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Abstract
Shear distortion has been a popular formal and informal measure, whether used quantitatively or visually, in assessing the quality
of mappings or the shape of elements in a quad mesh. Nevertheless, well-known energies such as conformal- and isometric-based
energies do not directly target lowering shear distortion but only bound it. Consequently, the shear distortion can be unnecessarily
high.

We introduce a new shear energy and offer an efficient way to incorporate it in the latest state-of-the-art optimization framework.
The resultant mapping has substantially lower shear distortion, and the cost is a reasonably low addition of conformal or isometric
distortion. The energy is minimized efficiently, and the run time of an iteration is of the same order of optimizing other popular
energies. We also introduce a new scale-invariant, second-order smoothness energy that when combined with the shear energy,
leads to smooth anisotropic mappings with low shear distortion.

We demonstrate these energies and compare with the state of the art in the application of seamless parametrization, where the
quality of mapping a checkerboard pattern is paramount since it directly affects the quality of an extracted quad mesh.

© 2023 Published by Elsevier Ltd.

1. Introduction

A popular approach to quad meshing is via seamless parametrization using a cross field [1, 2, 3]. A seamless
parametrization induces a flat metric over the surface, where the Gaussian curvature vanishes all over the surface
except for a few points, termed cone singularities. The steps of the pipeline:

• A smooth cross field is generated over the mesh. In addition to a cross per face, a field also defines a matching per
edge (or a period jump) that uniquely determines the cones.

• Seamless parametrization is generated from the field. The surface is cut into a disk, where the seam passes through
all cones, and each seam edge is mapped into two twin edges in the domain, subject to seamlessness constraints:
Vectors (the difference between end vertices) of two mapped twin edges (in the plane) differ by a 90◦-multiple
rotation. The crosses are used as guiding target frames when optimizing the mapping.

• Cone positions and translations of twin edges are rounded [4].

• A quad mesh (similar to a checkerboard texture pattern) with similar singularities is extracted.

The quality of the generated quad mesh is determined by the quality of the mapping, where high-quality mappings
exhibit low isometric or conformal distortion. Such mappings are generated by optimizing corresponding energies.
While these energies can also serve as quality measures, it is common to use measures that are specific to the shape
of a quadrangle [5].
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Figure 1. Minimizing the symmetric Dirichlet energy (left) exhibits quads with a substantial amount of shearing. Our added shear energy (right)
results in quads that are more rectangular for the price of a reasonably low increase in isometric distortion. For statistics, see Figure 6.

One of these measures is the amount of shearing (or skewness). A few specific applications implicitly encourage
shearing by preferring diagonal alignment of quads instead of orthogonal alignment. For example, creating the “fishnet
stockings” in Figure 8 in [6] or the Chebyshev nets in [7]. However, the typical application prefers orthogonal
alignment of quads with minimal shearing.

For example, the preference for the edge flow in a quad mesh is usually based on shape-awareness,
capturing and representing the local shape adequately. The intention is usually a flow that follows or-
thogonal directions. Such an edge flow can be directed by the user [8, 9] or follow principal curvature
directions [1, 10]. Principal curvature directions are orthogonal and support the ideal of rectangular faces
with vanishing amount of shear. In the inset, the mapping of the cylinder on the right is based on the
curvature. The mapping on the left is a rotation of the mapping on the right by 20◦. Shearing is introduced,
and the quads are no longer rectangular and do not follow principal curvature directions.

Another point that motivates low shear distortion is that orthogonality is inherent in cross field-based
quad meshing methods. The cross represents orthogonal directions, and energies measure the difference
between the Jacobian of a seamless mapping and a cross. The intention is, then, that the mapping would align with
orthogonal directions that minimize shear distortion.

Another aspect that favors low shear distortion is maximizing the minimal angle. For a triangle mesh, Delaunay
triangulation, which maximizes the minimal triangle angle, is desired in most cases. More generally, the ideal is
equilateral triangles that maximize the minimal angle. Similarly, for a quad mesh, right angles maximize the minimal
angle in a quadrangle.

The quality of an element is not only an aesthetic choice. It also affects the interpolation accuracy of a piece-wise
linear mesh and the speed, accuracy, and stability of a finite element method [11]. A recent study [12] ranked the
quality measures in [5] for hexahedral meshes, based on their correlations with the accuracy and stability metrics for
simulations that solve a number of elliptic PDE problems. One of the conclusions was that skewness ranked highest
among the metrics.

Different distortion measures were suggested in the past to measure the amount of shearing (or skewness) explicitly
[13, 14, 15] or implicitly. For example, one common distortion measure is the scaled Jacobian; see Section 2 for
related work and Section 4.1 for a discussion and comparison with our shear distortion measure. Minimizing shear-
based energies, however, is less common. More specifically generating a seamless mapping (following a guiding cross
field) while explicitly targeting and optimizing the amount of shearing has not been done before.

This oversight could be due to an attribute that is associated with conformal mapping, namely angle preservation
(which distinguishes it from, e.g., isometric mapping, which is also area preserving). Angle preservation means that
right angles of squares (e.g. in a checkerboard pattern) in the domain are preserved when pulled back to the surface
via conformal mapping. And indeed, a conformal mapping has zero shear. Nevertheless, a conformal energy, which
is minimized when optimizing a quasiconformal mapping, does not target shearing but only bounds it.

