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Cell-Constrained Particles for Incompressible Fluids
ZOHAR LEVI

FLIP
Volume: 48–100%

IDP
Volume: 79–100%

Ours
Volume: 100–102%

Fig. 1. A large box is dropped into water. For FLIP [Zhu and Bridson 2005] and IDP [Kugelstadt et al. 2019], particles on the bottom of the tank do not manage
to clear path in time, and they are trapped inside the solid box, leading to significant volume loss. The volume range over all time steps is indicated below each
image.

Incompressibility is a fundamental condition in most fluid models. Accu-
mulation of simulation errors violates it and causes volume loss. Past work
suggested correction methods to battle it. These methods, however, are
imperfect and in some cases inadequate. We present a method for fluid
simulation that strictly enforces incompressibility based on a grid-related
definition of discrete incompressibility.

We formulate a linear programming (LP) problem that bounds the number
of particles that end up in each grid cell. A variant of the band method is
offered for acceleration, which requires special constraints to ensure volume
preservation. Further acceleration is achieved by simplifying the problem
and adding a special band correction step that is formulated as a minimum-
cost flow problem (MCFP). We also address coupling with solids in our
framework and demonstrate advantages over prior work.

1 INTRODUCTION
Fluids behave in a rich and complex way. Simulating them faith-
fully has been an active research in computer graphics to improve
the realism of an animation of a large variety of materials. Incom-
pressibility is a fundamental condition in a fluid model, and it is
expressed via a divergence-free constraint, which leads to volume
conservation. The constraint restricts instantaneous movements of
particles, and it has no long term view of a fluid during a simulation.
No matter how accurate a simulation is, inaccuracies and numerical
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errors accumulate overtime and become pronounced, and nothing
accounts for changes in the fluid’s volume.
To address that, correction methods have been offered. They

range from improving particle spacing [Ando, Thurey, et al. 2012]
to a stricter density correction via an additional solution of a Poisson
equation [Kugelstadt et al. 2019], or treating particles as volume
parcels with prescribed volume [Qu et al. 2022]. While some of
the methods are quite effective, they are still not perfect, and in
certain cases they are inadequate. We take a discrete approach to the
problem, which restricts particles to grid cells, and show advantages
over the state of the art.
We start by defining discrete incompressibility based on grid

resolution (section 4). We offer a correction step to the PIC/FLIP
framework [Bridson 2015] that preserves this discrete incompress-
ibility in each time step. We limit movements of particles to specific
locations in a local neighborhood of grid cells (section 5). Incom-
pressibility is expressed through discrete constraints that bound the
number of particles that end up in each cell. These are added as hard
constraints to an integer linear programming (ILP) problem, which
we show can be relaxed to a linear programming (LP) problem to
improve running time. Nevertheless, the problem does not scale
well, and running time can be an issue even for moderate size 3D
grids. We offer a variant of the band method [Ferstl et al. 2016],
tailored to our approach to preserve incompressibility (section 6).
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This requires monitoring the amount of particles that go into and
out of the band. For that, we formulate an additional special band
constraint to restrict particle movements near the band interface.
Two faster variants are offered. Both first solve the LP as is (without
the additional band constraint), which results in an easier problem
that is faster to solve. This is followed by a second specialized step
to correct the band interface and deeper. One variant solve the LP
again with a shorter one-way band constraint (section 6.2). The
other variant formulates a minimum-cost flow problem (MCFP)
and uses a fast algorithm based on Dijkstra’s algorithm to solve
it (section 6.3). Overall, while solving the LP does not scale well,
our fast variant of the band method has reasonable performance on
moderate size grids.

Coupling with solids is a fundamental problem, and we address it
within our framework that maintains incompressibility (section 7).
In our evaluation, we devised scenarios (section 8.1) that illustrate
the advantage of ourmethod over the state of the art. One aspect that
we show is that gradual correction over time, which previous works
have in common, may not be adequate in certain scenarios: There
may not be an opportunity to correct the fluid after an obstacle
moved, and guaranteeing incompressibility in each time step is
therefore necessary.

2 RELATED WORK
Fluid simulation was introduced to computer graphics by Foster and
Metaxas [1996]. It was popularized by Stam [1999], who took the
Eulerian view, using a grid to discretize the fluid. A semi-Lagrangian
approach that simulates a particle movement was used in the advec-
tion step to ensure unconditional stability of the simulation. Kim
et al. [2007] simulate bubbles using the level set method. They track
the volume change of each connected region and compensate for
errors using divergence.
Smoothed-particle hydrodynamics (SPH) [Koschier et al. 2022]

takes the Lagrangian view, representing fluids with particles. The
approach was used in simple and intuitive methods such as [Macklin
and Müller 2013; Müller et al. 2003], reminiscent of the boids algo-
rithm [Reynolds 1987], where from local rules for a particle, based on
its neighborhood, emerges a global behavior. Bender and Koschier
[2017] combine two pressure solvers, one enforcing a divergence-
free velocity field, the other satisfies a constant density condition.
Band et al. [2018] improve the implicit incompressible SPH (IISPH)
[Ihmsen et al. 2014] by realizing a consistent pressure gradient at
boundary samples, using a different discretization of the pressure
equation.
Hybrid schemes based on the particle-in-cell (PIC) and fluid-

implicit-particle (FLIP) methods [Zhu and Bridson 2005] use a dual
view combining grid and particles for fluid representation. The
approach is similar to the material point method (MPM) [Jiang,
Schroeder, Teran, et al. 2016], which was used to simulate a larger
variety of materials including elasto-plastic constitutive models. Be-
tween the algorithms steps, data is transferred between the two
representations, which causes a loss of information. A few methods
aim at mitigating the loss. APIC [Jiang, Schroeder, Selle, et al. 2015]
endows each particle with additional information in the form of a
matrix, which allows it to preserve angular momentum. PolyPIC

[Fu et al. 2017] improves the energy and vorticity conservation of
APIC by considering more velocity modes.

Ando, Thurey, et al. [2012] detect and preserve thin fluid sheets,
which are reconstructed using anisotropic kernels. Um et al. [2014]
use sub-grid particle correction for better particle distribution. The
band method [Ferstl et al. 2016] keep particles only within a narrow
band of the liquid surface to improve performance. Sato et al. [2018]
extend the band method and add particle correction based on [Ando,
Thurey, et al. 2012] to better distribute particles near the surface.
Takahashi and Lin [2019] simulate viscous materials based on APIC
with strong two-way coupling with solids. They apply position
correction based on density constraints, using a purely Lagrangian
approach (SPH).
From the mass conservation law, Kugelstadt et al. [2019] derive

a pressure Poisson equation which takes density deviation into
account. They add a density correction step that recovers fluid
volume, which involves solving an additional Poisson equation.
Density correction was previously performed when using the so-
called unilateral incompressibility constraint, which was used for
free-flowing granular materials [Narain et al. 2010] and animating
splashing liquids [Gerszewski and Bargteil 2013].

Power particles [De Goes et al. 2015] considers particles as having
volume, and the fluid domain is partitioned as a power diagram. The
particle volumes can be prescribed, which enables controlling the
fluid’s volume and leads to better particle distribution. Power PIC
[Qu et al. 2022] improves the performance of [De Goes et al. 2015]
by reformulating the problem as a transportation problem, which is
solved efficiently using Sinkhorn’s iterative algorithm. In a 2-phase
simulation, an estimate of the surface is used as an air occupancy
baseline for slack air variables. The variables fill the gaps between
the prescribed volume of the fluid particles and the volume of the
cells.

Elcott et al. [2007] rewrite the Euler equations in terms of vortic-
ity instead of pressure. They use discrete exterior calculus (DEC) for
discretization, which is readily applied to meshes. DEC theory guar-
antees that certain properties hold, which arbitrary discretizations
[Ando, Thürey, et al. 2013] cannot. Ando, Thuerey, et al. [2015] ap-
ply the same approach to a regular grid, which reduces DEC to finite
difference operators. It coincides with the MAC grid discretization
[Bridson 2015], which is justified by DEC theory that associates k-
forms with specific elements of the grid. The equations are derived
from an energy, using a variational approach [Batty et al. 2007].
De Witt et al. [2012] represent vorticity and velocity using a basis
of Laplacian eigenfunctions, which admits closed-form solutions on
simple domains. Since Laplacian eigenfunctions correspond with
spatial scales of vorticity, basis coefficients can be seen as a discrete
spectrum of vorticity.

3 BACKGROUND
We model a fluid in a domain Ω ⊂ R𝑑 , 𝑑 ∈ {2, 3}, using the Navier–
Stokes equations, which can be written for inviscid, incompressible
flows as:

𝜌
D𝑢
D 𝑡

= −∇𝑝 + 𝑓 (1a)

∇ · 𝑢 = 0 , (1b)
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Algorithm 1: A time step of the FLIP method
1 Transfer velocity from particles to grid // particles are at 𝑥

2 Apply external forces to grid
3 Solve for pressure
4 Transfer velocity from grid to particles
5 Advect particles // new positions are at 𝑥

6 Correct particle positions // new positions are at 𝑥

where 𝑢, 𝑓 ∈ R𝑑 and 𝑝, 𝜌 ∈ R denote velocity, external forces, pres-
sure, and density. D

D 𝑡
denotes the material derivative. Equation (1b)

enforces the velocity to be divergence-free, which ensures incom-
pressibility.

The FLIP method is a hybrid discretization method that combines
the Eulerian and Lagrangian views. The domain is discretized using
a regular (square or cubic) grid, and the fluid is discretized using
particles. The FLIP algorithm alternates between the views, solv-
ing pressure over the grid, which is more accurate, and advecting
quantities using particles, which is more robust. Discretization inac-
curacies accumulate over time and violate incompressibility, and a
correction step is needed to maintain it. The algorithm is listed in
alg. 1 for a single time step. The optional correction step is missing
in the original FLIP method, and it is implemented differently by
IDP and our method.

