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Abstract. Given a digraph D and a graph G with common ver-
tex set V and a set T of terminals in V , we give a necessary and suf-
ficient condition for the existence of a k-edge matching of G whose
vertex set is linked to T by vertex-disjoint dipaths of D. The result
we obtain is a common generalisation of the Tutte-Berge formula
and Menger’s Theorem.

1. Introduction

If D = (V,A) is a digraph and S and T are subsets of V , we say that
S is T -linked in D if there is a collection of |S| vertex-disjoint directed
paths from S to T in D. We write DS,T for the digraph obtained from
D by removing all arcs with head in S or tail in T ; note that S is
T -linked in D if and only if it is T -linked in DS,T . Given a partition P
of the vertex set of a graph or digraph, an edge or arc crosses P if its
ends lie in different blocks of P . We prove the following:

Theorem 1.1. Let G = (V,E) be a graph and D = (V,A) be a digraph.
If T ⊆ V and k ≥ 0, then exactly one of the following holds:

(1) G has a k-edge matching M so that V (M) is T -linked in D.
(2) There are sets S ′, T ′ with S ′ ⊆ V and T ⊆ T ′ ⊆ V and a

partition P of V such that no edge of G − S ′ or arc of DS′,T ′

crosses P and
∑

P∈P
⌊
1
2

(|P ∩ S ′|+ |P ∩ T ′|)
⌋
< k.

The T -linked subsets of V are the independent sets of a representable
matroid known as a strict gammoid [2 p.659], so the above can be
stated as a matroid matching problem. Tong, Lawler and Vazirani
[3] observed that this problem can be reduced to a graph matching
problem in an auxiliary graph H. We derive Theorem 1.1 by applying
the Tutte-Berge formula (which is straightforward to recover by setting
T = V in the above) to H. In fact, we prove a slightly more general
result:
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Theorem 1.2. Let G = (V,E) be a graph and D = (V,A) be a digraph.
If S, T ⊆ V and k ≥ 0 then exactly one of the following holds:

(1) There is a matching M of G and a set X ⊆ S \V (M) such that
|M |+ |X| = k and V (M) ∪X is T -linked in D.

(2) There are sets S ′, T ′ with S ⊆ S ′ ⊆ V and T ⊆ T ′ ⊆ V and a
partition P of V such that no edge of G − S ′ or arc of DS′,T ′

crosses P and
∑

P∈P
⌊
1
2

(|P ∩ S ′|+ |P ∩ T ′|)
⌋
< k.

It is fairly easy to check (and will be proved later) that the sum-
mation in (2) for any admissible P is an upper bound for the size
of |M | + |X| as in (1). Setting S = ∅ yields Theorem 1.1; we con-
sider other applications, including a derivation of Menger’s theorem
for vertex-disjoint paths in a digraph, in Section 4.

2. Preliminaries

All graphs and digraphs are simple. For X ⊆ V (G) we write G−X
for the graph obtained by deleting the vertices in X. For a matching
M , we write V (M) for the set of vertices saturated by M . For a digraph
D = (V,A) and subsets S and T of V , an (S,T)-linkage in D is a set
Q of |S| vertex-disjoint (S, T )-dipaths in D. We phrase the following
well-known result [2 p. 413] in a convenient form.

Theorem 2.1 (Tutte-Berge Formula). If G = (V,E) is a graph, then

ν(G) = min
Z⊆V

(
|Z|+

∑
C

⌊
1
2
|V (C)|

⌋)
,

where the summation is taken over the components C of G− Z.

As usual, ν(G) denotes the size of a maximum matching of G; we
now extend this notation to deal with linked matchings. If G = (V,E)
is a graph with a set S ⊆ V of ‘roots’ and D = (V,A) is a digraph
with a set T ⊆ V of ‘terminals’, then we write ν(G,D;S, T ) for the
maximum of |M |+ |X| such that M is a matching of G, X ⊆ S \V (M)
and X ∪ V (M) is T -linked in D.

We now define the auxiliary graph to which Theorem 2.1 will be
applied. Let G = (V,E) be a graph, D = (V,A) be a digraph, and S, T

be subsets of V . Let V̂ = {v̂ : v ∈ V } be a disjoint copy of V and let

Û = {û : u ∈ U} for each U ⊆ V . Let F = {ûv : (u, v) ∈ A} ∪ {uû :

u ∈ V } ∪ E. Let H(G,D;S, T ) = (V ∪ V̂ , F ) − (S ∪ T̂ ); note that

V (H) = V ∪ V̂ \
(

(T \S) ∪ (Ŝ \T̂ )
)

and |V (H)| = 2|V | − |S| − |T |.
If P = (v0, v1, . . . , vj) is a dipath of D with end vertex in T and

no internal vertex in S ∪ T , then µH(P ) will denote the set of edges
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{v̂0v1, v̂1v2, . . . , v̂j−1vj}. Note that this is a matching of H saturating
exactly {v̂0, v1, v̂1, . . . , vj−1, v̂j−1, vj}. If v0 = vj then µH(P ) is empty.

