
IEEE TRANSACTIONS ON CYBERNETICS: #CYB-E-2016-08-1185 1

A Bi-level Optimization Model for Grouping Constrained
Storage Location Assignment Problems

Jing Xie, Yi Mei, Member, IEEE, Andreas T. Ernst, Xiaodong Li, Senior Member, IEEE, and Andy Song

Abstract—In this paper, a novel bi-level grouping optimization
model is proposed for solving Storage Location Assignment Prob-
lem with Grouping Constraint (SLAP-GC). A major challenge
of this problem is the grouping constraint which restricts the
number of groups each product can have and the locations of
items in the same group. In SLAP-GC, the problem consists of
two sub-problems, one is how to group the items, and the other
one is how to assign the groups to locations. It is an arduous task
to solve the two sub-problems simultaneously. To overcome this
difficulty, we propose a Bi-level Grouping Optimization model
(BIGO). BIGO optimizes item grouping in the upper level, and
uses the lower-level optimization to evaluate each item grouping.
Sophisticated fitness evaluation and search operators are designed
for both the upper and lower level optimization so that the
feasibility of solutions can be guaranteed, and the search can
focus on promising areas in the search space. Based on the BIGO
model, a multi-start random search (MSRS) method and a tabu
search algorithm are proposed. The experimental results on the
real-world dataset validate the efficacy of the BIGO model and
the advantage of the tabu search method over the random search
method.

Index Terms—Optimization, Storage Location Assignment
Problem, Grouping Constraint, Tabu Search, Heuristics

I. INTRODUCTION

IMPROVING productivity by optimizing the resource al-
location and process is one of core business activities in

warehouse industry [1]. In this paper we aim to establish
a novel methodology to address a real-world optimization
problem for warehouse operations.

Typical operations in a warehouse can be categorized into
four types: (1) (receiving) receiving shipments from suppli-
ers; (2) (storage) allocating stocks inside a warehouse; (3)
(picking) picking items according to customers’ orders; and
(4) (delivering) sending picked items to customers. Studies
show that among these operations, picking is the most costly
process, consuming about 50% to 60% of the total labor
works [2]. Improving the efficiency of picking is one of the
most promising ways of improving productivity. There are a
wide range of factors that can affect the picking efficiency.
For example, an unreasonable arrangement of items inside the
warehouse may significantly increase the item-picking time.
The routing strategy and the order batching strategy can also
affect efficiency. In this paper, we will investigate a prominent
problem associated with these factors, which is called the
Storage Location Assignment Problem (SLAP) [3].

J. Xie, X. Li, and A. Song are with the Department of Computer Sci-
ence and IT, School of Science, Melbourne VIC, RMIT University (email:
jing.xie@rmit.edu.au; xiaodong.li@rmit.edu.au; andy.song@rmit.edu.au ).

Y. Mei is with the School of Engineering and Computer Sci-
ence, Victoria University of Wellington, Wellington, New Zealand
(email:yi.mei@ecs.vuw.ac.nz).

AT. Ernst is with the the School of Mathematical Sciences, Monash
University, Clayton VIC, Australia (email:andreas.ernst@monash.edu).

The overall goal of SLAP is to minimize the warehouse
operational cost, subject to a set of constraints. In literature,
several operational cost measures have been reported, such as
the space utilization efficiency [4], the maximum load [5] and
the relocation cost [6]. There is no universally agreed measure-
ment for SLAP. In this paper, we consider the total picking
distance [7], which is one of the most widely used mea-
sures in literature. Intuitively, highly demanded or frequently
picked products should be assigned close to the loading dock.
However, simple sorting items based on their demands is
not suitable for SLAP in practice because of problem-specific
constraints. For example, the correlations between products are
typically considered so that products that are usually listed
in the same order from customers are assigned to nearby
locations. In production warehouse, the correlations between
products are normally estimated using the Bill-of-Material
(BOM) information [8] [9]. For other warehouses where BOM
information is not accessible, different approaches such as data
mining techniques [10] have been used to address the issue.

In this paper, we particularly focus on warehouses storing
garments, which is a special scenario not considered before.
To be more specific, different garment products may have
significantly different number of items. For example, T-shirt
or sportswear may contain many sizes (e.g., XS, S, M, L,
XL, etc.), which have different demands. In contrast, hats
and gloves usually have only one size. In previously studied
SLAP, a product is usually atomic, and each location is
capable of holding one product. However, this assumption is
not reasonable for warehouses storing garments. Otherwise,
there might be some locations holding more than one hundred
items while some others may have only one item. In this kind
of warehouses, it is more reasonable to take each item as
an inseparable storing unit, i.e. each location can hold one
item rather than one product. Consequently, the correlations
between items of the same product need to be considered.
More specifically, one needs to consider these correlations
based on the following facts: (1) items of the same product
are replenished simultaneously from the same supplier; (2)
the management cost will tremendously increase if items
of the same product are scattered around the warehouse;
and (3) items of the same product appear frequently on the
same customer order, especially on orders of workwear and
sportswear from companies and organizations. The Grouping
Constraint (GC) is proposed for this problem-specific scenario.
Under this constraint, each product cannot be divided into
more than two groups of items. All the items of the same
group have to be placed in adjacent locations. Fig. 1 depicts
an example of a simplified warehouse layout. In this example,
locations 1 to 3 are adjacent locations while locations 6 to 8
are not as they are located on different shelves.