4 DISCRETE INCOMPRESSIBILITY
We propose a definition for discrete incompressibility based on grid
resolution. We define discrete density as the number of particles in
a grid cell, and we denote its units by ppc, which stands for particles
per cell. We initially propose the following simple condition for
discrete incompressibility, which we will relax in section 4.1: keep
a constant number 𝜇 ∈ Z of particles in a fluid cell throughout the
simulation. 𝜇 is given, and it is usually based on the initial fluid
state.
Preserving the condition is done in the correction step that is

described in the following, starting with notations. Let C be the set
of grid cells that cover Ω. We associate markings with grid cells,
which describe their characteristics. Each marking has its subset of
cells that are marked with it. Initially, we use the disjoint subsets
Cempty, Csolid, and Cfluid to mark cells that are empty, part of a solid,
or contain fluid. For each cell 𝑐 , we define a set 𝛾𝑐 of the indices of
the particles that are in the cell.
Given a set of 𝑛 particles and their positions 𝑥 ∈ Ω𝑛 after ad-

vection, we would like to solve for new particle positions 𝑥 ∈ Ω𝑛

that are close to 𝑥 but preserve incompressibility. We will refer to
𝑥 as ideal positions. We define a cost function for closeness that
penalizes the distance between two points 𝑞, 𝑟 ∈ Ω:

𝜎obj
(
𝑞, 𝑟

)
≔ ∥𝑞 − 𝑟 ∥22 .

This leads to the following problem:

min
𝑥

𝑛∑︁
𝑗=1

𝜎obj
(
𝑥 𝑗 , 𝑥 𝑗

)
(2a)

s.t. |𝛾𝑐 | = 𝜇 , ∀𝑐 ∈ Cfluid (2b)

(a) (b)

(c) (d)

Fig. 2. The surface (green cells) of a breaking wave (a) closes upon itself,
creating an air pocket (b). The air pocket shrinks (c) until surface cells do not
have empty neighbors anymore and become inner cells (d). These former
surface cells may have less than 𝜇 particles, and in such a case we say that
they contain air bubbles (an example is circled in red).

|𝛾𝑐 | ≤ 0 , ∀𝑐 ∈ Csolid , (2c)

where 𝑥 𝑗 , 𝑥 𝑗 ∈ Ω are the new and ideal positions of the 𝑗 th particle,
and |𝛾𝑐 | denotes the number of particles in cell 𝑐 . Cell markings
Cempty, Cfluid and the sets 𝛾 are determined by 𝑥 . That is, Csolid is
determined by objects in the scene, and eq. (2c) ensures that it does
not contain particles. Cempty, on the other hand, is determined by
particle positions, and it does not require a constraint.

4.1 Surface and Bubbles
The discrete incompressibility condition in the previous section is
too restrictive, and we relax it in a reasonable way.

We will use two types of neighborhoods for a grid cell. The first
is a von Neumann neighborhood, which refers to 4-connectivity in
2D and 8-connectivity in 3D (axis-aligned directions). The second is
a Moore neighborhood, which refers to 8-connectivity in 2D and
26-connectivity in 3D (two grid cells are neighbors if the Chebyshev
distance between their centers is 1).

Definition 4.1 (surface). Given cell markings, we define a fluid cell
as surface if it neighbors in a Moore neighborhood a cell that is not
a fluid cell and is not on the domain boundary. We partition Cfluid
into surface cells Csurface and inner cells Cinner.

In the definition, we used only the domain boundary, distinguish-
ing between solid cells that are static (tank walls) and solid cells
that may move (section 7).
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We start with motivation. Consider a common setup where the
fluid initially occupies a rectangular shape of 2D grid cells with
density 𝜇 ppc. The incompressibility conditions from the previous
sections means that the fluid will flow and change in full cells only,
i.e., a cell from the surface with four particles will become empty,
and an empty cell near the surface will gain four particles. This
rigidity will cause particles to lose their resolution and behave as
a unit or a single particle within a cell. To allow shape flexibility
and individual particle movement between cells, we permit surface
cells to have ≤ 𝜇 particles. In the next section, we will extend the
relaxation on surface cells to another layer of cells incident to the
surface to make the problem easier.

Definition 4.2 (bubble). An inner cell 𝑐 ∈ Cinner is said to contain
an air bubble if it is not empty and the number of its particles is less
than 𝜇.

In certain cases, such as a breaking wave, the surface curls and
folds upon itself. This leads to a moment in time, where a surface cell
suddenly becomes an inner cell since it no longer has any incident
empty cells. This former surface cell may be only partially filled
(has less than 𝜇 particles), which would violate the incompressibility
condition.
To address this, we allow inner fluid cells to keep air bubbles.

Specifically, instead of demanding from inner cells to have at least
𝜇 ppc, we demand that they will not lose particles (since becoming
an inner cell) and will have at least as many particles as they had in
the previous iteration. See fig. 2 for an illustration.
We apply the relaxed conditions to eq. (2):

min
𝑥

𝑛∑︁
𝑗=1

𝜎obj
(
𝑥 𝑗 , 𝑥 𝑗

)
(3a)

s.t. |𝛾𝑐 | ≤ 𝜇 , ∀𝑐 ∈ Csurface (3b)
|𝛾𝑐 | ≤ |𝛾𝑐 | ≤ 𝜇 , ∀𝑐 ∈ Cinner (3c)

|𝛾𝑐 | ≤ 0 , ∀𝑐 ∈ Csolid , (3d)

where 𝛾 refers to 𝛾 from the previous iteration. Note that while the
relaxed constraints allow reasonable expansion, they do not allow
compression: there can be at most 𝜇 ppc in a cell.

5 GRID MOVEMENT
The problem in eq. (3) is hard. To make it more manageable, we
reformulate it in terms of grid movement.
We start by limiting the size of the simulation time step such

that every particle does not move more than one cell (i.e., to the
local Moore neighborhood). 𝑥 will refer to particle positions after
advection with the updated time step.
We reduce the possible grid movements of a particle to a set of

grid directions in a von Neumann neighborhood. Namely, define
the set D that consists of the columns of the 𝑑 × 𝑑 identity matrix
and their negation, along with the zero vector that signifies staying
in the same cell. For example, in 2D:

D ≔ {D𝑖 }5𝑖=1 =

(
1
0

)
,

(
0
1

)
,

(
−1
0

)
,

(
0
−1

)
,

(
0
0

) . (4)

x̄j

x̂j

ξ3j

ξ4j

ξ5j

ξ2j
ξ1j

D3

Fig. 3. Possible positions 𝜉𝑖 𝑗 (in green) of the 𝑗th particle. A gray arrow
points from the center of the cell that the particle is confined to to the
closest location in that cell (up to a margin 𝜖) to 𝑥 𝑗 (in blue). If 𝑥 𝑗 was in one
of the five possible cells, then the corresponding 𝜉𝑖 𝑗 to that cell would have
coincided with it. All the possible positions 𝜉𝑖 𝑗 are known, and a solution
to eq. (6) selects one as the position 𝑥 𝑗 of the particle at the end of the
iteration. There are five cells corresponding to D. One example of a discrete
direction is give by the magenta arrow, which points from the center of the
cell that contains 𝑥 𝑗 (in red) to the center of the neighboring cell in the
discrete direction D3.

Let 𝑚 ≔ |D| (m=5 in 2D, and m=7 in 3D). Experimentally, we
found that using a Moore neighborhood (9 directions in 2D and 27
directions in 3D) did not make a significant difference.
Instead of solving for particle positions, we solve for particle

grid movements. For each particle, we choose one direction from
D. Let 𝑏 ∈ Z𝑚×𝑛2 be a binary matrix that chooses a direction for
each particle. The 𝑗th column is assigned to the 𝑗th particle, and
it contains a single nonzero in the entry that corresponds to the
particle’s chosen direction.

Let 𝜙center (𝑐) ∈ Ω return the center of a cell 𝑐 . Let 𝜙close
(
𝑞, 𝑐

)
∈

Ω return the point in a cell 𝑐 that is closest to a point 𝑞 ∈ Ω. That is,
the 𝑘th component of 𝜙close

(
𝑞, 𝑐

)
is

(
𝜙close

(
𝑞, 𝑐

) )
𝑘
≔


𝑞𝑘 if |𝑣𝑘 | < 0.5
⌈
(
𝜙center (𝑐)

)
𝑘 ⌉ − 𝜖 if 𝑣𝑘 ≥ 0.5

⌊
(
𝜙center (𝑐)

)
𝑘 ⌋ + 𝜖 if 𝑣𝑘 ≤ −0.5

, (5)

where 𝑣 ≔ 𝑞 − 𝜙center (𝑐), and 𝜖 (=0.01) is a small margin.
Let 𝑥 ∈ Ω𝑛 be the particle positions at the end of the previous

iteration. The matrix entry 𝑏𝑖 𝑗 corresponds to a possible grid move-
ment D𝑖 ∈ R𝑑 for the 𝑗th particle. We associate a specific particle
position with this entry, which is the optimal position in the cell
that the particle will end up in w.r.t. its ideal position and 𝜎𝑜𝑏 𝑗 :

𝜉𝑖 𝑗 ≔ 𝜙close

(
𝑥 𝑗 , 𝑐𝑒𝑙𝑙

(
𝑥 𝑗 + D𝑖

))
,

where 𝑥 𝑗 denotes the position of the 𝑗th particle in the previous
iteration, and cell (·) returns the grid cell that contains a given point
in the domain. Note that all positions 𝜉 ∈ Ω𝑚×𝑛 are known. See
fig. 3 for illustration.
For each cell 𝑐 , we define a set 𝛾𝑐 of index pairs for the particles

that may end up in it. Each index pair is associated with a particle
movement possibility, and it consists of an index of a direction and
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an index of a particle:

𝛾𝑐 ≔

{(
𝑖, 𝑗

)
| cell

(
𝜉𝑖 𝑗

)
= 𝑐

}
The problem becomes:

min
𝑏

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑏𝑖 𝑗𝜎obj
(
𝜉𝑖 𝑗 , 𝑥 𝑗

)
(6a)

s.t. 0 ≤ 𝑏𝑖 𝑗 ≤ 1 , ∀𝑏𝑖 𝑗 ∈ 𝑏 (6b)
𝑚∑︁
𝑖=1

𝑏𝑖 𝑗 = 1 , 𝑗 = 1 . . . 𝑛 (6c)∑︁
(𝑖, 𝑗)∈𝛾𝑐

𝑏𝑖 𝑗 ≤ 𝜇 , ∀𝑐 ∈ C̄empty ∪ C̄surface (6d)

|𝛾𝑐 | ≤
∑︁
(𝑖, 𝑗)∈𝛾𝑐

𝑏𝑖 𝑗 ≤ 𝜇 , ∀𝑐 ∈ C̄inner (6e)∑︁
(𝑖, 𝑗)∈𝛾𝑐

𝑏𝑖 𝑗 ≤ 0 , ∀𝑐 ∈ C̄solid . (6f)

Details:
• The objective in eq. (6a) is similar to eq. (3a). All 𝜎obj

(
𝜉𝑖 𝑗 , 𝑥 𝑗

)
are known, and 𝑏 ensures that only selected particle movements
contribute to the sum.