3. The Proof

We first show that computing ν(G,D;S, T ) can be reduced to com-
puting ν(H) for the auxiliary graph H.

Lemma 3.1. Let G = (V,E) be a graph, D = (V,A) be a digraph,
and S and T be subsets of V . If H = H(G,D;S, T ) then ν(H) =
ν(G,D;S, T )− |S| − |T |+ |V |.

Proof. We first argue that ν(H) ≥ ν(G,D;S, T ) − |S| − |T | + |V |.
Let M be a matching of G and X ⊆ S − V (M) be a set so that
|M | + |X| = ν(G,D;S, T ) and X ∪ V (M) is T -linked in D. Let Q be
an (X ∪ V (M), T )-linkage in D; by choosing M,X and Q so that the
total length of the paths in Q is minimized, we may assume that Q
links every vertex in S∩T to itself by a trivial path (so S∩T ⊆ X), and
that no path in Q has an internal vertex in S ∪T . Let Y = X \(S ∩T )
and let T0 ⊆ T be the set of end vertices of dipaths in Q with start
vertex in Y , so |T0| = |Y |+ 2|M |. Let M0 = ∪P∈QµH(P ) ∪ E(M) and
M1 = M0 ∪{vv̂ : v ∈ V − (S ∪T ∪V (M0))}. The set M1 is a matching

of H with V (M1) = V (H)− ((Û \T̂ ) \Ŷ ) ∪ ((S \T ) \T0). Therefore

ν(H) ≥ |M1| = 1
2
(|V (H)| − |S \T |+ |Y | − |T \S|+ |T0|).

Using |V (H)| = 2|V | − |S| − |T |, |T0| = |Y | + 2|M |, and |X| = |Y | +
|T ∩ S|, a computation gives |M1| = |V | − |S| − |T | + |M | + |X| =
|V | − |S| − |T |+ ν(G,D;S, T ). This gives the required inequality.

Let MV denote the matching {vv̂ : v ∈ V − (S ∪ T )} of H. Let MH

be a matching of H of size ν(H) for which |MH ∩MV | is as large as

possible. Let X̂ = (Ŝ \ T̂ ) ∩ V (MH), T0 = (T \S) ∩ V (MH) and let
MG = MH∩E(G). Consider the graph H ′ = (V (H), (MH−MG)∪MV ).
The components of H ′ are either edges of MH ∩MV , or paths or even
cycles in which edges alternate between MH − MG and MV , and in

which vertices alternate between V and V̂ . The set of isolated vertices
of H is (T \T0) ∪ (Ŝ \X̂). Each vertex in X̂ ∪ T0 ∪ V (MG) has degree

1 in H and each vertex in V (H) \(Ŝ ∪ T ) has degree at least 1 in H.
If Q is a path component of H with an end edge uû ∈MV \MH and

u /∈ V (MG), then the corresponding end vertex of Q is unmatched in
MH , so MH∆E(Q) is a matching of size at least ν(H) containing more
edges of MV than MH does, a contradiction. Therefore u ∈ V (MG) for
every such component. Moreover, every u ∈ V (MG) is contained in a
path component of this sort. Combining the above information with
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the alternating conditions on edges and vertices, it follows that every
component of H is either

(a) an isolated vertex in ((Ŝ \T̂ ) \X̂) ∪ ((T \S) \T0),
(b) an edge in MV ∪MH ,

(c) an even cycle contained in V (H) \(Ŝ ∪ T0), or

(d) a path with one end in X̂ ∪ V (MG), another end in T0, and no

internal vertex in Ŝ ∪ T .

Therefore V (MH) = V (H)− ((Ŝ \T̂ )\X̂)∪ ((T \S)\T0). Moreover, the
set of MH-edges in each path Q of type (d) corresponds to a dipath P
in D from the end of Q in X∪V (MG) to the end of Q in T0, so the set of
paths of type (d) together imply that X ∪V (MG) is T -linked in D and
|T0| = 2|MG|+|X|. Thus ν(H) = 1

2
(|V (H)|−|S\T |+|X|−|T \S|+|T0|).

Using |V (H)| = 2|V | − |T | − |S| and |T0| = 2|MG| + |X|, we get
ν(H) = |V | − |T | − |S| + |S ∩ T | + |MG| + |X|. But MG ∪ X is T -
linked in D and so is (MG ∪X) ∪ (S ∩ T ) by adding trivial paths, so
ν(G,D;S, T ) ≥ |MG|+ |X|+ |S ∩ T | and the lemma follows. �

We now prove Theorem 1.2, rephrasing it as a ‘min-max’ theorem.