In conformal mappings, the problem starts with discretization. In the continuous setting, conformal mappings
2
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Figure 2. Problem motivation. (Left) mapping a square into a rectangle (ratio 1:2) by applying anisotropic scaling (0◦ shear distortion). (Middle)
mapping a square into a parallelogram by applying a 45◦ rotation before and after the scaling (37◦ shear distortion). (Right) mapping a square into
a rectangle rotated by 45◦ (37◦ shear distortion). A checkerboard pattern is pulled back to the surface via the parametrization. All three mappings
contain the same amount of isometric and conformal distortion, illustrating that these measures are oblivious and therefore susceptible to shear
distortion (within the bound they are imposing).

always exist. There are several ways to discretize conformal maps, each of which fails to capture the behavior of
smooth conformal maps in some essential way [16]. As a consequence, conformal distortion is in general inevitable
in meshes, and a mapping can only be quasiconformal (excluding the case of a developable surface with vanish-
ing Gaussian curvature). Discretization, though, is not the only issue. A perfectly conformal parametrization with
bounded local area distortion—which can be detrimental in many applications—does not exist even in the continuous
setting. Quasiconformal mappings with a bounded amount of distortion are more practical [17], and they may contain
abundant shear distortion. Similarly for isometric mappings.

To optimize for a quasi-conformal or an as-isometric-as-possible mapping, a variational approach minimizes a
related conformal or an isometric energy. These energies do not promote shearing reduction but only bound how
much it can increase. Within the imposed bound, the energies are oblivious and susceptible to shear distortion, which
can range freely from zero to the imposed bound. When conformality or isometry are reached, the bound on shear
distortion is zero. As conformal or isometry distortion increases, the bound on shear distortion rises. Then, shear
distortion can range from zero to as high as the bound if care is not taken. For illustration of this point, see Figures 2
and 3, and details are given in Section 4.2. Allowing anisotropy does not alleviate the problem.

We offer a new shear energy, which can be incorporated alongside isometric and conformal energies. Our shear
energy is minimized efficiently in the same run-time order as optimizing the other energies. The resultant mapping
yields a reasonably low increase in the amount of isometric and conformal distortions for a significant decrease in
shear distortion.

We also suggest a second-order smoothness energy as an alternative regularization, which can be combined with
our shear energy to create smooth anisotropic mappings with low shear distortion.

We provide analytical expressions for the Jacobian and the Hessian matrices of our shear and smoothness energies,
along with code that verifies them.

2. Related Work

The problem of seamless parametrization and the application for quad meshing is discussed in [18]. Herein, we
review work related to shear distortion.

The shear measure appears in various forms when determining the quality of a finite element [5, 14, 15]. In
continuum mechanics, the engineering shear strain is defined as the change in angle between incident edges of an
infinitesimal, rectangular material element after elastic deformation.

Marinov et al. [19] propose a technique for quad-dominant remeshing. After the mesh is segmented into patches,
a network of candidate curves is computed, whose intersection creates quad elements. A subset of curves is selected
from the candidate set using combinatorial optimization, which maximizes the quality measure of the elements in a
configuration. One of the factors in the energy is orthogonality. Specifically, it is the sum of deviations of the four
angles in a quad from 90◦.

The work in [20, 21, 22] addresses the planar case of quad meshing. The motivation for quad meshing is that while
triangulation is more common, quadrilateral elements are preferred in finite element analysis due to their superior
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performance (better approximation when solving PDEs). It is important, however, to guarantee the quality of the
elements, e.g., bounding the angles. Given a planar curve, these methods produce a quad meshing of the interior
while striving to bound the angles of the final mesh within

[
45◦, 135◦

]
.

The scaled Jacobian has been a popular measure for the quality of quad meshes. For example, it was used in
[23, 5, 24, 25, 26], or more recently in the supplemental gallery in [27]. This measure is directly related to shear
distortion; see Section 4.1.

Daniels et al. [28] perform quad mesh simplification. Results are evaluated via a comparison of angle distribution
and scaled Jacobians measured on the original and simplified meshes. Their ideal is quad angles near 90◦ and scaled
Jacobians near 1.0, corresponding to orthogonal corners in a mesh.

Canann et al. [29] use local smoothing operations to optimize the elements’ shape in a given mesh. The process
can be guided by a distortion metric, where one based on the minimal angle for quad meshes is offered. Garimella et
al. [30] improve the quality of a given mesh based on local parametrization. The proposed objective function is based
on squared edge lengths. The intention is to smooth distribution of edge lengths and face angles around a vertex, where
each pair of edges tries to reach equal length and form a right angle. Zhang et al. [24] improve the quality of quad
(and hex) meshes using geometric flow. Surface diffusion flow is performed to remove noise by relocating vertices
in the normal direction, and the aspect ratio is improved while preserving features by adjusting vertex positions in
tangent directions. One of the quality measures of the result is the scaled Jacobian. In [31], the shape of facets of
a given quad mesh is improved using local operations. These are performed on individual elements, followed by a
global projection step that reconciles the new vertex positions and assembles the elements into a continuous mesh. Xu
et al. [32] suggest a technique to untangle and improve a hex mesh, aiming to increase the minimum scaled Jacobian.
To improve the element quality, an angle-based optimization strategy is proposed, which is based on shear energy. To
handle non-linearity, a local-global strategy is utilized.

The methods in the previous paragraph operate on a given mesh connectivity without changing it. Moreover,
mapping back the adjusted vertices to the original surface is not necessarily performed. In contrast, we improve
a seamless mapping before a quad mesh is extracted from it, thus affecting the construction and topology of the
resultant quad mesh, whose vertices lie on the original surface.