• Equation (6b) asserts the range of binary variables.
• Equation (6c) forces a single selected direction for each particle.
• Equation (6d) and eq. (6e) are similar to the incompressibility

constraints eqs. (3b) to (3c). The sum
∑
(𝑖, 𝑗)∈𝛾𝑐 𝑏𝑖 𝑗 counts the

particles that end up in cell 𝑐 . C̄ refers to the markings in the
previous iteration.

• Equation (6f) is similar to eq. (3d)
In eq. (6d), we use the surface marking from the previous iteration
to relieve the need to track the surface during optimization (or
formulate a constraint that handles the two cases of a surface cell
remains a surface or becomes an inner cell). This extends the relaxed
condition on the surface from section 4.1 to another layer of cells
incident to the surface (the condition now applies to surface cells in
the previous iteration, which may belong to the layer of inner cells
incident to the surface in this iteration), which is still within reason.
The problem is always feasible since 𝑥 is in the solution space.

Given a solution 𝑏∗, the final particle position 𝑥 𝑗 is set to the 𝜉𝑖 𝑗 that
corresponds to its selected movement direction indicated by the 𝑖th
entry with the single nonzero in the 𝑗th column of the solution 𝑏∗.
The problem in eq. (6) is a linear programming problem with

binary variables 𝑏 only (the rest of the symbols are fixed, including
cell markings, index sets, and particle positions, which do not depend
on𝑏), which is a type of integer linear programming (ILP). Satisfying
a 0-1 ILP is one of Karp’s 21 NP-complete problems. The following
proposition allows us to relax the problem to a standard linear
programming (LP) with continuous variables 𝑏 ∈ R𝑚×𝑛 , for which
there are polynomial-time solvers, and it is faster to solve in general.

Proposition 5.1. The LP relaxation of the ILP in eq. (6), which
uses continuous variables, has the same optimal solution.

See proof in appendix A.

Fig. 4. A band. Deep cells (C<−𝑅 ) in dark blue, band interface (C−𝑅 ) in
yellow, surface (C0) in green, and the rest of the band (C−𝑅<𝛽<0) in light
blue.

6 THE BAND METHOD
Solving the LP in eq. (6) does not scale well, and for large 3D grids,
we propose an incompressible variant of the band method [Ferstl et
al. 2016]. The method uses only a fraction of the number of particles,
which directly affects the size of the LP.

The motivation for the band method is based on the observation
that most of the interesting, complex behavior of a fluid happens
close to the surface. FLIP uses particles to reduce numerical dis-
sipation and keep the simulation lively. Based on the observation
above, particles at deeper levels of the fluid do not contribute much
to visual appearance. Leveraging that, the method maintains only a
narrow band of particles near the fluid surface and uses an Eulerian-
grid approach to simulate the rest of the fluid. The grid velocity at
each iteration is determined by a combination of the two.

To maintain fluid density for incompressibility, we need to super-
vise the number of particles that enter and leave the band. Further-
more, while the method in [Ferstl et al. 2016] uses an approximate
distance from the surface to define the band, our discrete approach
that uses hard constraints requires a more careful estimate.

Definition 6.1 (depth). Each fluid cell is assigned a depth 𝛽 ∈ Z
that represents its discrete (signed) distance from the surface, and it
is derived from the state of the fluid (particle positions) at a time
step. The depth is assigned recursively in a breadth-first-search
manner. Surface cells are assigned depth 𝛽 = 0. Their neighboring
fluid cells in a von Neumann neighborhood are assigned 𝛽 = −1.
The unassigned fluid neighbors of the 𝛽 = −1 cells are assigned one
level lower, 𝛽 = −2, and so on until all fluid cells are assigned a
depth. All non-fluid cell are assigned an arbitrary positive number
(e.g., 1) as depth.

Let 𝑅 + 1 ∈ N be the thickness of the particle band. We define
the cells at depth −𝑅 ≤ 𝛽 ≤ 0 to be within the band. We call cells
at depth 𝛽 = −𝑅 band interface and cells at depth 𝛽 < −𝑅 deep. We
add marking subsets to distinguish between parts and depth levels
of the fluid. Denote by C𝛽=𝑘 or simply C𝑘 (when clear from the
context) the set of cells at depth 𝛽 = 𝑘 . We extend the notation to
a range of depth levels, e.g., C<−𝑅 will denote deep cells. See fig. 4
for illustration.
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Algorithm 2: A time step of the band method
1 Transfer velocity from particles to grid and combine with

current grid velocity // 𝑥

2 Apply external forces to grid
3 Solve for pressure
4 Transfer velocity from grid to particles
5 Advect grid velocity
6 Advect particles // 𝑥

7 Correct particle positions // 𝑥

8 Update cell markings
9 Remove particles that reached the deep and add excess

particles to the band interface

Alg. 2 outlines the steps of the band method. Changes from alg. 1
are emphasized. When transferring velocity from particles to the
grid, the particles’ velocity is copied only for cells within the band,
not including the band interface. The velocity in the rest of the grid
cells remain unchanged. When correcting the particles position, we
modify our algorithm to handle the band (next sections). Advecting
grid velocity, which is needed for the part of the fluid without parti-
cles (not in the band), is done using the common semi-Lagrangian
approach [Stam 1999]. Cell markings C are updated, and the step is
emphasized in alg. 2 to clarify that it is performed at the end of the
correction step and before removing and adding particles.

Particles are limited to the band, and particles which go deep are
deleted. To maintain incompressibility, the excess of particles in the
deep is moved into the band interface, as described next. We keep
track in a variable 𝑛deep of the number of (imaginary) particles that
are in the deep, updating the variable every deletion and insertion
of a particle. The excess of particles in the deep is

𝑛excess ≔ 𝑛deep − 𝜇 |C<−𝑅 | .

When 𝑛excess > 0, we add 𝑛excess particles to the band interface. We
randomly iterate the cells in the band interface and fill them up to
𝜇 with remaining excess particles. Each added particle is positioned
randomly within a cell, and its velocity is interpolated from the grid
velocity. Note that there is always space in the band interface for
excess particles from the deep since we constrain the number of
movements into and out of the band interface (next sections).

In the next sections, we offer three variants to control the move-
ments into and out of the band interface, where each is faster than
the former. Foundation and concepts are laid out through the sec-
tions, culminating in the fastest variant.

6.1 A Band Constraint
We maintain incompressibility by controlling the comings and go-
ings of particles through the band interface. We want the number
of particles that move from a shallower depth level (𝛽 = 1 − 𝑅) to
the band interface (𝛽 = −𝑅) to be equal to the number of particles
that move in the other direction.

We define two sets of index pairs of particle movement possibili-
ties, into and out of the band interface (from and into a shallower

level):

𝛾in ≔

{(
𝑖, 𝑗

)
| cell

(
𝑥 𝑗

)
∈ C̄1−𝑅 , cell

(
𝜉𝑖 𝑗

)
∈ C̄−𝑅

}
𝛾out ≔

{(
𝑖, 𝑗

)
| cell

(
𝑥 𝑗

)
∈ C̄−𝑅 , cell

(
𝜉𝑖 𝑗

)
∈ C̄1−𝑅

}
.

The deep may contain air bubbles from cells that carried bubbles
while moving to the deep.Wewould like to allow bubbles in the band
interface and deep to fill up. Let 𝛼−𝑅 , 𝛼<−𝑅 be the total amounts
of air bubbles (number of missing particles) in the band interface
and deep, which can be calculated from the number of cells and
particles:

𝛼−𝑅 ≔ 𝜇 |C̄−𝑅 | −
∑︁

𝑐∈ C̄−𝑅

|𝛾𝑐 |

𝛼<−𝑅 ≔ 𝜇 |C̄<−𝑅 | − 𝑛deep .

We express the conditions above as an additional constraint to eq. (6):

0 ≤
∑︁
(𝑖, 𝑗)∈𝛾in

𝑏𝑖 𝑗 −
∑︁
(𝑖, 𝑗)∈𝛾out

𝑏𝑖 𝑗 ≤ 𝛼≤−𝑅 . (7)

Where 𝛼≤−𝑅 ≔ 𝛼−𝑅 + 𝛼<−𝑅 . We also update eq. (6d) and eq. (6e) to
use the band markings:∑︁

(𝑖, 𝑗)∈𝛾𝑐
𝑏𝑖 𝑗 ≤ 𝜇 , ∀𝑐 ∈ C̄empty ∪ C̄surface ∪ C̄−𝑅

(8a)

|𝛾𝑐 | ≤
∑︁
(𝑖, 𝑗)∈𝛾𝑐

𝑏𝑖 𝑗 ≤ 𝜇 , ∀𝑐 ∈ C̄−𝑅<𝛽<0 , (8b)

where we allow the band interface the same flexibility as the surface
(to lose particles) since excess deep particles will be added back to it.
We put no constraint on deep cells due to the particle deletion step.