IEEE TRANSACTIONS ON CYBERNETICS: #CYB-E-2016-08-1185 2

PD

1
2
3

7
8

6

Fig. 1. An example layout of a warehouse with 8 shelves, each containing
5 bins. White areas denote corridors while gray columns denote (vertical)
shelves. Area PD denotes the Pick-up/Drop-off location.

GC raises a feasibility issue that does not exist in other
SLAP variants. When the same group of items are restricted
to adjacent locations, it may be impossible to find a feasible
solution for some of the groupings such that the number of
items placed on a shelf does not exceed its capacity. This
issue makes it difficult for the existing scheduling methods to
be directly applied to SLAP-GC. Problem-specific algorithms
need to be designed to tackle it. Hence, the goal of this paper
is to achieve the following objectives:

1) To propose a Bi-level Grouping Optimization (BIGO)
model to transform SLAP-GC into a simpler and more
structured form;

2) To solve the proposed BIGO model by a Multi-Start Ran-
dom Search (MSRS) method and a tabu search method;

3) To develop problem-specific search operators to search
in the complex and constrained search space more effi-
ciently;

4) To verify the efficacy of the proposed BIGO model and
the developed algorithms using a real-world dataset.

The rest of this paper is organized as follows. Section II
gives the problem description and mathematical formulations
of SLAP-GC. Then, Section III gives an overview on the
existing and promising approaches for SLAP and SLAP-GC.
Section IV describes the proposed BIGO model for SLAP-GC,
which tackles the item grouping and location assignment sub-
problems in different levels. Section V describes the developed
MSRS and tabu search algorithms for solving the proposed
BIGO model. The efficacy of the proposed BIGO model and
developed algorithms are analyzed in Section VI. Section VII
concludes our study and discusses several possible future
research directions.

II. PROBLEM DESCRIPTION

We present a formal definition of SLAP-GC in this section.
As shown in Fig. 1, the warehouse is in a rectangular shape
with one Pick-up/Drop-off area. The locations are indexed
shelf by shelf, i.e. the ath location in the bth shelf is given an
index of (b− 1)× L+ a, where L is the length of the shelf.
The problem is to assign a set of products to a set of locations
without splitting each product into more than two groups.
Table I lists the notations used for the problem formulation.

We have two decision variables for the problem: xil equals
1 if the ith item is assigned to the lth location; ypl equals
1 if the lth location is a starting point of the pth product.
The integer linear programming (ILP) model of the problem
is presented in Eqs. (1)–(9).

TABLE I
THE NOTATIONS USED FOR THE PROBLEM DESCRIPTION OF SLAP-GC.

Notation Description

N total number of items/locations
M number of the shelves
L capacity (length) of each shelf
P number of the products
l index for locations, l = 1, . . . N
i, j index for items, i, j = 1, . . . , N
f(i) picking frequency of the ith item
p index for product, p = 1, . . . , P
vl, hl the vertical/horizontal distance from location l to the P/D point
Aip equals to 1 if the ith item belongs to the pth product
Bip equals to 1 if the ith item is the most popular in the pth product

min ς(x) =

N∑
i=1

N∑
l=1

fi (vl + hl)xil (1)

s.t.

N∑
i=1

xil = 1, l = 1, ..., N (2)

N∑
l=1

xil = 1, i = 1, ..., N (3)

N∑
l=1

ypl ≤ 2, p = 1, ..., P (4)

xil ≤
P∑
p=1

Aip

ypl +

N∑
j=1

Ajpxj,l−1

 , i, l = 1, ..., N

(5)
P∑
p=1

ypl = 1, ∀ lmod L = 1 (6)

P∑
p=1

Bipxil ≤
S∑
p=1

Bip

(
P∑
p=1

Aipypl

)
, i = 1, ..., N (7)

N∑
i=1

Aipxil ≥ ypl, p = 1, ..., P , l = 1, ..., N (8)

xil, ypl ∈ {0, 1}. (9)

The objective in Eq. (1) is to minimize the total picking
frequency weighted distance by determining the one-to-one
assignment of items to locations (Eqs. (2)–(3)). The rest of
the equations formulate GC. Eq. (4) implies that each product
has at most two starting points, i.e., each product has no more
than two groups. Then, if a location is a starting point for a
product, it is either the first location of a shelf or preceded
by an item of another product (Eqs. (5)–(6)). Eq. (7) states
that the most popular item of a product is always assigned to
a starting point of that product. Eq. (8) makes sure that each
one-item product only has one starting point.

III. RELATED STUDIES

The general SLAP has been extensively investigated in liter-
ature. Comprehensive surveys of the studies earlier than 2010
can be found in [3] [11] [12]. The research of different SLAP



IEEE TRANSACTIONS ON CYBERNETICS: #CYB-E-2016-08-1185 3

variants remains active since then. For example, [13] considers
the costs of re-handling containers on the top of the requested
container in a three-dimensional warehouse; [14] and [15]
consider the availability of the information throughout the
planning horizon; in [16], the congestion/waiting time is taken
into consideration when there are multiple pickers working
concurrently in the same region; the study presented in [17]
considers a pick-and-pass system, in which the warehouse is
divided into several picking zones, and each pick only collects
items in a particular zone.

For methodologies, both exact and heuristic approaches
have been applied to different SLAP variants. For example,
a branch-and-bound algorithm is applied to solve SLAP by
minimizing the sum of storage space cost and the handling cost
based on the class-based storage strategy [18]. An ILP model
is developed in [19] to optimize the average picking costs in
warehouses located in seismic areas with the consideration
of the rack stability. These exact methods can guarantee the
optimality of solutions but cannot scale well for large instances
due to the high complexity, which makes them computation-
ally prohibitive in industry applications. In contrast, heuristic
approaches such as simulated annealing, tabu search, and
genetic algorithms are widely used in real-world scenarios due
to their abilities to obtain reasonably good solutions within
the given time budget. For example, tabu search has shown its
capability in making dynamic operation policies for product
relocation [6]. Genetic algorithms have also been applied to
address different storage location problems [20] [21] [22]. To
achieve promising performance, a number of problem-specific
search operators for the heuristic methods have been developed
based on the insights of the characteristics of the problems.