Theorem 3.2. Let G = (V,E) be a graph, D = (V,A) be a digraph
and S, T be subsets of V . Then

ν(G,D;S, T ) = min
S′,T ′,P

∑
P∈P

⌊
1
2

(|P ∩ S ′|+ |P ∩ T ′|)
⌋

where the minimum is taken over all S ⊆ S ′ ⊆ V , T ⊆ T ′ ⊆ V and
partitions P of V that are crossed by no edge of G−S ′ or arc of DS′,T ′

.

Proof. We first show that for any S ′, T ′,P chosen as above, the sum-
mation in the formula is an upper bound for ν(G,D;S, T ). Since
ν(G,D;S, T ) ≤ ν(G,D;S ′, T ′) whenever S ⊆ S ′, T ⊆ T ′, it suffices
to assume that S ′ = S and T ′ = T . Let P be a partition of V crossed
by no edge of G−S or arc of DS,T . If ν(G,D;S, T ) = k, then there is a
matching M of G and a set X ⊆ S \V (M) with |X|+ |M | = k and an
(X∪V (M), T )-linkage Q in D. It is clear that we can choose X,M and
Q so that S ∩ V (M) = ∅ and so that no dipath in Q has an internal
vertex in S ∪ T ; therefore each path in Q and edge in M is contained
in a block of P . Let T0 ⊆ T be the set of final vertices of paths in Q, so
|T0| = |X|+ 2|M |. Each edge of M contributes two vertices of T0 to its
block and each vertex in X contributes one vertex of each of X and T0
to its block, so for each P ∈ P the quantity |P∩X|+|P∩T0| is even and
thus at most 2

⌊
1
2

(|P ∩ S|+ |P ∩ T |)
⌋
. Summing over all P ∈ P , we see

that 2k = 2(|X|+ |M |) = |X|+ |T0| ≤ 2
∑

P∈P
⌊
1
2

(|P ∩ S|+ |P ∩ T |)
⌋
,

as required.
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It now suffices to show that there exists a partition P where equal-
ity holds. Let H = H(G,D;S, T ). By Theorem 2.1, there is a set
Z ⊆ V (H) such that ν(H) = |Z|+

∑
C

⌊
1
2
|V (C)|

⌋
, where we sum over

components C of H − Z. Let Z = U ∪ Ŵ and let C denote the set
of components of H − Z. For each C ∈ C let P (C) = P1 ∪ P2, where

V (C) = P̂1 ∪ P2. Let P ′ = {P (C) : C ∈ C} and P = P ′ ∪ {{v} :
v ∈ S ′ ∩ T ′}, noting that P ′ is a partition of V \(S ′ ∪ T ′) and P is a
partition of V . By construction of H, no edge of G−U or arc of DU,W

crosses P .
Let S ′ = S ∪ U , T ′ = T ∪W . The vertices v ∈ V for which {v, v̂} ⊆

V (H − Z) are exactly those in V \(S ′ ∪ T ′), and each such pair v, v̂ is

joined by an edge of H − Z. For each C ∈ C with V (C) = P̂1 ∪ P2, we
therefore have P2 ∩ (V \(S ′ ∪ T ′)) = P1 ∩ (V \(S ′ ∪ T ′)), so⌊

1
2
|V (C)|

⌋
=
⌊
1
2

(|P1|+ |P2|)
⌋

=
⌊
1
2

(|P1 ∩ T ′|+ |P2 ∩ S ′|+ 2|P1 ∩ (V \(S ′ ∪ T ′))|)
⌋

=
⌊
1
2

(|P (C) ∩ T ′|+ |P (C) ∩ S ′|)
⌋

+ |P1 ∩ (V \(S ′ ∪ T ′))|,

since P2 ∩ T ′ = P1 ∩ S ′ = ∅. Summing over all C ∈ C gives∑
C∈C

⌊
1
2
|V (C)|

⌋
= |V \(S ′ ∪ T ′)|+

∑
C∈C

⌊
1
2

(|P (C) ∩ T ′|+ |P (C) ∩ S ′|)
⌋

= |V \(S ′ ∪ T ′)|+
∑
P∈P ′

⌊
1
2

(|P ∩ S ′|+ |P ∩ T ′|)
⌋
.