The correction step is done as before by solving the updated
problem in eq. (6) for 𝑏 and updating 𝑥 accordingly. Unlike the local,
sparse constraints in eq. (6), the band constraint is global and dense
since it encompasses and ties together particle movements along
the band interface. Moreover, the system matrix may not be totally
unimodular anymore, and the ILP problem cannot be relaxed. In
some scenes, these increase the solver time such that it is not much
better than not using a band (𝑅 = ∞). In the next sections, we offer
faster alternatives.

6.2 A One-Way Band Constraint
One way to shorten the constraint in eq. (7) is to determine first the
number of particles that go into and out of the band, and based on
that, constrain only the number of particles in the direction with
the greater flow. We do this in two steps, solving an LP in the first
step and an ILP in the second.

First, we solve eq. (6) as is (without an additional band constraint),
getting an optimal solution 𝑏∗, and we do not update 𝑥 yet. From
these particle movements, denote the number of particles that go
into and out of the band interface by

𝑛∗in ≔
∑︁
(𝑖, 𝑗)∈𝛾in

𝑏∗𝑖 𝑗
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𝑛∗out ≔
∑︁
(𝑖, 𝑗)∈𝛾out

𝑏∗𝑖 𝑗 .

Consider the differences

𝑠in ≔ 𝑛∗out − 𝑛∗in + 𝛼≤−𝑅
𝑠out ≔ 𝑛∗in − 𝑛

∗
out .

𝑠in measures how much space is left in the band interface and deep,
and 𝑠out measures the space in the rest of the band. If both 𝑠in ≥ 0 and
𝑠out ≥ 0, then the movements are fine, we can update 𝑥 according to
𝑏∗ and proceed with the rest of the algorithm. Else, there is negative
space (incompressibility is violated), and we solve eq. (6) a second
time with an additional constraint, depending on which space is
negative.

If 𝑠in < 0, then too many particles moved into the band interface,
and we need to limit them.We fix the movements of all𝑛∗out particles
that moved from the band interface to the rest of the band and block
the rest of the movements in𝛾out. In addition, we prevent movement
into the band from particles in C̄1−𝑅 that do not move into the band
interface in 𝑏∗. We end up with a constraint that selects 𝑛∗out +𝛼≤−𝑅
particles from the particles that moved into the band in 𝑏∗:

𝑏𝑖 𝑗 = 𝑏
∗
𝑖 𝑗 , ∀

(
𝑖, 𝑗

)
∈ 𝛾out (9a)

𝑏𝑖 𝑗 = 0 , ∀
(
𝑖, 𝑗

)
∈ 𝛾in , 𝑏∗𝑖 𝑗 = 0 (9b)∑︁

(𝑖, 𝑗)∈𝛾in
𝑏𝑖 𝑗 = 𝑛

∗
out + 𝛼≤−𝑅 . (9c)

When setting a movement 𝑏𝑖 𝑗 of the 𝑗th particle in eq. (9a) to one,
due to eq. (6c), we can also set the rest of the particle’s movements to
zero: ∀𝑘 ≠ 𝑖, 𝑏𝑘 𝑗 = 0. Note that eq. (9a) and eq. (9b) merely eliminate
variables from the system, which leaves a single constraint eq. (9c)
that sets the number of particles that enter the band interface. Due
to 𝑏∗, which moves more particles than required, we know that the
problem in eq. (6) with the additional constraint eq. (9) is feasible.
Else, 𝑠out < 0, and we need to limit the number of particles that

move out of the band. Similar to eq. (9), this is expressed as

𝑏𝑖 𝑗 = 𝑏
∗
𝑖 𝑗 , ∀

(
𝑖, 𝑗

)
∈ 𝛾in (10a)

𝑏𝑖 𝑗 = 0 , ∀
(
𝑖, 𝑗

)
∈ 𝛾out , 𝑏∗𝑖 𝑗 = 0 (10b)∑︁

(𝑖, 𝑗)∈𝛾out
𝑏𝑖 𝑗 = 𝑛

∗
in , (10c)

where eq. (10a) fixes the variables of movements into the band
interface, eq. (10b) prevents movements out of the band interface
that do not occur in 𝑏∗, and eq. (10c) sets the number of particles
that leave the band interface

To summarize, in the first step we solve eq. (6). If needed, we per-
form a second step, where we solve eq. (6) again using the one-way
band constraints in eq. (9) or eq. (10). After the steps, we update 𝑥
and proceed with the rest of the algorithm. See fig. 5 for an example.

The one-way band constraint is still dense, and the ILP still cannot
be relaxed. However, since we reduce variables and simplify the
band problem, it becomes significantly faster to solve than adding
the full band constraint in eq. (7).

6.3 Flow Along Paths
The second step of the one-way band constraint approach can be
viewed as correcting the incompressibility in the band interface and
the deep after the first step. We suggest a cheaper way to perform
the correction, which does not require solving an ILP.

We perform the same first step as in section 6.2 and solve eq. (6)
as is (an LP without additional band constraints), this time updating
the particles positions 𝑥 according to 𝑏∗. If 𝑠in or 𝑠out is negative,
then too many particles flowed into or out of the band interface. To
correct that, we move some of them along grid paths in the required
direction.
If 𝑠in is negative, then we need to move 𝑛move ≔ −𝑠in particles

out of the band interface. Else, if 𝑠out is negative, then we need to
move 𝑛move ≔ −𝑠out particles into the band interface. Otherwise,
correction is not necessary.
We limit the 𝑗th particle’s movement to a single cell (in a von

Neumann neighborhood) relative to its position in the last iteration
(𝑥 𝑗 ). To maintain the incompressibility constraint, a particle can
move into cell 𝑐 only if it has space (|𝛾𝑐 | < 𝜇, where 𝛾 reflects the
state of the updated 𝑥 ). If it does not, then another particle needs to
move out from 𝑐 beforehand. This means that a chain of particles
needs to be moved along a grid path, starting from a cell that has the
flexibility to lose a particle—a surface, a band interface, or a former
empty cell (see eq. (8a)). We need to find 𝑛move such paths.

We formulate this as a minimum-cost flow problem (MCFP) in a
graph. The grid cells are designated as graph vertices, and possible
particle movements are designated as graph edges with capacity one.
We will use multiple sources and sinks, denoted Csource and Csink.
The location of sources and sinks depend on the flow direction—
into or out of the band interface. In the in direction, surface cells
are sources, and band interface and deep cells are sinks. In the out
direction, interface cells are sources, and the rest of the band (surface
and inner cells with bubbles) and empty cells are sinks.
The cost of an edge that represents a possible movement of the

𝑗 th particle into a cell 𝑐 is the cost of its (optimal) position in 𝑐 minus
the cost of its current position w.r.t. its ideal position:

𝜎edge
(
𝑗, 𝑐

)
≔ 𝜎obj

(
𝜙close

(
𝑥 𝑗 , 𝑐

)
, 𝑥 𝑗

)
− 𝜎obj

(
𝑥 𝑗 , 𝑥 𝑗

)
. (11)

We limit the movement of the 𝑗th particle to its cell in the previous
iteration and the cells neighboring that cell (in a von Neumann
neighborhood).
To solve the MCFP, we use a variant of Dijkstra’s algorithm to

find 𝑛move (augmenting) paths in the (residual) graph (using terms
from the Ford–Fulkerson algorithm). The algorithm is listed in alg. 3.
A path starts in a source cell and ends in a sink. The algorithm

finds paths that do not share cells (or particles). We hold in three
arrays (of size |C|), 𝐽 , 𝑏 𝑓 𝑖𝑛 , and 𝜎 , data related to the cells. 𝐽 [𝑐] is
the index of a particle that represents an edge to the parent of 𝑐
on a path, where 𝑐 can belong to a single path at most. 𝑏 𝑓 𝑖𝑛 [𝑐] is
a (boolean) flag that indicates if the path that started at the source
cell 𝑐 is complete. 𝜎 [𝑐] is the total cost of the path that 𝑐 belongs
to from its source to 𝑐 . The three arrays are initialized with none,
false, and∞ (using multiple assignment in line 2).

The search for paths starts at source cells (skipping empty ones),
which are pushed into a priority queue 𝑄 of objects of type Node
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(a) (b) (c) (d)

Fig. 5. An example of correcting the band (1 ppc). (a) The beginning of the iteration; see fig. 4 for the color code of the cells. (b) First step, solving the LP in
eq. (6). Four particles move into the cell below them; red arrows indicate former cells. One of the particles moved into the band interface: 𝑛∗in = 1, 𝑛∗out = 0,
𝑠in = −1, 𝑠out = 1. Since 𝑠in < 0, incompressibility is violated, and we need to perform a second step to correct it. If we use the variant in section 6.2, then we
solve eq. (6) again—based on the particle positions in (a)—fixing the movements in eqs. (9a) to (9b) and adding the constraint in 𝑒𝑞. (9c) to set the number of
particles that move into the band (zero). There will be no movement of particles between cells (only within the cells) compared to (a); such movement will
occur only when particles also leave the band interface in the first step. (c) If we use the variant of the band method in section 6.3, then a path from the band
interface to the surface is found. Reverting the vertical path in (b) is always an option. Instead, the indicated horizontal path is selected, and particles are
pushed along it. (d) Cell markings are updated. In this case, there is no need to remove particles that reached the deep or to fill the band interface with excess
particles from the deep (alg. 2).