All the aforementioned approaches, as well as the majority
of the studies in literature, do not consider the grouping con-
straint, and thus deal with the assignment sub-problem alone.
As a result, they are not effective for solving SLAP-GC, which
consists of two interdependent sub-problems (grouping and
assignment). Due to the interdependency, it is unwise to solve
the two sub-problems separately. However, solving the two
sub-problems simultaneously leads to a huge search space, and
thus a poor scalability. Therefore, one needs to design effective
heuristic approaches that can take the interdependency into
account and solve the two sub-problems cooperatively. For this
purpose, a GP method was proposed in [23] to evolve effective
heuristics for the grouping sub-problem. The item groupings
are selected one by one by using the current information
about the unassigned items and the distribution of the empty
locations in the warehouse. Then given this item grouping
heuristic, the assignment sub-problem can be solved by a
greedy heuristic.

Despite of the advantages over exact approaches shown
in [23], the GP method is not flexible enough, as the assign-
ment sub-problem is solved by a fixed heuristic. To achieve
better solutions, we consider using a Bi-level programming
approach [24] in this paper. Inspired by Stackelberg game [25],
a Bi-level model involves two players: the leader (the upper
level) and the follower (the lower level). The follower responds
to the decisions made by the leader to optimize its own
objective while the leader takes into account the optimal

reaction of the follower to optimize its objective [26], and
finally, both players accomplish their tasks. This programming
approach provides a novel perspective on the problem structure
and are gaining popularities in the field of logistics, for
example, the optimization of facility locations [27] [28] [29]
and the plannings of distribution networks [30] [31].

To develop a Bi-level model for SLAP-GC, we consider the
grouping sub-problem as the upper level, and the assignment
sub-problem as the lower level. The resultant BIGO model
aims to find the optimal grouping and the corresponding
optimal assignment under the optimal grouping.

IV. BI-LEVEL GROUPING OPTIMIZATION MODEL

In this section, we describe the proposed BIGO model
for solving the grouping and assignment sub-problems of
SLAP-GC. To facilitate the description, besides the notations
presented in Table I, we list some more notations for the BIGO
model in Table II.

TABLE II
THE NOTATIONS USED IN THE BI-LEVEL GROUPING OPTIMIZATION

(BIGO) MODEL.

Notation Description

Np number of items in the pth product
G an item grouping
G a set of all feasible item groupings
np(G) size of the “larger” group of the pth product in the grouping G
S a solution of SLAP-GC
S(G) a feasible solution under the grouping G
ΩS(G) the set of all the feasible solutions under the grouping G
S∗(G) the optimal solution under the grouping G
φ(S) fitness of the solution S
eij(S) item placed in the jth location of the ith shelf in the solution S

Given the notations, the BIGO model is stated as follows:

min
G∈G,

S∈ΩS(G)

F (G,S) = φ(S), (10)

s.t. : S ∈ arg min
S′∈ΩS(G)

φ(S′), (11)

where

φ(S) =

M∑
i=1

L∑
j=1

(i+ j)f(eij(S)). (12)

F (G,S) is the objective function, which is the total picking
frequency weighted distance φ(S) of a solution S. It is defined
in Eq. (12), where eij(S) indicates the item placed in the
jth location of the ith shelf in the solution S. The distance
from the location of eij(S) to the P/D point is defined as
the Manhattan distance, i.e. d(eij(S)) = i+ j, and f(eij(S))
stands for the picking frequency of the item eij(S). M is the
number of shelves, and L is the capacity (length) of each shelf.

In the proposed BIGO model, Eq. (10) is the upper level
optimization, and Eq. (11) is the lower level optimization. The
upper level optimization aims to find the optimal grouping
G∗, while the lower level optimization is to find the optimal
solution S∗(G∗) under the grouping G∗ in terms of the
objective value φ(·) .

The optimal solution of SLAP-GC is composed of the
optimal grouping G∗ and the optimal item assignment S∗(G∗)



IEEE TRANSACTIONS ON CYBERNETICS: #CYB-E-2016-08-1185 4

under this grouping. Therefore, the optimality can be guaran-
teed in the BIGO model. That is, the optimal solution to the
BIGO model is the optimal solution to the original SLAP-GC.

Since each product cannot be divided into more than two
groups, an item grouping G can be represented as a list
of numbers G = (n1(G), . . . , np(G)), where np(G) stands
for the size of the “larger” group (i.e. the group with no
fewer items than the other) of the pth product in G, and
dNp/2e ≤ np(G) ≤ Np (p = 1, . . . , P ). Consequently, the
number of items in the other group of product p is Np−np(G).
For example, suppose there are two products, Shirt and Jacket,
each with five items (S, M, L, XL and XXL). Then, the
grouping G that divides Shirt into Shirt(XXL, XL, S) and
Shirt(M, L), and Jacket into Jacket(S, M, XXL) and Jacket(XL,
L) is represented as G = (3, 3) since the larger groups of both
products have 3 items. By always keeping the sizes of the
larger groups in the representation, we can reduce the chance
of getting duplicated solutions.