In garment manufacturing, excessive shear is undesirable, even if physically possible, because it leads to wrinkles
and impression of bad fit. Pietroni et al. [33] present a real-time application for garment tailoring. They note that the
shear measure is non-quadratic, which is not suited for real-time optimization. Therefore, they settle for a common
isometry measure instead. McCartney et al. [34, 35] consider shear distortion in the warp direction only in a woven
fabric.

Anisotropy. Section 5 offers an approach to produce anisotropic mappings with reduced shear. We review some work
related to anisotropic, seamless mappings. Bommes et al. [1] offer to create an anisotropic mapping by scaling the
frames in the layout stage. The scaling can be user-defined or derived from curvature. Note that while giving more
weight to a specific direction biases the energy, the energy remains oblivious to shear. In [6], sparse user-defined
anisotropic scaling is smoothly interpolated to the whole mesh. Anisotropy is dealt with by deforming the mesh
itself while proceeding with the common cross field pipeline. Kovacs et al. [36] use a metric derived from the shape
operator to derive the anisotropic scaling, with consideration to the approximation error. In contrast to these methods,
we allow arbitrary anisotropic scaling, where the scaling amount is optimized to reduce shear distortion.

3. Background

LetM =
(
V;E;T

)
be a surface triangle mesh (consisting of vertices, edges, and triangles). Let f̃ : M ⊂ R3 → R

2

be a piecewise linear surface parametrization that maps a point p ∈ M to the UV-plane, f̃
(
p
)
= (u, v).

f̃
(
p
)

is composed of f̃
(
p
)
= f

(
Rp

)
, where R ∈ R2×3 is an arbitrary matrix that maps a triangle t ∈ T (containing

p) isometrically to a reference XY-plane, and f : R2 → R
2 that maps vectors from the XY-plane to the UV-plane.

From here on out, we omit the step of mapping to the reference plane and refer to f as the mapping from the surface
to the UV-plane.

Given a mapping f of a triangle t ∈ T , let σ1 ≥ σ2 be the (signed) singular values of the mapping Jacobian
J = D f . The singular values indicate the minimum and maximum amount of scaling that is applied to a mapped
vector. They are used in popular distortion measures.
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The isometric distortion measure that we use is defined as in [37]:

τ
(
f
)
=

max
(
σ1,

1
σ2

)
σ2 > 0

∞ else
. (1)

Given the large dilatation K
(
f
)
= σ1

σ2
, the conformal distortion measure that we use is the little dilatation [38]:

k
(
f
)
=

K − 1
K + 1

. (2)

We use two popular energies to minimize these distortion measures: the isometric symmetric Dirichlet energy
[39, 40, 41]

Eiso
(
f
)
= σ2

1 +
1
σ2

1

+ σ2
2 +

1
σ2

2

, (3)

and the conformal MIPS energy [42]
Econ f

(
f
)
=
σ1

σ2
+
σ2

σ1
. (4)

The common field-based seamless parametrization pipeline consists of two steps [1]. In the first step, a guiding
cross field is found, and cone singularities are identified. In the second step, the surface is cut along the singularities,
and the surface is laid out, optimizing a mapping f such that its Jacobian strives to align with frames extracted from
the cross field. Given a frame A, a common alignment energy [1] is

Ē f rame
(
f
)
= ∥J − A∥2F . (5)

We use a symmetric version of this energy as an energy and a measure of aligning the Jacobian with a frame:

E f rame
(
f
)
= ξ (J) =

1
2

(
∥J − A∥2F + ∥J

−1 − A−1∥2F

)
. (6)

A frame-alignment energy is usually used to generate an initial injective mapping. If the frames are orthogonal
(e.g. from a cross field), then optimizing field alignment promotes isometry. Further optimization of the mapping is
performed through minimizing energies such as Equations (3) and (4).

For a more detailed background on seamless parametrization, how it differs from integer seamless parametrization
(additional integral constraints on cone positions and twin edge translations), and the pipeline for employing it for
quad mesh generation, we refer the reader to [1, 2, 3].

4. Shear Energy

While in the first step a cross field with perfect orthogonal unit vectors is constructed, the final distortion is deter-
mined in the second layout step where the mapping is optimized. Minimizing common energies such as Equations (3)
and (4) does not penalize shearing. In this section, we describe a specific shear energy to augment these energies. But
first, we elaborate some more on the motivation.

In most cases, there must be isometric or conformal distortion, and often it can be high. Our proposed rationale
is then that when, e.g., isometry has to be given up, we might as well pay an additional small increase in the over-
all isometric distortion to significantly lower shear distortion (at the expense of anisotropy). At least, in terms of
visualization, the effect could be enormous.

A note about the intended edge flow. Constructing the cross field in the first step determines the cone singularities,
which in turn, determine the basic structure of the edge flow. That is, the second step of optimizing the mapping
does not affect the edge flow dramatically. Therefore, it is safe for us to do the best we can in terms of optimization
(adhering to sharp-edge constraints if present) without compromising the user’s intention (if there is such) regarding
the edge flow.