(line 6). A Node represents the last vertex in a path, which will probe
for the next cell on the path. The fields of Node are: cost—the sum
of edge costs along the node’s path; cell—the cell that the vertex
represents; edge—the index of a particle that represents an edge to
the cell’s parent; and root—the path’s root (a source cell). A new
Node is created using a constructor function with named arguments,
and it is added to𝑄 , where the field cost is used as a key to compare
elements. The special value ROOT is used to indicate a root node
(no parent).

In the main loop, the Node with the lowest cost is dequeued. Line
11 checks if the cell has already been visited, i.e., if it has been
dequeued already and has been assigned a parent.𝑄 can hold Nodes
of the same cell but different parents (different possible paths). Only
the Node with the lowest cost is processed, and the rest are ignored.
This is an efficient alternative for the priority queue’s decrease-key
method for sparse graphs. If a path that started at the node’s root
has already finished, then the node is ignored. If it is the first time
that the node is visited, then it is assigned an edge to the parent on
that path or a ROOT tag (line 13). If the node is a sink with space
(line 14), then the path is complete, and it is added to a (returned)
list of completed paths 𝑃 .
The neighboring cells of a node that were not visited yet are ex-

plored (line 18). The best edge to a neighboring cell 𝑐′ is determined,
and if the path to it has a lower cost, then 𝑐′ is enqueued. Alg. 4
lists the algorithm that finds the best edge from cell 𝑐 to 𝑐′. The
condition in line 3 checks that 𝑐′ is not farther than one cell from
the particle’s cell in the previous iteration. It means that either the
particle is currently in the same cell as in the last iteration or it is
going to move to that cell.
The paths are updated one at the time using alg. 5 until 𝑛move

paths are successfully updated.
Since alg. 3 finds only nonintersecting paths, it may need be called

more than once (with the paths updated). Paths can be found (in the
residual graph after an update) as long as the maximum flow is not
reached. The maximum flow is at least 𝑛move since it is possible to

revert the particle positions induced by 𝑏∗ back to 𝑥 . However, since
the edge costs may be negative and we use Dijkstra, the resulting
flow from the algorithm may not have the lowest cost. We decided
not to use a more expensive algorithm that finds the optimal cost
since 𝑛move is only a small percentage of 𝑛, and in our experiments
the results of using Dijkstra did not vary much from the alternative
methods suggested in the previous sections.

See fig. 5 for an example.

7 COUPLING WITH SOLIDS
We address incorporating solids into our framework. We illustrate
the idea on a simple scene of an object (also referred to as obstacle)
free falling into water. Before the object hits the water, its motion
is only affected by gravity. After hitting the water, the drag and
buoyancy forces come into play, which decelerate the object until
it reaches terminal velocity. The affect on the fluid is expressed in
the boundary conditions of the pressure equation [Bridson 2015,
chapter 5]. The pressure in grid cells that are marked as solid is set
to 𝑝 = 0, and along the solid boundary we have

𝑢 · 𝑛 = 𝑢solid · 𝑛 , (12)

where 𝑛 is the boundary normal, and 𝑢solid is the solid velocity.
We discretize an object using particles, but we will keep using the

term particles only to refer to fluid particles. We allow a (non-empty)
grid cell to be occupied by either fluid or a solid, which determines
its marking. As we did with fluid particles, the time step size is
limited to restrict the solid from moving past the neighboring cells
(Moore neighborhood). If the object is going to occupy new cells,
then the correction step decides whether the object moves or stays
in place. We consider objects that are denser than the fluid, and the
movement of the object is prioritized unless incompressibility or
fluid speed are violated.

Let Cnew_solid be the set of cells that are not marked as solid and
the object intends to move into. We modify the objective in eq. (6a)
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Algorithm 3: Find paths
Output: A list 𝑃 of Paths and an array 𝐽 of |C| edges to

parents
1 Let 𝑏 𝑓 𝑖𝑛 be an array of |C| flags, 𝜎 be an array of |C| costs,

and 𝑄 be a priority queue
2 for 𝑐 ∈ C do 𝐽 [𝑐] , 𝑏 𝑓 𝑖𝑛 [𝑐] , 𝜎 [𝑐] ← none, false,∞
3 for 𝑐 ∈ Csource do // initialize 𝑄

4 if |𝛾𝑐 | = 0 then continue // no particles

5 𝑎 ← Node( cost=0, cell=𝑐 , edge=ROOT, root=𝑐 )
6 𝑄 .enqueue( 𝑎 ) // using 𝑎.cost as key

7 𝜎 [𝑐] ← 0
8 while not 𝑄 .empty() do // main loop

9 𝑎 ← 𝑄 .dequeue() // lowest cost

10 𝑐 ← 𝑎.cell
11 if 𝐽 [𝑐] ∉ {none, ROOT} then continue // visited

12 if 𝑏 𝑓 𝑖𝑛 [𝑎.root] then continue // finished

13 𝐽 [𝑐] ← 𝑎.edge // assign an edge to parent

14 if 𝑐 ∈ Csink and |𝛾𝑐 | < 𝜇 then // a sink with space

15 𝑏 𝑓 𝑖𝑛 [𝑎.root] = true
16 𝑃 .add( Path( edge=𝑎.edge, sink=𝑐 ) )
17 continue
18 for 𝑑 ∈ D \ {0} do // without the 0 vector

19 𝑐′ ← cell
(
𝜙center (𝑐) + 𝑑

)
20 if 𝐽

[
𝑐′

]
≠ none then continue // visited or a

source

21 𝑗 ← best_edge( 𝑐 , 𝑐′ )
22 if 𝑗 = none then continue // no edge

23 𝑡 ← 𝜎 [𝑐] + 𝜎edge
(
𝑗, 𝑐′

)
// total cost from source

24 if 𝑡 ≥ 𝜎
[
𝑐′

]
then continue // is not better

25 𝜎
[
𝑐′

]
← 𝑡

26 𝑄 .enqueue( cost=t, cell=𝑐′, edge=j, root=𝑎.𝑟𝑜𝑜𝑡 ) )

Algorithm 4: best_edge( 𝑐 , 𝑐′ )
Input: Two cells 𝑐, 𝑐′
Output: An index 𝑗 of a particle that can move from 𝑐 to 𝑐′

with the lowest cost
1 𝜎, 𝑗 ←∞, none
2 for 𝑗 ′ ∈ 𝛾𝑐 do
3 if 𝑐 ≠ cell

(
𝑥 𝑗 ′

)
and 𝑐′ ≠ cell

(
𝑥 𝑗 ′

)
then continue

// farther than one cell from 𝑥 𝑗 ′

4 if 𝑗 = none or 𝜎edge
(
𝑗 ′, 𝑐′

)
< 𝜎 then

𝜎, 𝑗 ← 𝜎edge
(
𝑗 ′, 𝑐′

)
, 𝑗 ′

to use a new objective function:

min
𝑏

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑏𝑖 𝑗𝜎solid_obj
(
𝜉𝑖 𝑗 , 𝑥 𝑗

)
, (13)

Algorithm 5: Update a path
Input: An array 𝐽 of |C| edges to parents and a Path 𝑟

1 𝑗, 𝑐 ← 𝑟 .edge, 𝑟 .sink
2 while 𝑗 ≠ ROOT do
3 𝑐′ ← cell

(
𝑥 𝑗

)
// parent cell

4 𝑥 𝑗 ← 𝜙close
(
𝑥 𝑗 , 𝑐

)
// move particle

5 𝑗, 𝑐 ← 𝐽
[
𝑐′

]
, 𝑐′ // predecessor

1

2 3 4 1234

1 1 1 1 1 1 1 1 1

1 5 5

Fig. 6. Clearing distance. Two frames of an obstacle (red square) falling into
water (1 ppc). The clearing distance of cells in Cnew_solid is marked. (Left)
all the cells in Cnew_solid have a non-obstacle neighbor below them, and
their clearing distance is 1. (Right) Only the particle in the rightmost cell in
Cnew_solid is guaranteed to clear the way using eq. (14). Other particles in
Cnew_solid require eq. (15) to guarantee progress towards clearing the way.

where

𝜎solid_obj
(
𝑞, 𝑟

)
≔

{
𝜆penalty if cell

(
𝑞
)
∈ Cnew_solid

𝜎obj
(
𝑞, 𝑟

)
else

.

(14)

𝜆penalty (=1000) is set to a large weight to penalize particle move-
ments into (potentially) new solid cells.

Given a solution to the modified problem, the correction step lets
the object move only if none of the new particle positions 𝑥 are in
Cnew_solid; else the object stays in place.
For the band method in section 6.3, we modify 𝜎edge in eq. (11)

to use 𝜎solid_obj instead of 𝜎obj.
The definition of the fluid surface (definition 4.1) considers fluid

cells that touch a moving obstacle as surface. This enables flexibility
in the movement of an obstacle.

7.1 Clearing the Bottom
Consider particles that occupy potentially new obstacle cells and
currently block the obstacle movement. As long as there is a path in
the fluid to a cell (∉ Cnew_solid) with free space, an optimal solution
will push them along the path to move them out of the obstacle’s
way and avoid the penalty in eq. (14).

There is always such a path in the fluid (as long as there is space)
except when the obstacle reaches the last layer of fluid before touch-
ing the bottom of the tank. Consider such a row of cells in Cnew_solid
between the obstacle and the bottom, where all the cells are empty
except the middle one, which contains a particle. The particle has
three possible cell movements: stay in the current cell, go left, or
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go right. Its contribution to the objective in eq. (13) would be the
same in each case, and nothing would motivate it to clear the way.
To address that, similar to definition 6.1, we define

Definition 7.1 (clearing distance). Each cell Cnew_solid is assigned
a clearing distance that represents its discrete distance from a cell
that is not in Cnew_solid, where solid cells are ignored. The clearing
distance is assigned recursively in a breadth-first-search manner.
Cells in Cnew_solid with neighboring cells (in a von Neumann neigh-
borhood) that are not in Cnew_solid are assigned 1. Their unassigned
neighbors are assigned one level higher, 2, and so on until all the
cells in Cnew_solid are assigned a clearing distance.

