP|)| < k-1
Let X be a set formed by choosing all but one element of |(S"UT")N P)|
from each P € P; note that | X| < 2(k — 1). It is clear that no vertex
in S’ is T-linked in D — X, and if uv € E(G — §’) then any minimal
({u,v}, T)-linkage in D — X is contained in a block of P so cannot exist
by choice of X. Therefore there is no edge of G whose set of ends is
T-linked in D — X, as required. 0

If S and T are sets of vertices in a digraph D, then we say that S
is doubly T-linked in D if there are disjoint (.S, 7')-linkages P; and P
in D such that the 2|S| dipaths in P; U P, have only initial vertices
in common. Our final corollary gives a qualitative obstruction to large
doubly T-linked sets.

Theorem 4.3. Let D = (V, A) be a digraph and S, T C V. FEither
there exists a doubly T-linked k-element subset of S or there is a set
Z CV such that |Z| < 2k — 2 and there is no x € S for which {x} is
doubly T-linked in D — Z.

Proof. Let S = {8 : s € S} be a copy of S disjoint from V' and let
Vt=VUS. Let G = (VT ,{s§:s€S}) and DT = (VF*, AU{(5,0) :
s € S,(s,v) € A}) (the copies of vertices in S therefore have no in-
neighbours in D). Note that a set Sy C S is doubly T-linked in D if
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and only if the vertex set of the corresponding matching {ss: s € Sy}
of Gt is T-linked in D*. If there is no doubly T-linked k-element
subset of S in D, then by Theorem 4.2 there is a set Z C VT such
that |Z] < 2k — 2 and for all s € S the set {s,$} is not T-linked in
D+ — Z. Tt is clear that Z can be chosen to contain no vertices of S ,
and therefore that Z satisfies the theorem. 0

In the special case of graphs (in other words, when (u,v) € A if and
only if (v,u) € A), the above is equivalent to Theorem 2.1 of [1].
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