We define the shear energy as follows. Let e1, e2 ∈ R
2 be the unit vectors of the U- and V-axis (columns of the

2 × 2 identity matrix). Let ĵi = J−1ei ∈ R
2×1 be the mapped axis vectors from the domain to the surface (i.e. the
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θ2 = 0◦ θ2 = 5◦ θ2 = 10◦ θ2 = 15◦ θ2 = 20◦ θ2 = 25◦ θ2 = 30◦ θ2 = 35◦ θ2 = 40◦

τ = 1.00 τ = 1.09 τ = 1.19 τ = 1.30 τ = 1.43 τ = 1.57 τ = 1.73 τ = 1.92 τ = 2.14
k = 0.00 k = 0.04 k = 0.09 k = 0.13 k = 0.18 k = 0.22 k = 0.27 k = 0.32 k = 0.36

Figure 3. Distortion illustration. Similar to the settings in Figure 2, each shape is the result of a square in a checkerboard pattern being pulled back
to the surface via the parametrization. The inverse Jacobian of the mapping is composed of J−1 = RΣ̄R, where R is a rotation, and Σ̄ is a scaling
transformation defined in Section 4.2. In the first row, R is the identity, and in the second row, R is a 45◦ rotation. The singular values for a rectangle
mapping are the rectangle’s width and height. Each column contains the same amount of isometric and conformal distortion, τ and k. The first row
of rectangles has θ1 = 0◦ shear distortion. The shear distortion of the second row is given under it. The shear distortion for a given k can vary from
0◦ to θ2 (Section 4.2). The colors correspond to the shear distortion color bar in the figures.

columns of J−1). To preserve the right angles of a checkerboard pattern that is mapped back to the surface, we need
to keep the orthogonality of the mapped axis vectors. This leads to the shear distortion measure θ

(
f
)
:

ζ
(
f
)
= arccos

ĵ1 · ĵ2
∥ ĵ1∥ ∥ ĵ2∥

θ
(
f
)
=

∣∣∣90 − ζ
∣∣∣ , (7)

which measures the difference between 90◦ and the angle ζ between the mapped axis vectors (the shear-defect). This
encourages the scaling of a deformed quad to be along the axes and preserve right angles. For illustration, see Figure 3.
In this work, degrees are used as the measurement unit for angles (and trigonometric functions).

We now define the shear energy. Let M (J) = JJ′ (which is not the same as the metric tensor J′J), and define the
entries of the symmetric matrices

M =
[
m11 m12
m12 m22

]
, M−1 =

[
m̂11 m̂12
m̂12 m̂22

]
=

1
det M

[
m22 −m12
−m12 m11

]
,

where mi j = tr e′i Me j = tr Ei jM, Ei j B e je′i (the trace is invariant to cyclic permutation, and a scalar is equal to its
trace). Next, define the function ϕ

(
J−1

)
: R2×2 → R:

ϕ
(
J−1

)
=

(
ĵ1 · ĵ2
∥ ĵ1∥ ∥ ĵ2∥

)2

=
m̂2

12

m̂11m̂22
,

which is based on Equation (7), and using ĵi · ĵ j = tr
(
J−1ei

)′
J−1e j = trEi jM−1. ϕ can also be viewed as measuring

the (normalized) off-diagonal entries of M−1. The shear energy is defined as

Eshear
(
f
)
= ϕ

(
J−1

)
. (8)

The energy is scale-invariant (referring to a global scale of the mesh; see Section 6 for a discussion about the advantage
of a scale-invariant energy), and since it is not rotation-invariant (the orientation of a domain triangle), it cannot be
expressed purely with singular values (unlike conformal and isometric energies [43]). Scale-invariance implies that
the energy is invariant to det M, which leads to being invariant to inverting M:

ϕ
(
J−1

)
=

m2
12

m11m22
.
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Figure 4. A comparison of an energy based on the scaled Jacobian and our shear energy. In the experiment, each energy was minimized with a large
weight in the objective, and a specific upper bound on Eiso. For that, we used a general purpose constrained solver. The average shear distortion
θ (weighted by area) of Eshear (3.6) was lower than E jac (4.5), and both were lower than Eiso minimized alone (8.2). Labels: ’iso’—Eiso, ’scaled
Jacobian’–E jac, ’shear’—Eshear . Distortion measures: θ and τ.

4.1. The Relation to the Scaled Jacobian Measure

The popular scaled Jacobian measure can be expressed for a planar mapping as:

|J−1|

∥ ĵ1∥ ∥ ĵ2∥
=

ĵ1 × ĵ2
∥ ĵ1∥ ∥ ĵ2∥

= sin ζ , (9)

where |J−1| is the determinant of the Jacobian of the inverse mapping. An energy based on this measure, for example:

E jac
(
f
)
=

(
1 −

|J−1|

∥ ĵ1∥ ∥ ĵ2∥

)2

. (10)

The relation between Eshear and E jac is that the former is based on cos ζ while the latter is based on sin ζ. They both
measure the amount of shear. Another possible energy is:

Ē jac
(
f
)
= 1 −

(
|J−1|

∥ ĵ1∥ ∥ ĵ2∥

)2

, (11)

which is equal to Eshear.
One of the conclusions in the measure study [12] is that a skewness metric that is based on cos ζ performs better

than the scaled Jacobian that is based on sin ζ. For a comparison, see Figure 4.

4.2. The Relation to the Singular Values

To relate the conformal distortion to the bound on the shear distortion, consider the singular value decomposition
of the mapping Jacobian and the decomposition of its inverse

J = UΣV ′, J−1 = V ′Σ−1U, Σ =

[
σ1 0
0 σ2

]
,

which provide the view of J−1 as a composition of two rotations and a scaling transformation.
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Since the conformal and shear distortions are invariant to scaling, we can scale the mapping by σ−1
2 , which would

replace the scaling matrix in the decomposition of J−1 with Σ̄−1 =

[
K−1 0

0 1

]
(and the isometric distortion would be

τ = K).
If U is the identity, then there would be no shearing. If U is a 45◦ rotation, then the amount of shearing would be

maximal. The rotation V has no effect on the shearing. Given a large dilatation K, the maximal shear distortion is

θmax = 90◦ − 2 arccot K .