A solution S is considered to be a feasible solution under
grouping G if the item groupings of all the products in
S comply with grouping G. Suppose that the aforemen-
tioned two products are to be placed in two 5-bins shelves.
Eqs. (13) and (14) show two solutions, where the element
in the ith row and jth column stands for item placed in
the ith location of the jth shelf. For example, Jacket(M) is
placed in the fourth location of the first shelf in these two
solutions. The groupings of S1 and S2 are G1 = (3, 3) and
G2 = (4, 4) respectively. Therefore, S1 is feasible under the
grouping G = (3, 3) while S2 is not.

S1 =


Shirt(M) Shirt(XXL)
Shirt(L) Shirt(XL)
Jacket(S) Shirt(S)
Jacket(M) Jacket(XL)

Jacket(XXL) Jacket(L)

 . (13)

S2 =


Shirt(M) Shirt(XXL)

Jacket(XL) Shirt(XL)
Jacket(S) Shirt(S)
Jacket(M) Shirt(L)

Jacket(XXL) Jacket(L)

 . (14)

V. BI-LEVEL GROUPING OPTIMIZATION ALGORITHMS

In this section, we propose two heuristic search algorithms
for finding solutions to the proposed BIGO model. First, we de-
sign the fitness evaluation for the groupings in the upper level
optimization based on solving the lower level optimization.
Then, we develop two search algorithms by hybridizing the
designed fitness evaluation with different search frameworks.
The first algorithm is a Multi-Start Random Search (MSRS)
method, and the second is a tabu search method. In the
following, we will describe the designed fitness evaluation and
the two search algorithms in turn.

A. Fitness Evaluation of Item Grouping

Based on Eqs. (10) and (11), the fitness function of a
grouping G can be set to the objective value of the optimal
solution S∗(G) under the grouping G. That is,

fit(G) = φ(S∗(G)) = min
S∈ΩS(G)

φ(S). (15)

However, finding S∗(G) is very hard, if not impossible,
since the lower level optimization is NP-hard. When there
are only two shelves (i.e. M = 2), and all the items have
the same picking frequency, the lower level optimization, i.e.
finding the optimal assignment under a given grouping, can be
reduced to the NP-hard partition problem. In this situation, we
design a local-search-based fitness evaluation to approximate
the real optimal value with local optimal values. To this
end, four different search operators, namely inSlfSort,
slfSort, groupSort, and itemSort, are designed to
conduct the local search. They sort the items and/or shelves
to reach nearby local optimal solutions efficiently. The pseudo
code of the local-search-based fitness evaluation is given in
Algorithm 1. The local search starts from an initial feasible
solution S0(G), which can be obtained in various ways such
as using an initialization algorithm or adopting an examined
solution during the search process. Then, at each iteration, the
four search operators are randomly shuffled and applied to the
current solution one by one. The local search is stopped if
there is no improvement or the number of iterations reaches
to the maximum number nmax.

Algorithm 1 (fit(G), S∗(G))← Evaluate(G,S0(G))

INPUT: A grouping G and an initial feasible solution S0(G)
OUTPUT: fit(G) and the corresponding solution S∗(G)

1: Set the pool of search operators Ω ←
{inSlfSort,slfSort,groupSort,itemSort};

2: S ← S0(G);
3: n← 0;
4: while n < nmax do
5: S′ ← S;
6: Randomly shuffle Ω;
7: for each sort ∈ Ω do
8: Apply sort to S′;
9: end for

10: n← n+ 1;
11: if φ(S′) ≥ φ(S) then
12: break;
13: end if
14: S ← S′;
15: end while
16: fit(G)← φ(S), S∗(G)← S;
17: return (fit(G), S∗(G));

The details of the four search operators are described as
follows:

1) inSlfSort: This operator sorts all the groups placed
in the same shelf in the descending order of the average
picking frequency, and thus, the groups with higher average
picking frequency are always placed in the locations closer to
the P/D point. Since inSlfSort does not change the number



IEEE TRANSACTIONS ON CYBERNETICS: #CYB-E-2016-08-1185 5

B(12)

B(8)

B(7)

D(18)

D(9)

C(18)

C(2)

C(1)

D(26)

G(19)

F(35)

F(28)

B(21)

E(15)

G(7)

C(30)

A(20)

F(14)

E(4)

A(3)

PDPD

(a) The original solution.

D(18)

D(9)

B(12)

B(8)

B(7)

D(26)

G(19)

C(18)

C(2)

C(1)

F(35)

F(28)

B(21)

E(15)

G(7)

C(30)

A(20)

F(14)

E(4)

A(3)

PDPD

(b) The solution after inslfSort.

F(35)

F(28)

B(21)

E(15)

G(7)

C(30)

A(20)

F(14)

E(4)

A(3)

C(18)

C(2)

C(1)

D(26)

G(19)

B(12)

B(8)

B(7)

D(18)

D(9)

PDPD

(c) The solution after slfSort.

B(21)

B(12)

B(8)

D(26)

D(9)

C(30)

C(18)

C(1)

D(18)

G(19)

F(35)

F(28)

B(7)

E(15)

G(7)

C(2)

A(20)

F(14)

E(4)

A(3)

PDPD

(d) The solution after itemSort.

C(30)

A(20)

F(14)

D(18)

D(9)

B(21)

E(15)

G(7)

D(26)

G(19)

F(35)

F(28)

C(18)

C(2)

C(1)

B(12)

B(8)

B(7)

E(4)

A(3)

PDPD

(e) The solution after groupSort
when k = 3.