We modify eq. (14):

𝜎solid_obj
(
𝑞, 𝑟

)
≔

{
𝜆penalty · cdist

(
𝑞
)

if cell
(
𝑞
)
∈ Cnew_solid

𝜎obj
(
𝑞, 𝑟

)
else

,

(15)

where cdist (·) returns the clearing distance at cell
(
𝑞
)
. This pe-

nalizes particles according to their clearing distance; see fig. 6 for
illustration.

8 EVALUATION
We implemented our method as a plugin in MantaFlow [Thuerey
and Pfaff 2018], using conjugate gradients to solve a Poisson equa-
tion. We used [Gurobi 2018], selecting the dual simplex algorithm
without presolve, to solve LP and ILP problems.

Measuring running time. The experiments were conducted on a
laptop. The running time of FLIP and IDP is dominated by solving
a Poisson equation. FLIP solves one for pressure, and IDP solves
an additional one for density. The running time of our method is
dominated by the solution of the LP problem.

Volume measure. We define the discrete volume measure of a cell
𝑐 based on its depth (definition 6.1) as

𝑉𝑐 :=


0 𝑐 ∈ C𝛽>0
min

(
1, ∥𝛾𝑐 ∥𝜇

)
𝑐 ∈ C−1≤𝛽≤0

1 else

. (16)

Cells near the surface are given reasonable flexibility and are allowed
to have less than 𝜇 particles. Other fluid cells are penalized if they
have less than 𝜇 particles. All cells are penalized if they have more
than 𝜇 particles. Solid cells that contain particles are still considered
pure solid, and their fluid volume is zero.

The measure used in [Kugelstadt et al. 2019] is min
(
1, ∥𝛾𝑐 ∥𝜇

)
for

any cell 𝑐 . That measure is more favorable towards our method
since it penalizes overflow only and overlooks air bubbles (volume
inflation). According to that measure, our method preserves discrete
volume perfectly.

When reporting results, we measure the volume of the whole
fluid in a time step as 𝑉

𝑉 ∗ , where 𝑉 :=
∑
𝑐∈C 𝑉𝑐 is the total fluid

volume in a time step, and 𝑉 ∗ is how much volume should the fluid
occupy. If there is no emitter in the scene, then 𝑉 ∗ is simply the
initial fluid volume. We report the range of volume percentages

Power PIC
Volume: 100–110%

FLIP band
Volume: 88–136%

Our band
Volume: 100–105%

IDP
Volume: 92–100%

FLIP
Volume: 49–100%

Ours
Volume: 100–105%

Fig. 7. The last frame in a dam scene.

(100 𝑉
𝑉 ∗ ) over all the simulation iterations.

We evaluated our method in several scenes that are described
in section 8.1; see the accompanying video for their animation.
Statistics on volume preservation and running time are summarized
in table 1 and table 2. The grid sizes that were used in the figures
and video are the ones in table 1. We compared our method with
IDP [Kugelstadt et al. 2019], FLIP, the narrow band FLIP [Ferstl et al.
2016], and Power PIC [Qu et al. 2022].

Power PIC has several parameters that can be crucial for its behav-
ior, the accuracy of its particle distribution, and volume preservation.
We scaled the resolution of the transportation grid by 2 in each di-
mension (i.e., ×4 finer than the simulation grid in 2D). We set 𝜖 = 0.1,
𝜂 = 1, 𝜏 = 1

2 𝑑
√
𝜇
(e.g., 14 for 4 ppc in 2D), and 𝛿 = 0.1. We did not cut

off small coefficients from the Gaussian kernel 𝐾 since it increased
the number of iterations due to lower accuracy. Besides increasing
the running time, large scaling of the transportation grid resulted
in cracks and holes that kept forming and mending in the fluid.
Larger values for 𝜖 and 𝛿 disrupted the uniform particle distribution.
On the other hand, effects of using smaller values ranged from the
fluid becoming sluggish, exhibiting extremely high energy dissipa-
tion, up to standing still. To summarize, Power PIC can correct the
fluid’s volume and particle distribution but at the risk of introducing
dissipation if the changes are aggressive.

8.1 Scenes
The default settings that were used in the scenes (unless specified
otherwise):
• The initial density is 4 ppc in 2D and 8 ppc in 3D.
• The band method is used for our method in 3D (the variant in

section 6.3) and only for it. The band thickness is 𝑅 = 3.
• The maximum fluid speed is bounded.

A breaking dam. In this scene, we perform an initial comparison
of the methods behavior and volume preservation. Some time after
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Fig. 8. Volume (in percent) over time of the 2D dam scene.

the dam breaks, an emitter spews a stream of water into the tank.
After the emitter finishes, the total number of particles should fill
exactly a half of the tank (domain); see fig. 7.
The volume is plotted in fig. 8. FLIP loses volume, and it is its

general tendency. The volume of the narrow band FLIP fluctuates.
Power PIC gives a nice distribution of particles and tends to preserve
volume but not perfectly. IDP tends to preserve volume but suffers
some compression. Our method uses constrained optimization and
cannot lose volume. The volume may increase, however, due to
air bubbles. Our band method behaves similarly. For both band
methods we used thickness 𝑅 = 6 due to the more lively behavior
of the particles compared to other scenes.
Figure 9 shows a frame, where IDP keeps the clumped lines of

particles and suffers volume loss. Power PIC and our method dis-
tribute the particles, which adds noise to the fluid that reaches the
surface.

Figure 10 shows another 2D dam scene (without an emitter) using
1 ppc in a ×4-finer grid (i.e., scaled by two in each dimension). For
FLIP and IDP, the fluid collapses, and there is a dramatic volume loss.
This is due to the sparse particle distribution (1 ppc), where particles
can easily clump together, and some cells are missed. As a result, the
fluid is riddled with holes (see fig. 11). The holes have zero pressure,
and they disrupt the velocity field and attract particles. Power PIC
works hard to maintain a uniform distribution of the particles, and
it requires significantly more Sinkhorn iterations for a time step.
While its volume loss is less severe, the general behavior of the fluid
is similar to FLIP. Our method is the only one to maintain reasonable
fluid volume and behavior, which is similar to the 4 ppc case, and
the rare occurrences of holes in the fluid do not disrupt the velocity
field. Since there is only one particle at most in a grid cell, there can
be no air bubbles, and the volume is perfectly preserved.

Figure 12 shows a 3D dam scene. FLIP loses a significant amount
of volume. IDP preserves the volume but suffers some compression.
IDP keeps the fluid smooth while ours introduces noise similar to
the 2D case (fig. 9). Using our method, the fluid hits the left wall the
same time FLIP does. IDP overshoots the splash, which hits the wall
earlier and more strongly. The 1 ppc version of our method requires
surface extraction of lower resolution, which is less detailed. Our 8
ppc version gains some volume due to air bubbles.

FLIP
Volume: 91%

IDP
Volume: 93%

Power PIC
Volume: 103%

Ours
Volume: 100%

Fig. 9. A frame from dam scene, when the water hits the right wall. Volume
labels indicate the volume in this frame only.

FLIP
Volume: 19–100%

IDP
Volume: 36–100%

Power PIC
Volume: 79–100%

Ours
Volume: 100–100%

Fig. 10. A dam scene with 1 ppc.
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Fig. 11. A dam scene on a 30 × 30 grid with 1 ppc. (Left) FLIP’s fluid is
riddled with holes that disrupt the velocity field. (Right) our fluid has less
holes, and the constraint maintains the volume.

FLIP
Volume: 65–100%

IDP
Volume: 95–100%

Our 1ppc
Volume: 100–100%

Ours
Volume: 100–108%

Fig. 12. A dam scene.

A drop of water. A drop of water is falling into a pool; see fig. 13.
Notice where the splash goes. IDP’s throws the splash off the center
while ours keeps it centered like FLIP.

Compressing the fluid.A heavy obstacle moves at a constant veloc-
ity towards the bottom of the tank. Its movement should supersede
the fluid’s unless fluid speed or incompressibility are compromised.
The obstacle’s width is the same as the tank’s, leaving no room
for particles to pass it. The expected result is the obstacle moving
smoothly without overlapping any particles, compressing the fluid
as much as it can; see fig. 14.
We show two options for FLIP and IDP:

FLIP
Volume: 94–100%

IDP
Volume: 97–100%

Ours
Volume: 100–100%

Fig. 13. A water drop.

FLIP, no collision detection
Volume: 0–100%

FLIP
Volume: 59–100%

IDP
Volume: 92–100%

Ours
Volume: 100–101%

Fig. 14. Compressing the fluid, the final frame.
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FLIP
Volume: 17–100%

IDP
Volume: 90–100%

Ours
Volume: 100–100%

Fig. 15. A spiral, the final frame.

(1) Moving the obstacle while disregarding the fluid. Since the fluid
has no room to escape, there is an inevitable overlap with the
obstacle, which leads to volume loss.

(2) A naive collision detection, where the obstacle stops and waits
until the fluid clears the cells that the obstacle is moving into.
IDP’s volume correction disperses particles, which end up in
the obstacle’s way and obstruct its path more than FLIP. Due
to the jumpy behavior of the particles, IDP does not squeeze
the fluid to the maximum possible, leaving some room for air.
FLIP, on the other hand, lets the obstacle compress the fluid too
much, which leads to significant volume loss. For both methods,
the obstacle exhibits an undesired halting behavior.

Out method achieves the desired behavior.

A spiral. The fluid is squeezed through a narrow spiral; see fig. 15.
Since the fluid’s speed is limited, so is the obstacle’s. We used naive
collision detection for FLIP and IDP. FLIP lets the obstacle compress
the fluid too much. IDP allows the obstacle to lower more than it
should before it can correct the fluid, consequently losing some
volume that cannot be recovered. In both methods, the obstacle’s
progress has more delays than necessary due to particles blocking
the way. Using our method, the obstacle progresses as fast as the
fluid’s speed limit allows, and the fluid is compressed as much as
the volume restriction allows.