See Figure 3 for illustration.
For an isometric distortion τ, the maximal conformal distortion is achieved when τ = σ1 = σ−1

2 , and the large
dilatation in this case is K = τ2.

5. Smoothness Energy

As an alternative regularization energy (to e.g. isometric and conformal energies), we offer a second-order smooth-
ness energy that strives to keep the Jacobian function smooth.

Let f1 and f2 be mappings of two faces that share an edge (on the surface), with corresponding Jacobians J1 and
J2 (transformed to the same coordinate system; see Appendix C). Define:

η (J1, J2) = ∥J1 − J2∥
2
F

ψ (J1, J2) =
η

|J1|
+

η

|J2|
,

where |Ji| is the determinant of Ji. The smoothness energy of a mapping fi of ti ∈ T is

Esmooth
(
fi
)
=

∑
j∈ne(i)

ψ
(
Ji, J j

)
, (12)

where ne (i) is a set of indices of faces that share an edge with ti. This energy is scale-invariant (but not rotation-
invariant). Scale-invariance is not common in smoothness energies [44, 45], and this form of normalization prevents
the common shrinking and vanishing of the mapping.

The combination of the smoothness and shear energies furnishes an anisotropic energy, which is usually more
flexible (when smoothness permits) than a conformal energy. Anisotropic elements have been known to have better
approximation quality [36]. Here, their flexibility produces smooth mappings with less shear.

6. Optimization

The energies are integrated over the mesh, using triangle areas as weights, and normalized by the total surface
area:

EM
(
f
)
=

1
AM

∑
t∈T

At

(
λEshear

(
ft
)
+ Ereg

(
ft
) )
, (13)

where ft is the mapping over a triangle t, At is t’s area, and AM is the total surface area of the mesh. Ereg is one of the
regularization energies: Eiso, Econ f , and Esmooth. λ is a weighing scalar.

The energies, except for Eiso, are scale-invariant. That is, if M̂ is a globally-scaled version of M by a factor γ
(i.e. V̂ = γV) with the domain remaining intact, i.e. f̂

(
M̂

)
= f

(
M

)
, then E

(
f̂
)
= E

(
f
)
. This is not case for Eiso.

Eiso, however, is optimal-scale-invariant: a global scaling ofM does not affect the value of the energy of the optimal
mapping. Meaning, if f ∗ is a minimizer of Eiso, then Eiso

(
f̂ ∗

)
= Eiso

(
f ∗

)
. Moreover, f̂ ∗

(
M̂

)
= γ f ∗

(
M

)
. That is,

the mapping will be scaled “automatically” to reach optimality. Optimal-scale invariance is a desirable property in
an energy. It allows the user to use a weighing factor to weigh between optimal-scale-invariant energies without the
necessity to adjust it to the mesh size. In our case, we used λ = 10 in all our experiments. In terms of optimization,
scale-invariant energies do not require special handling when optimizing, as detailed next.
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EM is minimized subject to linear seamlessness constraints [1]. For that, we used the projected Newton method
[46, 43], augmented with the foldover-free line search proposed in [39]. This line search method prevents inversion of
a triangle (preserves orientation) by starting the search before a triangle collapses (or inverts). For our scale-invariant
energies, or more generally, an energy that contains division by σ2 (or related expressions such as det J), nearly
collapsed triangles are heavily penalized. As a consequence, starting from an initial locally injective mapping, we are
guaranteed that the mapping remains locally injective throughout the optimization process.

When optimizing a scale-invariant energy, the optimizer does not have a reason to stray far from the global scaling
of the initial mapping, and the ratio of total domain area to total surface area is likely to remain the same. Nevertheless,
the final scaling would be arbitrary. Therefore, in the results, we globally scale the mappings such that the total mapped
area would be equal to the total surface area.

The projected Newton method requires the Jacobian and Hessian of the energies. The derivatives of the singular-
value-based energies Eiso and Econ f or their proxies can be found in [43, 40, 41], and the derivatives of Eshear, Esmooth,
and E f rame are given in the appendices.

7. Evaluation

We evaluated the method and compared it with the state of the art; see Figures 5 to 10. The dataset is similar to
[3]. Note that if a facet is not directly facing the camera, a pattern may look sheared due to perspective projection.
Also, when the surface is not flat, a square pattern may look distorted, and judging its angles rather than its general
shape is more telling. The shear distortion heat maps provide assistance in these cases.

In general, when Eshear was added to Eiso or Econ f , the amount of shear distortion was decreased substantially,
with a reasonably low increase in the amount of isometric or conformal distortion. The effects of lowering the shear
distortion were more apparent in places with high isometric or conformal distortion. The visual improvement in the
shape of a quad takes place without improving the isometric or conformal distortion.

Esmooth was compared with Econ f (which is more flexible than Eiso). Since the two objectives do not coincide,
the conformal measure as a comparison tool is not adequate. On the other hand, for the same reason, measuring
smoothness is not a fair comparison either. Bearing that in mind, we opted for using the conformal measure, which is
more popular, and it gives an indication of how much conformal distortion the smoothing has introduced.