B(12)

B(8)

B(7)

D(18)

D(9)

F(35)

F(28)

B(21)

E(15)

G(19)

C(18)

C(2)

C(1)

D(26)

G(7)

C(30)

A(20)

F(14)

E(4)

A(3)

PDPD

(f) The solution after groupSort
when k = 4.

Fig. 2. Illustrations to show how the sorting operators work. Fig. 2a is
the original solution. Figs. 2b–2f are the solutions after applying different
operators to the original solution. Each cell is labeled with the product name
and picking frequency of the item assigned to it. The modified locations are
circled by red ellipses.

of items placed in each shelf or the item groupings, it does
not change the feasibility of the solution.

2) slfSort: This operator sorts all the shelves in the
descending order of the average picking frequency of all the
items placed on the shelf. After the sorting, the shelf with the
higher average picking frequency is always closer to the P/D
point. There is no movement of items cross the shelves, and
thus, this operator does not change the feasibility.

3) itemSort: This operator sorts all the items of each
product without changing the locations assigned to the product,
and thus, the feasibility of the solution is not changed. After
applying itemSort, for each product, the items with higher
picking frequencies are always placed in the locations closer
to the P/D point than the ones of the same product but with
lower picking frequencies. Since itemSort only shifts items
of same products, it does not change the groupings, and the
feasibility of the resultant solution is maintained.

4) groupSort: The groupSort operator exchanges
groups of items with the same size regardless of which shelf

they are located in. Given a number k (1 ≤ k ≤ L − 1), the
operator looks for chunks of item groups whose sizes equal to
k, and then sort them in the decreasing order of the average
picking frequency. Note that a chunk can be composed of
multiple adjacent item groups. In addition, the groupSort
operator requires that there is no overlap among the selected
chunks (they share no common item). If there are overlapping
chunks, only one of them are selected randomly. Since all
the selected chunks have the same size (k), the feasibility of
the solution is not changed after the sorting. The groupSort
operator starts with k = 1, and sorts all the single-item chunks.
Then, k is increased by 1, and the groupSort operator
continues to sort all the 2-item chunks. The whole process
continues until all the L− 1-item chunks have been sorted.

Fig. 2 illustrates how the four sorting operators work. The
original solution is shown in Fig. 2a, in which each cell is
labelled with the product name and picking frequency of the
item assigned to it. For example, C(18) indicates that the
item belongs to product C and has a picking frequency of
18. Figs. 2b–2f show the resultant solutions after applying the
sorting operators, where the modified locations are circled by
red ellipses.

As shown in Fig. 2b, after applying the inslfSort oper-
ator, the item groups with larger average picking frequencies
are always closer to the PD point than other item groups
in the same shelf (e.g. {B(7), B(8), B(12)} versus {D(9),
D(18)} in the first shelf). As shown in Fig. 2c, the shelves
are sorted by the slfSort operator so that the shelves with
higher average picking frequencies are closer to the PD point.
Fig. 2d shows the solution obtained by the itmSort operator.
The locations of the products are not changed. However, the
locations of the items of products B, C and D are sorted so
that the items with larger picking frequencies are closer to the
PD point. Figs. 2e and 2f show the solutions obtained by the
groupSort operator for k = 3 and k = 4 respectively. In
Fig. 2e, four 3-item chunks are selected and sorted. In Fig. 2f,
two 4-item chunks are exchanged after the sorting. In fact, the
groupSort operator selects another chunk in the last shelf,
which is {A(3), E(4), F(14), A(20}. However, the location of
this chunk is not changed after the sorting.

B. Multi-Start Random Search (MSRS)

The framework of MSRS is described in Algorithm 2. It
repeatedly generates and evaluates groupings until the stopping
criteria are met. In each iteration, a grouping G is first
generated by randomly splitting each product into no more
than two groups (line 5). Then, a feasible solution S0 under the
grouping G is initialized by Init(G), which will be described
in Algorithm 3 (line 6). Init(G) is a greedy insertion
algorithm and may not be able to obtain feasible solutions
for some groupings. Therefore, the grouping generation and
solution initialization are repeated until a feasible solution
under the generated grouping is found. Then the grouping
and the initialized solution are evaluated by Evaluate(·),
i.e. the local-search-based fitness evaluation described in the
last section. The best-so-far item grouping G∗ and the optimal
solution S∗ will be updated every time a better grouping is



IEEE TRANSACTIONS ON CYBERNETICS: #CYB-E-2016-08-1185 6

found (line 9–11). Finally, MSRS returns the best grouping
and the corresponding best solution.

Algorithm 2 MSRS for SLAP-GC using the BIGO model
1: G∗ ← null, S∗ ← null, fit(G∗)←∞;
2: while Stopping criteria are not met do
3: S0 ← null;
4: while S0 = null do
5: Randomly generate a grouping G;
6: S0 ← Init(G);
7: end while
8: (fit(G), S∗(G))← Evaluate(G,S0);
9: if fit(G) < fit(G∗) then

10: G∗ ← G, S∗ ← S∗(G), fit(G∗)← fit(G);
11: end if
12: end while
13: return (G∗, S∗);

Given a grouping G, the solution initialization algorithm
Init(G) is described in Algorithm 3. It is a greedy insertion
heuristic. At first, all the shelves are empty and all the items
are unassigned. For each product, the items are grouped based
on G. Then, at each step, the heuristic selects the largest
unassigned item group and insert it into the best feasible
locations (i.e. closest to the P/D point). Note that such a greedy
insertion may not lead to a feasible solution, and some groups
may not be able to fit into the shelves without exceeding their
capacities. In this case, the algorithm returns null, indicating
that no feasible solution is found.