A falling obstacle. An obstacle is falling into the water. FLIP and
IDP behave similarly:
• Without collision detection, some particles are trapped at the

bottom, which leads to volume loss.
• With collision detection, the obstacle movement is halted not

long after hitting the water, far from the bottom of the tank, and
there is no progress.

Using our method, the obstacle moves smoothly (like FLIP without
collision detection) and there is no overlap with particles (which
causes volume loss). Figure 16 shows the 2D case, and fig. 17 shows
the 3D case.

Our method can move the obstacle through the fluid even without
the obstacle exerting any forces on the fluid. Figure 18 shows an ex-
periment where the boundary conditions for the pressure equation
along the obstacle’s boundary, eq. (12), are set to zero velocity. There
is nothing to repel the fluid from the obstacle’s way. As expected,
when FLIP uses collision detection, the obstacle cannot penetrate the
fluid. Using our method, the obstacle progresses smoothly through

FLIP
Volume: 90–100%

IDP
Volume: 96–100%

FLIP, no collision detection
Volume: 95–100%

Ours
Volume: 100–100%

Fig. 16. A falling obstacle, the final frame.

IDP
Volume: 99–100%

Ours
Volume: 100–100%

Fig. 17. A falling obstacle, the final frame. IDP with naive collision detection.

the fluid, where the correction method displaces particles out of the
obstacle’s way, requiring no other forces.

Figure 19 and fig. 1 show another variation with a large obstacle
falling into the water. The obstacle’s speed should depend on how
fast the fluid can flow along the narrow paths between the obstacle
and the tank. Using collision detection for FLIP and IDP, the object
makes no progress after hitting the surface. Without collision de-
tection, particles on the bottom of the tank are trapped inside the
obstacle, leading to significant volume loss.
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FLIP
Volume: 100–100%

Ours
Volume: 100–100%

Fig. 18. A falling obstacle with boundary conditions set to zero velocity, the
final frame.

FLIP
Volume: 35–100%

IDP
Volume: 71–100%

Ours
Volume: 100–103%

Fig. 19. A large falling obstacle, the final frame.

scene grid FLIP IDP ours

dam with emitter 50×50 49–100 92–100 100–105
dam with 1 ppc 100×100 19–100 36–100 100

compressor 50×50 59–100 92–100 100–101
spiral 50×50 17–100 90–100 100

large falling obstacle 50×75 35–100 71–100 100

dam 100×100×100 65–100 95–100 100–108
water drop 100×100×100 94–100 97–100 100

falling obstacle 100×150×100 99–100 100 100

large falling obstacle 50×75×50 48–100 79–100 100–102
Table 1. Volume preservation. A method’s column shows the range of the
fluid volume (presented as percentage of how much it should occupy) over
all the simulation iterations, based on eq. (16).

8.2 Discussion
Methods. We focused the experiments on comparison with IDP,
where its paper shows comparison with several other methods. We
did not use the band method for FLIP to keep the settings close to
IDP, which does not support it. Also, both methods did not have
performance issues that would require it.

Behavior and volume preservation. IDP allows the fluid to violate
incompressibility and increase density. In its correction step, IDP
moves particles to improve density accuracy. The improvement is
gradual, and the fluid may already be in a state that it cannot be
recovered from. We offered several scenarios to challenge this as-
pect, offering two reasonable solutions to address collision detection

scene grid n band Poisson LP MCFP

dam 100×100×100  411K  366K 0.2 10.9 0.2

200×200×200  3.4M  2.0M 2.5 131.7 1.3

300×300×300  11.5M  3.6M 13.2 484.2 3.9

water drop 100×100×100  725K  228K 0.2 1.9 0.1

200×200×200  6.2M  986K 2.3 7.8 0.7

300×300×300  21.5M  2.3M 13.2 24 2.2

falling obstacle 100×150×100  5.7M  263K 1.2 2.8 0.2

200×300×200  46.7M  1.0M 19.5 13.3 0.7

large falling obstacle 50×75×50  258K  183K 0.1 3.6 0.1

100×150×100  2.2M  1.2M 1.6 73.3 1.1

Table 2. Running time. “𝑛”: number of particles in the scene. “band”: the
average number of particles in the band. “Poisson”, “LP”, and “MCFP”: the
average time it takes to solve a Poisson equation, the LP problem in eq. (6),
and the MCFP problem in section 6.3. Average quantities are calculated over
all iterations. Timings are given in seconds, rounded to one decimal place.

for FLIP and IDP: ignoring the particles and a naive detection ap-
proach. Even if the user manually selects the best of the two for
each scenario, none of the behaviors are quite acceptable. The naive
method caused a halting behavior or even a premature (complete)
stop. Ignoring particles led to an inevitable overlap between the
obstacle and the particles, which caused volume loss. Even if the
loss was acceptable, the progress of the obstacle was smooth and
arbitrary instead of being dependent on the fluid speed (e.g., the
spiral scene). In contrast, our method strictly enforces incompress-
ibility. A full correction is applied immediately, and the fluid cannot
be compressed. Furthermore, while the obstacle’s movement is pri-
oritized, its speed is still limited by how fast the fluid can clear the
way.

Our correction is mostly done by blocking and preventing par-
ticles from moving into neighboring cells rather than push them
around. If a particle is moved to another cell, then the particle is
positioned within the cell to be as close as possible to the location
it was supposed to go. This is also prioritized over a more uniform
particle distribution, like in Power PIC, which looks nice in 2D but
affects the fluid behavior. IDP tends to preserve FLIP’s behavior, e.g.,
fig. 9, where it keeps a smooth surface and clumped particles vs the
other methods that add noise. However, the correction movements
can also have substantial influence on the fluid’s behavior, e.g., in the
3D dam when the splash overshoots and hits the left wall (fig. 12),
or in the water drop scene, where the splash of water is thrown off
the center (fig. 13).

Running time. In 2D, performance was not an issue for any of
the methods, and a time step took less than a second. Table 2 gives
timings for 3D scenes with varying grid sizes.

The timing of solving a Poisson equation depends on the number
of fluid cells. For methods that preserve incompressibility, the num-
ber of fluid cells is approximately the number of particles divided
by 𝜇.

MCFP’s timing depends on the number of fluid cells. In a typical
scene, alg. 3 needs to be executed rarely more than once in a time
step if at all. However, in a scene such as the large falling object,
there are time steps where a few calls are needed. For example,
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Fig. 20. An extreme (hypothetical) case of paths (in magenta) that start in
the middle of the band, creating a V shape and blocking other paths.

consider the extreme scenario in fig. 20. Two low-cost paths start
in two incident cells in the middle of the band interface and lead to
the surface along the narrow passages between the obstacle and the
tank, creating a V shape. Since the algorithm finds non-overlapping
paths, these two paths block all other paths, and another call to alg. 3
is necessary if more paths are needed. This increases the MCFP’s
average time for such a scene.
The time required to solve the LP can vary, depending on how

hard the problem is, which does not necessarily depend on the
number of particles and grid size. For example, in the first iterations
of the water drop scene, before the drop hits the pool, the LP solution
is close to the ideal particle positions, and the LP is solved in 7
seconds for a 3003 grid. On the other hand, in the large obstacle
scene, the objective of the LP includes the obstacle, and the solution
decides if the obstacle moves or not. This creates a dependency
between cells in Cnew_solid that are fluid or incident to fluid cells,
which is similar to a global dense constraint. A solution to the LP in
this case can take a few minutes even for a 50 × 75 × 50 grid.

An obvious advantage of using the band method is the reduction
in the number of particles, e.g., from 46.7 million to an average of one
million in the falling obstacle scene with the 200×300×200 grid. But
another advantage of the band method is that it may accelerate the
LP even if the number of particles is not reduced significantly. For
example, in the 1003 dam scene, when not using the band method,
the average LP time is 38.9 seconds. When using the band method,
the number of particles is reduced only by 16%, but the average LP
time is reduced to 8.6 seconds. This is because the band method
simplifies the problem. Intuitively, the constraints become local,
where particles can simply follow gravity into the deep with no
restriction (which is corrected by the MCFP in the second step). This
is not the case without the band method, where the flow reaches
the bottom of the tank or abides the volume constraint, and it needs
to go side-ways and up, which is a more global behavior.

Comparing the three methods, FLIP is the fastest since it requires
only one Poisson solution, which the two other methods require
as well. IDP requires solving an additional Poisson equation while
our method needs to solve an LP and an MCFP. The cost of the
additional Poisson solution is reasonable, and more importantly it is
predictable since it depends on the number of fluid cells. Our method
mostly runs in a reasonable time on moderate size grids. But in some

cases, while solving the MCFP remains reasonably fast, solving the
LP can take a few minutes, which leaves room for improvement.

9 CONCLUSION
We proposed a method that constrains particles to grid cells to en-
force our definition of discrete incompressibility. While the fluid can
still inflate with air bubbles, we show experimentally that the expan-
sion is moderate. Keeping strict incompressibility is one advantage
over previous work, which instead gradually corrects the fluid over
time. One issue with gradual correction is that volume preservation
is not perfect, which may cause noticeable artifacts. A more sever
issue is that the fluid can reach a state that is irrecoverable.

Our framework can be further exploited in other applications, and
we show examples of coupling with solids which naive solutions
applied to the state of the art fail to handle adequately.
The main drawback of the method is performance. In each it-

eration, an LP is solved. Besides the number of particles, the fluid
configuration affects the running time, which may be longer than
desired. We offered acceleration via an adapted version of the band
method that enforces incompressibility, and we showed experimen-
tally that it performs reasonably on moderate size grids. The fastest
variation of our band method solves an easier LP, followed by an
additional correction that solves an MCFP. While the solution is not
optimal, the result is reasonable for the affected amount of particles.
A future avenue could be to find faster alternatives to the LP.