Quantitative measures aside, the mapping results of Esmooth are visually smoother. On the other hand, Eshear often
reduces the mapping smoothness and at times creates discontinuity-like lines in the pattern. For example, see the
first blowup in Figure 10, where the vertical feature edges pull the pattern in one direction while the horizontal fea-
ture edges pull it in another. The effect of reducing shear in this case is that the pattern appears as if divided along
a diagonal line. Esmooth remedies that by sacrificing conformal (and isometric) distortion, which could be considerable.

Run time. The experiments were conducted on a laptop with a six-core 2.6GHz CPU and 32GB RAM. Tables 1 and 2
summarize the running time. The run time is dominated by constructing the Hessian and solving the KKT system for
a search direction. The optimization requires an initial, feasible point (satisfying seamlessness constraints). We used
[1] to acquire a smooth cross field, and we generated the initial layout by employing [37], using the cross field as local
frames [47, 3].

In our implementation, when calculating Eshear, the run time increased only in the first step of constructing the
Hessian. The run time in the second step of solving the KKT remained the same, since the sparsity pattern of the
system matrix remained unchanged. The main factor for the total run time is the number of iterations, which was
increased due to the initial mapping that minimized an isometric energy. The same stopping criteria (based on the
gradient magnitude and the changes in energy and UV solution) was used in all cases.

Esmooth normally adds two variables to a local term for a triangle (the UV coordinates of an additional neighboring
vertex), and it can add up to six variables to triangles near the seam. This increased the run time (per iteration) of the
two optimization steps. Moreover, the addition of Esmooth required more iterations to converge, which is reasonable
since the initial point was an isometric mapping.

Field alignment. We tested our shear energy in conjunction with E f rame. In Figure 11, we generated a cross field
that strives to align with principle curvature directions using [1] (including a post-processing step of merging nearby
cones; the cost is increased distortion). The shear distortion is reduced while the alignment with principle curvature
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θ τ it Hess solve total θ τ it Hess solve total

armadillo 43160 7.6 1.3 10 1.4 0.5 19 1.6 1.3 15 1.5 0.5 30

armchair 100000 7.4 2.7 10 3.5 0.9 44 0.8 3.0 25 3.6 0.9 112

botijo 82332 8.8 1.3 11 3 0.9 43 1.5 1.4 15 3.3 0.9 63

bunnyBotsch 111364 8.9 1.3 9 5.1 1.1 56 1.3 1.4 9 5.4 1.1 59

dancer_25k 49996 8.7 1.6 11 2.1 0.5 29 1.6 1.5 17 2.2 0.5 46

dilo_scaled 54344 6.8 1.9 14 2.5 0.5 42 1.3 1.9 23 2.6 0.5 72

elephant 49918 7.7 1.6 9 2.3 0.5 25 1.4 1.5 13 2.3 0.5 37

knot100K 100000 7.7 1.3 10 5.2 0.9 61 1.6 1.3 20 5.6 0.9 131

pear 21504 9.5 1.3 8 0.9 0.2 9 1.3 1.4 19 0.9 0.2 21

neptune0 105030 7.7 1.2 13 6 1.1 92 1.4 1.2 14 6.2 1.1 102

torso 100000 9.9 2.0 12 5.5 1 78 1.2 2.1 22 5.7 1 147

uu-memento100k 99932 8.6 1.2 9 5.5 1 59 1.3 1.3 24 5.8 1 162

beetle_refined 38726 4.6 1.3 7 1.3 0.3 11 1.2 1.3 8 1.4 0.3 14

casting_refined 36852 6.9 1.3 9 1.7 0.5 19 1.7 1.3 9 1.6 0.4 19

sculpt 7342 16.8 2.0 8 0.3 0.1 3 4.3 2.2 12 0.3 0.1 5

fandisk 14454 7.2 1.6 8 0.5 0.2 6 2.1 1.6 11 0.6 0.2 9

iso+sheariso
model #tri

Table 1. Columns: ’#tri’—number of triangles, ’iso’—Eiso, ’shear’—Eshear , θ and τ—distortion measures, ’it’—number of iterations, ’Hess’—
average time per iteration to calculate the Hessian, ’solve’—average time per iteration to solve the KKT system for a search direction, ’total’—total
time. Time is given in seconds.

θ k it Hess solve total θ k it Hess solve total θ k it Hess solve total

cup 11340 2.7 0.04 11 0.4 0.2 7 0.9 0.05 14 0.5 0.2 10 0.8 0.27 59 0.8 0.2 59

linkCupTop 19560 3.7 0.05 13 0.8 0.3 14 2.3 0.06 25 0.9 0.3 30 2.5 0.14 55 1.3 0.3 88

octocat-v1 37884 3.7 0.05 9 1.8 0.3 19 2.0 0.06 12 1.9 0.3 26 2.8 0.12 43 2.7 0.3 129

oni 2845 3.6 0.05 8 0.1 0.1 2 1.7 0.06 11 0.2 0.1 3 2.4 0.15 17 0.2 0.1 5

genus3 13312 4.4 0.06 9 0.5 0.2 6 1.4 0.08 17 0.6 0.2 14 1.0 0.19 30 0.9 0.2 33

helmet 1000 4.3 0.06 9 0.1 0 1 1.8 0.07 12 0.2 0 2 2.3 0.18 24 0.2 0 5

fandisk 14454 6.1 0.12 8 0.5 0.2 6 1.5 0.12 6 0.6 0.2 5 1.1 0.26 16 0.9 0.2 18

MIPS+shearMIPS
model #tri

smooth+shear

Table 2. Columns: ’#tri’—number of triangles, ’MIPS’—Econ f , ’shear’—Eshear , ’smooth’—Esmooth, θ and k—distortion measures, ’it’—number
of iterations, ’Hess’—average time per iteration to calculate the Hessian, ’solve’—average time per iteration to solve the KKT system for a search
direction, ’total’—total time. Time is given in seconds.

directions is (mostly) preserved. The chair example illustrates that even when the distortion is low, there is still room
for improvement. Minimizing this energy combination, we can optimize any given mapping to reduce its shear. For
that, we use the mapping Jacobian as target frames (using polar decomposition to retrieve closest orthogonal frames).