Note that MSRS randomly generate new groupings for
the upper level optimization of the BIGO model, and we
considered it as a baseline algorithm for SLAP-GC using the
BIGO model.

C. Tabu Search

Proposed by Glover and Laguna [32] [33] [34], tabu search
has been successfully applied to various real-world problems,
such as scheduling problems [35] [36], planning [37] [38],
static and dynamic assignment problem [39] [40], and graph
theory [41] [42]. Since SLAP-GC is similar to these problems
in many aspects (e.g. they are all combinatorial optimization
problems), it is reasonable to expect tabu search to perform
well in solving SLAP-GC.

The framework of the proposed tabu search algorithm for
solving SLAP-GC using the BIGO model is given in Algo-
rithm 4. First, the current grouping G is randomly initial-
ized and the corresponding best solution S is obtained by
Evaluate(·) (lines 1–6). The tabu list is initialized to be
empty, and the best-so-far grouping G∗ and solution S∗ are set
to the current ones respectively. Then, in each iteration, all the
neighbors (G′, S′) in the neighborhood N (G,S) are evaluated
(lines 11–19), and the best non-tabu neighbor is selected to
replace the current grouping and solution (line 20). A widely
used improved-best aspiration criterion is also employed in
this implementation (line 13). When a new solution is better
than the best-so-far solution, it will be accepted even the
corresponding move is tabu. Then, the best-so-far result and

Algorithm 3 S ← Init(G)

INPUT: A grouping G;
OUTPUT: A solution S under grouping G;

1: Set S ← ∅;
2: Split each product according to the grouping G to obtain

the item groups Ek(p), k = 1, 2 and p = 1, . . . , P ;
3: Set all item groups as unassigned;
4: while not all item groups are assigned do
5: Select the largest unassigned item group E∗;
6: if there exist feasible locations in S for E∗ then
7: Assign E∗ to the best feasible locations in S;
8: Set E∗ as assigned;
9: else

10: return null;
11: end if
12: end while
13: return S;

the tabu list are updated accordingly (lines 21–24). Finally,
the best-so-far grouping G∗ and solution S∗ are returned.

Algorithm 4 Tabu search for SLAP-GC using the BIGO model
1: S0 ← null;
2: while S0 = null do
3: Randomly generate a grouping G;
4: S0 ← Init(G);
5: end while
6: (fit(G), S)← Evaluate(G,S0);
7: Initialize the tabu list tabuList← ∅;
8: G∗ ← G, S∗ ← S;
9: while Stopping criteria are not met do

10: Gnext ← null, Snext ← null, bestF itOneItr ←∞;
11: for each (G′, S′) ∈ N (G,S) do
12: (fit(G′), S∗(G′))← Evaluate(G′, S′);
13: if G′ is not tabu or G′ satisfies the aspiration

criterion then
14: if fit(G′) < bestF itOneItr then
15: Gnext ← G′, Snext ← S∗(G′);
16: bestF itOneItr ← fit(G′);
17: end if
18: end if
19: end for
20: G← Gnext, S ← Snext;
21: if fit(G) < fit(G∗) then
22: G∗ ← G, S∗ ← S;
23: end if
24: Update tabuList according to Gnext, and remove the

tabu elements whose tabu duration have reached the tabu
tenure;

25: end while
26: return (G∗, S∗);

In Algorithm 4 (and in tabu search in general), two major
issues are to be addressed: (1) the neighborhood definition and
(2) the structure of the tabu list. In this paper, we will address
them as follows:



IEEE TRANSACTIONS ON CYBERNETICS: #CYB-E-2016-08-1185 7

1) Neighborhood Definition: In this work, the neighbor-
hood is defined by two problem-specific move operators called
resizeInSlf and resizeXSlf. The operators change the
current grouping and solution by moving the items within
the same shelf and cross different shelves respectively. The
movements are carefully designed to keep the feasibility of
the solution. The details of the two operators are given below.

a) resizeInSlf: This operator changes the grouping
of the products whose two groups are placed in the same shelf.
Suppose that two groups E1 and E2 belong to the same product
and are placed in the same shelf. Without loss of generality,
E1 is assumed to be placed closer to the P/D point than E2. We
can carry out the following two operations without changing
the feasibility: (1) move the last item of E1 to the front of E2,
and shift forward all the items in between; (2) move the first
item of E2 to the end of E1, and shift backward all the items in
between. Since the number of items placed in the shelf does
not change, the resizeInSlf operator does not change the
feasibility of the solution.

b) resizeXSlf: In contrast to the resizeInSlf
operator, the resizeXSlf operator is applied to groups of
items that are placed in different shelves. This may involve
multiple products in order to keep the feasibility of the
solution, i.e., to keep the number of items placed in the shelves
unchanged. For example, if one item is moved from shelf A
to shelf B, one must move another item from shelf B back
to shelf A without violating the grouping constraint. Here,
given two shelves A and B, the following two scenarios are
considered:
• There are two products so that both products have one group

placed in shelf A, and the other placed in shelf B. Let E11

and E12 be the two groups of the first product, and E21

and E22 be the two groups of the second product, one can
assume that E11 and E21 are placed in shelf A, and E12 and
E22 are placed in shelf B without loss of generality. In this
case, one can move one item from E11to E12 (from shelf A
to shelf B), and move one item from E22 to E21 (from shelf
B to shelf A), or vice versa.