REFERENCES
Ryoichi Ando, Nils Thuerey, and Chris Wojtan. 2015. “A stream function solver for

liquid simulations.” ACM Transactions on Graphics, 34, 4, 1–9.
Ryoichi Ando, Nils Thurey, and Reiji Tsuruno. 2012. “Preserving fluid sheets with

adaptively sampled anisotropic particles.” IEEE Transactions on Visualization and
Computer Graphics, 18, 8, 1202–1214.

Ryoichi Ando, Nils Thürey, and Chris Wojtan. 2013. “Highly adaptive liquid simulations
on tetrahedral meshes.” ACM Transactions on Graphics (TOG), 32, 4, 1–10.

Stefan Band, Christoph Gissler, Markus Ihmsen, Jens Cornelis, Andreas Peer, and
Matthias Teschner. 2018. “Pressure boundaries for implicit incompressible SPH.”
ACM Transactions on Graphics, 37, 2, 1–11.

Christopher Batty, Florence Bertails, and Robert Bridson. 2007. “A fast variational
framework for accurate solid-fluid coupling.” ACM Transactions on Graphics, 26, 3,
100–es.

Jan Bender and Dan Koschier. 2017. “Divergence-Free SPH for Incompressible and
Viscous Fluids.” IEEE Transactions on Visualization and Computer Graphics, 23, 3,
1193–1206.

Robert Bridson. 2015. Fluid simulation for computer graphics. CRC press.
Fernando De Goes, Corentin Wallez, Jin Huang, Dmitry Pavlov, and Mathieu Desbrun.

2015. “Power particles: an incompressible fluid solver based on power diagrams.”
ACM Trans. Graph., 34, 4, 50–1.

Tyler De Witt, Christian Lessig, and Eugene Fiume. 2012. “Fluid simulation using
laplacian eigenfunctions.” ACM Transactions on Graphics, 31, 1, 1–11.

Sharif Elcott, Yiying Tong, Eva Kanso, Peter Schröder, and Mathieu Desbrun. 2007.
“Stable, circulation-preserving, simplicial fluids.” ACM Transactions on Graphics
(TOG), 26, 1.

Florian Ferstl, Ryoichi Ando, Chris Wojtan, Rüdiger Westermann, and Nils Thuerey.
2016. “Narrow band FLIP for liquid simulations.” In: Computer Graphics Forum 2.
Vol. 35, 225–232.

Nick Foster and Dimitri Metaxas. 1996. “Realistic animation of liquids.”Graphical models
and image processing, 58, 5, 471–483.

Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and Joseph Teran. 2017. “A
polynomial particle-in-cell method.” ACM Transactions on Graphics, 36, 6, 1–12.

Dan Gerszewski and Adam W Bargteil. 2013. “Physics-based animation of large-scale
splashing liquids.” ACM Trans. Graph., 32, 6, 185–1.

Gurobi. 2018. Gurobi Optimizer Reference Manual. (2018). http://www.gurobi.com.
Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias

Teschner. 2014. “Implicit Incompressible SPH.” IEEE Transactions on Visualization
and Computer Graphics, 20, 3, 426–435.

http://www.gurobi.com


Cell-Constrained Particles for Incompressible Fluids • 0:17

Fig. 21. Visualizing a TU matrix. Zeros are in white, the rest are ones. The
rows with the red cells correspond to eq. (6c). The rows with the blue cells
correspond to eqs. (6d) to (6f) (without duplicate rows). In both the red and
blue set of rows, each column sums up to one.

Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin.
2015. “The affine particle-in-cell method.” ACM Transactions on Graphics, 34, 4, 1–10.

Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey Stomakhin, and Andrew Selle.
2016. “The material point method for simulating continuum materials.” In: Acm
siggraph 2016 courses, 1–52.

Byungmoon Kim, Yingjie Liu, Ignacio Llamas, Xiangmin Jiao, and Jarek Rossignac. 2007.
“Simulation of bubbles in foam with the volume control method.” ACM Transactions
on Graphics, 26, 3, 98–es.

Dan Koschier, Jan Bender, Barbara Solenthaler, and Matthias Teschner. 2022. “A Survey
on SPH Methods in Computer Graphics.” Computer Graphics Forum, 41, 2.

Tassilo Kugelstadt, Andreas Longva, Nils Thuerey, and Jan Bender. 2019. “Implicit
density projection for volume conserving liquids.” IEEE Transactions on Visualization
and Computer Graphics, 27, 4, 2385–2395.

Miles Macklin and Matthias Müller. 2013. “Position based fluids.” ACM Transactions on
Graphics, 32, 4, 1–12.

Matthias Müller, David Charypar, and Markus H Gross. 2003. “Particle-based fluid
simulation for interactive applications.” In: Symposium on Computer animation,
154–159.

Rahul Narain, Abhinav Golas, and Ming C. Lin. 2010. “Free-Flowing Granular Materials
with Two-Way Solid Coupling.” ACM Transactions on Graphics, 29, 6, 1–10.

Ziyin Qu, Minchen Li, Fernando De Goes, and Chenfanfu Jiang. 2022. “The power
particle-in-cell method.” ACM Transactions on Graphics, 41, 4.

Craig W Reynolds. 1987. “Flocks, herds and schools: A distributed behavioral model.”
In: Proceedings of the 14th annual conference on Computer graphics and interactive
techniques, 25–34.

Takahiro Sato, Christopher Wojtan, Nils Thuerey, Takeo Igarashi, and Ryoichi Ando.
2018. “Extended narrow band FLIP for liquid simulations.” In: Computer Graphics
Forum 2. Vol. 37, 169–177.

Alexander Schrijver. 1998. Theory of linear and integer programming. John Wiley &
Sons.

Jos Stam. 1999. “Stable fluids.” In: Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, 121–128.

Tetsuya Takahashi and Ming C Lin. 2019. “A Geometrically Consistent Viscous Fluid
Solver with Two-Way Fluid-Solid Coupling.” In: Computer Graphics Forum 2. Vol. 38,
49–58.

Nils Thuerey and Tobias Pfaff. 2018. MantaFlow. http://mantaflow.com. (2018).
Kiwon Um, Seungho Baek, and JungHyun Han. 2014. “Advanced hybrid particle-grid

method with sub-grid particle correction.” In: Computer Graphics Forum 7. Vol. 33,
209–218.

Yongning Zhu and Robert Bridson. 2005. “Animating sand as a fluid.” ACM Transactions
on Graphics, 24, 3, 965–972.

A PROOFS
Proposition 5.1. The LP relaxation of the ILP in eq. (6), which

uses continuous variables, has the same optimal solution.

Proof. Transform the LP in eq. (6) into a canonical formmax
{
𝑐𝑦 | 𝐴𝑦 ≤ 𝑑

}
,

where 𝐴 is a matrix, and 𝑐 , 𝑦, and 𝑑 are vectors:

• Change the objective to max by negating it.
• Replace an equality constraint with two inequalities (bounding

the LHS expression from both sides).
• Change ≥ inequalities to ≤ by negating them.
• Convert the problem into a matrix form. An expression that is

bounded from both sides (which appears in two inequalities, e.g.,
eq. (6e) or a transformed equality constraint) appears as two
identical rows in 𝐴 up to a sign.

The feasible region of an LP is a polyhedron (an intersection of
hyperplanes). Due to linearity, an optimal solution (an extreme
point) is at a polyhedron vertex. The polyhedron has vertices with
integral coordinates if the matrix 𝐴 is totally unimodular (TU) and
𝑑 (the RHS) is integral [Schrijver 1998, theorem 19.1]. A matrix is
TU if each of its subdeterminants is ∈ {0,±1}.

Lemma A.1. 𝐴 is TU.

Proof by induction on the size 𝑘 × 𝑘 of a square submatrix of 𝐴.
Base case: holds for 𝑘 = 1 since each entry of 𝐴 is ∈ {0,±1}.
Induction step: Assume the determinant of a 𝑘 ×𝑘 submatrix of𝐴

is ∈ {0,±1}, prove for a submatrix 𝐵 ∈ R(𝑘+1)×(𝑘+1) . Possible cases:
• 𝐵 has a row or column of zeros. Then, it is rank-deficient, and

its determinant is zero. Similarly if 𝐵 has a duplicate row up to a
sign (e.g., two inequalities that bound the same expression, and
both rows are in 𝐵).

• 𝐵 has a row with a single nonzero 𝐵𝑖 𝑗 (e.g., eq. (6b)). Then, con-
sider the Laplace expansion along this row. It will be equal to 𝐵𝑖 𝑗
times a 𝑘 × 𝑘 cofactor of 𝐵, which according to the assumption is
∈ {0,±1}. Similarly if 𝐵 has a column with a single nonzero

• Each variable corresponds to a particle movement, which ends
up in a specific cell. Therefore, each variable appears only once in
eqs. (6d) to (6f). Moreover, each variable appears once in eq. (6c).
This leaves us with the last case where each column of 𝐵 has
two nonzeros. The nonzeros in each row are either all 1 or -1.
Multiply each negative row by -1, which may only affect the sign
of the determinant. Divide 𝐵 into two matrices[

𝐵1
𝐵2

]
, 𝐵1 ∈ R𝑙×(𝑘+1) , 𝐵2 ∈ R(𝑘−𝑙+1)×(𝑘+1)

such that a column in each matrix has a single 1; see fig. 21 for
illustration. Let 𝑣 ∈ R𝑘 be the vector

𝑣 ≔

[
𝑣1
𝑣2

]
, 𝑣1 ≔ 1 ∈ R𝑙 , 𝑣2 ≔ −1 ∈ R𝑘−𝑙+1 ,

where 1 is a vector of ones. 𝑣 is in the null space of 𝐵⊺ , and thus
det𝐵 = 0.

□
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