8. Conclusion

We pointed out an oversight of well-known energies in regard to shear distortion and introduced a new shear
energy to address it. We also introduced a scale-invariant, second-order smoothness energy that leads to anisotropic
elements. Both energies were incorporated efficiently into the latest foldover-free optimization framework alongside
popular isometric and conformal energies. Efficiency of the algorithm and the quality of the resultant mapping were
demonstrated through experiments, along with comparison to the state of the art.

As an avenue for future work, it would be interesting to generalize the energy and the concepts explored in this
paper to tetrahedral and hex meshes.

Acknowledgments
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M.
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Figure 5. Labels: ’iso’—Eiso, ’shear’—Eshear . Distortion measures: θ and τ. The blowup heat maps show θ.
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Figure 6. Labels: ’iso’—Eiso, ’shear’—Eshear . Distortion measures: θ and τ. The blowup heat maps show θ.
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Figure 7. Labels: ’iso’—Eiso, ’shear’—Eshear . Distortion measures: θ and τ. The blowup heat maps show θ.
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Figure 8. Labels: ’MIPS’—Econ f , ’shear’—Eshear , ’smooth’—Esmooth. Distortion measures: θ and k. The blowup heat maps show θ.
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Figure 9. Sharp features. Labels: ’iso’—Eiso, ’shear’—Eshear . Distortion measures: θ and τ. The blowup heat maps show θ.
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Figure 10. Sharp features. Labels: ’iso’—Eiso, ’MIPS’—Econ f , ’shear’—Eshear , ’smooth’—Esmooth. Distortion measures: θ, τ, and k. The blowup
heat maps show θ.
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Figure 11. Labels: ’frame’—E f rame, ’shear’—Eshear . Distortion measures: θ and ξ. The blowup heat maps show θ.
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Appendix A. Differentiation of the Mapping Jacobian

In the following, we use notations and definitions from [48]. In each derivative subsection, we begin by differen-
tiating an inner function and proceed with differentiating functions along a function composition chain. Finally, we
use the chain rule to calculate the derivative of the main (outer) function with respect to X.

We start by differentiating the mapping Jacobian, which is used later when differentiating the energies.
Let X ∈ R3×2 be three rows of vertex UV coordinates of a mapping f of t ∈ T . The Jacobian J ∈ R2×2 of f is

J (X) = Q (X) P−1 = (GX)′ ,

where P,Q ∈ R2×2 comprise two (column) vector edges of the source and target triangle. G ∈ R2×3 is a discrete FEM
differential operator [49]. The Jacobian of J (X) with respect to (a vectorization of) X is (the constant)

D J (X) = (G ⊗ I2) K32 ∈ R4×6 ,

where Kmn ∈ Rm·n×m·n is a commutation matrix, Id ∈ R
d×d is the identity matrix, and ⊗ is the Kronecker product. The

Hessian is a matrix of zeros
H J (X) = 0 .

Appendix B. Shear Energy Differentiation

Let

m (M) =


m11
m12
m22


3×1

,

where mi j are the entries of M (J) = JJ′.
The shear energy is

ϕ (m) =
m2

12

m11m22
∈ R .

Appendix B.1. First Derivative

D M (J) = 2N2 (J ⊗ I2) ∈ R4×4 ,

where N2 ∈ R
4×4 is a symmetric idempotent matrix.

D M (X) = (D M (J)) · (D J (X)) ∈ R4×6

D mi j (M) =
(
vec

(
Ei j

)′)′
∈ R1×4 ,

where Ei j = e je′i , denoting by ei and e j the ith and jth column of the identity matrix I2. vec is a vectorization operator,
returning a column stack of a matrix.

D m (M) =


D m11 (M)
D m12 (M)
D m22 (M)


3×4

D m (X) = (D m (M)) · D M (X) ∈ R3×6

D ϕ (m) =

 −m2
12(

m2
11m22

) 2m12

(m11m22)
−m2

12(
m11m2

22

) 
1×3

.

The Jacobian of ϕ with respect to X is

D ϕ (X) =
(
D ϕ (m)

)
· D m (X) ∈ R1×6 . (B.1)
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Appendix B.2. Second Derivative
Define the component function operating on a square matrix A ∈ R2×2:

ci j (A) = tr Ei jA ∈ R .

Then,
H ci j (J) = I2 ⊗ 2Ei j ∈ R

4×4

H M (J) = sym


H c11 (J)
H c21 (J)
H c12 (J)
H c22 (J)


16×4

,

where sym is a block symmetrization operator: sym B = 1
2

(
B +

(
B′

)
v

)
for block matrices B,

(
B′

)
v ∈ R

mn×n, consisting
of Bi ∈ R

n×n:

B =


B1
B2
...

Bm

 ,
(
B′

)
v
=


B′1
B′2
...