• There is one product with two item groups E11 and E12,
where E11 is placed in shelf A and E12 in shelf B. In
addition, there is another single-item group E2 in shelf A
or B. Without loss of generality, one can assume that E2 is
in shelf A. Then, one can move an item from E12 to E11

(from shelf B to A), and move E2 to shelf B to fill the
empty location.
2) Tabu List: In tabu search, the tabu list is designed to

prevent the search from going back to the areas that have
been explored recently. Therefore, a key issue is how to design
the tabu list structure to properly represent the previously
explored areas. The tabu list structure can be designed in
various ways, such as solution-based tabu lists (forbid to go
back to previously visited solutions) and operation-based tabu
lists (forbid to reverse a previously conducted operation). In
this paper, we adopt the operation-based tabu list structure
due to its space efficiency and ability to represent search
areas rather than exact solutions. We design two different
operation-based tabu list structures, called TL1 and TL2. They
are described as follows:

a) TL1: In this tabu list, an element is defined as a previ-
ously modified product and its previous grouping, represented
as a tuple (p, np(G)).

b) TL2: In this tabu list, an element is defined as a
previously modified product, represented as an ID (p).

A simple example is provided here to demonstrate how the
two tabu lists are updated. Assuming that the current solution
consisting of 4 products (Shirt, Jacket, Shoes and Trousers) is
given as follows:

S =


Shirt(M) Shirt(XXL) Jacket(XL)
Shirt(L) Shirt(XL) Jacket(L)
Jacket(S) Shirt(S) Trousers(L)
Jacket(M) Shoes(5) Shoes(6)

Jacket(XXL) Shoes(8) Shoes(9)

 .

In this solution, the number of items of the products are 3,
3, 2 and 1, respectively. Therefore, the current grouping is
G = (3, 3, 2, 1).

Then, suppose after applying the move operators (e.g.
resizeInSlf and resizeXSlf), we obtain the following
new solution:

S′ =


Shirt(M) Shirt(XXL) Jacket(XL)
Shirt(L) Shirt(XL) Jacket(L)
Jacket(S) Shirt(S) Shoes(6)
Jacket(M) Trousers(L) Shoes(5)

Jacket(XXL) Shoes(8) Shoes(9)

 .

In this new solution, the items Shoes(5) and Trousers(L) are
swapped, and the grouping of the Shoes product is changed,
i.e. nShoes(G) is changed from 2 to 3. As a result, the new
grouping is G′ = (3, 3, 3, 1). In this situation, the element for
TL1 is (Shoes, 2) and that for TL2 is (Shoes).

The effectiveness of the two tabu list structures will be
investigated in the experimental studies (Section VI), and the
better one will be selected for the comparison with other
algorithms.

VI. EXPERIMENTAL STUDIES

To evaluate the efficacy of the proposed BIGO model, we
use a real-world dataset collected from a warehouse business
owned by a local company based in Melbourne, Australia.
The dataset includes the garment orders in four years 1. From
this dataset, we generate a variety of benchmark instances
with different problem sizes and difficulties. Then, to verify
the effectiveness of the proposed BIGO model, we test the
proposed MSRS and tabu search algorithms on the benchmark
instances, and their performance is compared with the branch-
and-cut method and the previously proposed GP approach
[23]. The branch-and-cut method is an exact method that can
guarantee optimality. However, it can only be applied to small
to medium sized instances due to the high complexity. The GP
approach is the current state-of-the-art heuristic approach for
SLAP-GC. In addition, we also compare between the MSRS
method and the tabu search method to show the advantage of
the tabu search framework (e.g. using historical information
and prevent from revisiting recently explored areas) when
using the BIGO model.

1This is the full dataset of four years available in the current ERP system
of the actual warehouse.



IEEE TRANSACTIONS ON CYBERNETICS: #CYB-E-2016-08-1185 8

A. Real-world Data and Benchmark Generation

Table III gives the summary of the real-world data year by
year, where P is the number of products requested in the order
in that year, and Np is the number of items of the pth product.
maxNp, minNp and meanNp are the maximum, minimum
and mean number of items in the products. The factor α = P̂

P
is the proportion of products with no more than two items,
where P̂ is the size of the subset of the original products
containing no more than two items. It reflects the difficulty of
the instance to some extent, and a higher α value indicates
that the instance tends to be easier to solve, since there are
more products with only one or two items. In an extreme case
where α = 1, all the products have only one or two items,
and the grouping constraint can be eliminated.

From the table, one can see that there are more than 400
products requested in each year’s orders, and each product
contains 25 or 26 items on average. There are totally over
10,000 items requested each year. The number of items varies
significantly from one product to another. The smallest product
has only one item, while the largest product has 162 items. The
α value is quite small (only about 5% of the products have
no more than two items), indicating that the corresponding
problem instances are difficult to solve.

Four real-world instances are generated based on these order
information, each corresponding to the data in one year (one
row in Table III). To construct the problem, we define the
warehouse information including the number of shelves (M )
and the capacity of each shelf (L) for each year of data. Here,
we assume that the capacity of each shelf is fixed to 140, and
the number of shelves varies from one year to another to fit
the number of items requested in that year.

TABLE III
SUMMARY OF THE REAL-WORLD DATA SETS. P IS THE NUMBER OF

PRODUCTS, AND Np IS THE NUMBER OF ITEMS OF THE pth PRODUCT. α
STANDS FOR THE PROPORTION OF PRODUCTS WITH ONE OR TWO ITEMS.

M AND L ARE THE NUMBER OF SHELVES AND THE SHELF SIZE
RESPECTIVELY.

Year Order Info. Warehouse Info.