Every block in P \ P ′ is a singleton in S ′ ∩ T ′, so∑
P∈P\P ′

⌊
1
2

(|P ∩ S ′|+ |P ∩ T ′|)
⌋

= |S ′∩T ′|. With the above this gives∑
C∈C

⌊
1
2
|V (C)|

⌋
=
∑

P∈P
⌊
1
2

(|P ∩ S ′|+ |P ∩ T ′|)
⌋

+ |V | − |S ′| − |T ′|.
The required equality now follows from definition of S ′ and T ′,
Lemma 3.1 and the fact that ν(H) = |U |+ |W |+

∑
C∈C

⌊
1
2
|V (C)|

⌋
.
�

4. Applications

We saw earlier that setting U = ∅ and T = V in Theorem 1.2 yields
the Tutte-Berge formula; another special case gives Menger’s theorem
for vertex-disjoint paths in a digraph:

Theorem 4.1. Let D = (V,A) be a digraph and S and T be subsets
of V . Either there are k vertex-disjoint dipaths from S to T in D or
there is a set X ⊆ V so that |X| < k and there are no dipaths from S
to T in D −X:
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Proof. We set G = (V,∅) and apply Theorem 1.2. If there are no
k vertex-disjoint (S, T )-dipaths in D then there are sets S ′ ⊇ S,
T ′ ⊇ T and a partition P of V crossed by no edges of DS′,T ′

so
that

∑
P∈P

⌊
1
2

(|S ′ ∩ P |+ |T ′ ∩ P |)
⌋
< k. Note that each minimal

(S ′, T ′)-dipath in D is contained in a block of P . For each P ∈ P
let XP = P ∪ S ′ if |P ∪ S ′| ≤ |P ∪ T ′| and XP = P ∪ T ′ otherwise. Let
X = ∪P∈PXP . Now |XP | ≤

⌊
1
2

(|S ′ ∩ P |+ |T ′ ∩ P |)
⌋

for each P ∈ P
so |X| < k. But by construction, no block of P contains both a vertex
of S ′ \X and a vertex of T ′ \X, so there are no (S ′, T ′)-dipaths in
D −X, giving the result. �

Our next corollary is a ‘qualitative’ version of Theorem 1.2 with a
cleaner statement.

Theorem 4.2. Let G be a graph and D be a digraph with common
vertex set V , let T ⊆ V and let k be a positive integer. Either G has
a k-edge matching whose vertex set is T -linked in D, or there is a set
X ⊆ V with |X| ≤ 2k − 2 such that {u, v} is not T -linked in D − X
for any edge uv of G.

Proof. If G has no such matching, then by Theorem 1.1 there are sets
S ′ ⊆ V , T ⊆ T ′ ⊆ V and a partition P of V crossed by no edge of
G−S ′ or arc of DS′,T ′

so that
∑

P∈P
⌊
1
2

(|S ′ ∩ P |+ |T ′ ∩ P |)
⌋
≤ k− 1.

Let X be a set formed by choosing all but one element of |(S ′∪T ′)∩P |
from each P ∈ P ; note that |X| ≤ 2(k − 1). It is clear that no vertex
in S ′ is T -linked in D − X, and if uv ∈ E(G − S ′) then any minimal
({u, v}, T )-linkage in D−X is contained in a block of P so cannot exist
by choice of X. Therefore there is no edge of G whose set of ends is
T -linked in D −X, as required. �

If S and T are sets of vertices in a digraph D, then we say that S
is doubly T -linked in D if there are disjoint (S, T )-linkages P1 and P2

in D such that the 2|S| dipaths in P1 ∪ P2 have only initial vertices
in common. Our final corollary gives a qualitative obstruction to large
doubly T -linked sets.

Theorem 4.3. Let D = (V,A) be a digraph and S, T ⊆ V . Either
there exists a doubly T -linked k-element subset of S or there is a set
Z ⊆ V such that |Z| ≤ 2k − 2 and there is no x ∈ S for which {x} is
doubly T -linked in D − Z.

Proof. Let Ŝ = {ŝ : s ∈ S} be a copy of S disjoint from V and let

V + = V ∪ Ŝ. Let G+ = (V +, {sŝ : s ∈ S}) and D+ = (V +, A∪{(ŝ, v) :
s ∈ S, (s, v) ∈ A}) (the copies of vertices in S therefore have no in-
neighbours in D+). Note that a set S0 ⊆ S is doubly T -linked in D if
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and only if the vertex set of the corresponding matching {sŝ : s ∈ S0}
of G+ is T -linked in D+. If there is no doubly T -linked k-element
subset of S in D, then by Theorem 4.2 there is a set Z ⊆ V + such
that |Z| ≤ 2k − 2 and for all s ∈ S the set {s, ŝ} is not T -linked in

D+ − Z. It is clear that Z can be chosen to contain no vertices of Ŝ,
and therefore that Z satisfies the theorem. �

In the special case of graphs (in other words, when (u, v) ∈ A if and
only if (v, u) ∈ A), the above is equivalent to Theorem 2.1 of [1].
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