B′m

 .
We proceed with

H M (X) = (I4 ⊗ D J (X))′ · (H M (J)) · D J (X) ∈ R24×6

H ϕ (m) =



2 m12
2

m11
3 m22

−
2 m12

m11
2 m22

m12
2

m11
2 m22

2

−
2 m12

m11
2 m22

2
m11 m22

−
2 m12

m11 m22
2

m12
2

m11
2 m22

2 −
2 m12

m11 m22
2

2 m12
2

m11 m22
3


3×3

H m (X) = (D m (M) ⊗ I6) · H M (X) ∈ R18×6 .

The Hessian of ϕ with respect to X is

H ϕ (X) = (D m (X))′ ·
(
H ϕ (m)

)
· (D m (X)) +

(
D ϕ (m) ⊗ I6

)
· H m (X) ∈ R6×6 . (B.2)

Appendix C. Smoothness Energy Differentiation

We apply the energy to a triangle hinge of two faces t1, t2 ∈ T , consisting of n ∈ {4, 5, 6} domain vertex copies in
total. The number of vertex copies depends on how many domain vertices the two faces share, which is determined
by: i) if the seam goes through the shared edge, and ii) if it ends in a shared vertex. The two triangle Jacobians are

J1 (X) = X′G′1 ∈ R
2×2

J2 (X) = R′mX′G′2R′κ ∈ R
2×2 ,

where G1,G2 ∈ R
2×n are discrete differential operators (Appendix A). J2 is transformed to the local coordinate frame

of J1 via a connection: Rκ is a rotation matrix that aligns the shared edge in the frames, and Rm is a rotation matrix
based on the matching (period jump) of the edge [1].

Define the functions:
α (X) = J1 (X) − J2 (X) ∈ R2×2

η (X) = ∥α (X)∥2F ∈ R
18
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β (J) = |J| ∈ R

µ (J) = β (J)−1 ∈ R

ψi (X) = η (X) · µ (Ji (X)) ∈ R .

The energy is
ψ (X) = ψ1 (X) + ψ2 (X) ∈ R .

Appendix C.1. First Derivative

D J1 (X) = (G1 ⊗ I2) Kn2 ∈ R
4×2n

D J2 (X) = (RκG2 ⊗ I2) ·
(
In ⊗ R′m

)
· Kn2 ∈ R

4×2n

Dα (X) =
[

(G1 ⊗ I2) − (RκG2 ⊗ I2) ·
(
In ⊗ R′m

) ]
Kn2 ∈ R

4×2n

D η (X) = 2 (vecα)′ · Dα (X) ∈ R1×2n

D β (J) =
(

vec |J|
(
J−1

)′ )′
∈ R1×4

D µ
(
β
)
= −β−2 ∈ R

D µ (J) =
(
D µ

(
β
))
· D β (J) ∈ R1×4

DX µ (J) =
(
D µ (J)

)
· D J (X) ∈ R1×2n ,

where D µ
(
β
)
, D µ (J), and DX µ (J) are the Jacobians of µ with respect to β, J, and X, respectively.

Dψi (X) =
(
D η (X)

)
µ (Ji) + η (X) DX µ (Ji) ∈ R1×2n .

The Jacobian is:
Dψ (X) = Dψ1 (X) + Dψ2 (X) ∈ R1×2n .

Appendix C.2. Second Derivative

H η (X) = (Dα)′ · 2I4 · Dα ∈ R2n×2n

H β (J) = |J|K2

(
J−1 ⊗ I2

)′
·
(

(vec I2) (vec I2)′ − I4

)
·
(
I2 ⊗ J−1

)
∈ R4×4

H µ (J) =
(
D β (J)

)′
· 2β−3 D β (J) +

(
D µ

(
β
))
· H β (J) ∈ R4×4

HX µ (J) = (D J)′ ·
(
H µ (J)

)
· D J ∈ R2n×2n ,

where H µ (J) and HX µ (J) are the Hessians of µ with respect to J and X, respectively.

Hψi (X) = sym
[ (

H η (X)
)
µ (Ji) + 2

(
D η (X)

)′
· DX µ (Ji) + η (X) HX µ (Ji)

]
∈ R2n×2n .

The Hessian is
Hψ (X) = Hψ1 (X) + Hψ2 (X) ∈ R2n×2n .
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Appendix D. Frame Alignment Energy Differentiation

Appendix D.1. First Derivative

D J−1 (X) = −
(
J−1 (X)

)′
⊗ J−1 (X) · D J (X) ∈ R4×6

D ξ (J) = vec (J − A)′ ∈ R1×4

D ξ
(
J−1

)
= vec

(
J−1 − A−1

)′
∈ R1×4 .

The Jacobian of ξ with respect to X is

D ξ (X) = D ξ (J) · D J (X) + D ξ
(
J−1

)
· D J−1 (X) ∈ R1×6 . (D.1)

Appendix D.2. Second Derivative

H ci j;2

(
J−1

)
= 2K′2

(
J−1Ei j;2J−1 ⊗ I2

)′
·
(
I2 ⊗ J−1

)
∈ R4×4

H J−1 (J) = sym


H c11;2

(
J−1

)
H c21;2

(
J−1

)
H c12;2

(
J−1

)
H c22;2

(
J−1

)


16×4

H J−1 (X) = (I4 ⊗ D J (X))′ ·
(
H J−1 (J)

)
· D J (X) ∈ R24×6

The Hessian of ξ with respect to X is

H ξ (X) = (D J (X))′ · D J (X) +
(
D J−1 (X)

)′
· D J−1 (X) +

(
D ξ

(
J−1

)
⊗ I6

)
· H J−1 (X) ∈ R6×6 . (D.2)
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