P maxNp minNp meanNp α M L

1 478 162 1 26 0.059 89 140
2 403 162 1 25 0.050 72 140
3 450 162 1 25 0.047 83 140
4 486 162 1 26 0.037 92 140

Note that these instances are too large and prohibitive for
the branch-and-cut approach. To make meaningful comparison
with the branch-and-cut approach, we further generate 48
benchmark instances with various problem sizes (from 100
to 900 items in total) and difficulties (i.e. different α values)
by randomly sampling products and items from the real-world
data. Due to space limit, the benchmark generation algorithm
is not given here. Details can be found in the supplementary
material.

For the sake of clarity, the four large instances based on the
yearly data are referred to as the real-world instances, and the
48 benchmark instances generated by random sampling are
referred to as the benchmark instances.

B. Experiment Setup

All the compared algorithms are implemented in Java. The
tabu search is implemented using the library provided in [43].
The branch-and-cut approach is implemented using Gurobi
6.5 [44]. The GP algorithm is implemented using ECJ21 [45].
The experiments for the benchmark instances are carried out
on a desktop computer with Intel Core i7-3770 CPU and 8
GB of RAM. The experiments for the real-world instances
are conducted on cloud computing facilities provided by
VPAC [46]. For each compared algorithm and each instance,
20 independent runs are conducted. The stopping criteria for
the compared algorithms are set as follows.
1) Both the tabu search and MSRS method stop at a maximum

running time. Based on our preliminary experiment, the
running time for 100-item, 400-item, and 900-item in-
stances were set to 10, 100, and 500 seconds, respectively.
For the real-world instances, the running time was set to
70 hours on the cloud computing facilities.

2) The branch-and-cut approach is only applied to the 100-
item and 400-item benchmark instances with a maximum
running time of 2 hours.

3) Unlike the tabu search and MSRS, the GP algorithm [23] is
a hyper-heuristic that evolves heuristics/rules that construct
solutions by inserting item groups one by one. The GP
algorithm trains rules using a set of SLAP-GC instances
(training set), and the trained rules can then be used on
any unseen test instances.
To make a fair comparison, for each benchmark instance,
the GP algorithm directly evolves rules on that instance,
and its training (optimization) performance is compared
with other algorithms. The maximal generation is set to 30,
which can guarantee the convergence of the GP algorithm.
For the large real-world instances, the training process of
GP is too time consuming. To address this issue, we ran-
domly select 200 rules obtained by GP from the benchmark
instances, and test them on the real-world instances. For
each real-world instance, the top 20 results are used for
comparison with other algorithms.

C. Tabu Parameters

In Section V-C, two tabu list structures were proposed for
the tabu search. It is unknown which one will be better for
solving SLAP-GC. In addition, the tabu tenure is an important
parameter that can significantly affect the performance of the
tabu search. To decide the best tabu tenure value and tabu
list structure for the tabu search for SLAP-GC, preliminary
experiments are carried out to compare a range of tabu tenure
values for both tabu list structures on several benchmark
instances.

In the preliminary experiments, a small (100-item), a
medium (400-item), and a large (900-item) instance are gener-
ated for parameter tuning using the same procedure descried
in Section VI-A. For the β parameter, the values {0.1, 0.3,
0.5, 0.7} are taken into account. In addition, it is reasonable to
believe that the best tabu tenure value depends on the problem
size, and a larger problem size should require a longer tabu
tenure. Therefore, in the preliminary experiments, we set the



IEEE TRANSACTIONS ON CYBERNETICS: #CYB-E-2016-08-1185 9

tabu tenure as β×P , where β is a tabu tenure coefficient, and
P is the number of products in the instance.

Table IV shows the mean and standard deviation of the
results of the tabu search with the compared parameter settings
over 20 independent runs. For each instance, the smallest mean
and standard deviation values are marked in bold. The results
shown in Table IV indicate that for all the three instances,
the tabu list structure TL1 and β = 0.7 obtained the best
performance. Therefore, we set the tabu list structure to TL1

and β = 0.7 for the tabu search algorithm in the subsequent
experiments.

TABLE IV
THE MEAN AND STANDARD DEVIATION OF THE RESULTS OF TABU SEARCH

WITH THE TABU LIST STRUCTURE TL1 AND TL2 AND DIFFERENT β
VALUES OVER 20 INDEPENDENT RUNS. FOR EACH INSTANCE, THE

SMALLEST MEAN AND STANDARD DEVIATION VALUES ARE MARKED IN
BOLD.

TL1 TL2

Instance M L β mean std mean std

1 10 10

0.1 11364.7 13.3 11360.9 9.3
0.3 11359.2 3.8 11355.6 2.8
0.5 11354.8 2.8 11360.0 3.2
0.7 11353.8 2.3 11369.1 5.4

2 20 20

0.1 134741.7 74.4 134727.7 138.7
0.3 134679.7 22.8 134716.8 23.7
0.5 134671.4 21.5 134782.1 34.6
0.7 134658.5 18.8 134890.8 45.7

3 30 30

0.1 667167.5 97.8 667180.1 47.9
0.3 667146.7 42.0 667246.1 53.4
0.5 667165.3 42.6 667359.8 78.3
0.7 667139.5 32.5 667538.6 110.1

D. Experiment Results on Benchmark Instances

First, we compare the performance of the branch-and-cut
approach, the GP algorithm [23] and the proposed MSRS
and tabu search algorithms on the 48 benchmark instances,
which can be categorized into small instances (100 items),
medium instances (400 items) and large instances (900 items)
There are 12 small instances, 12 medium instances and 24
large instances. Note that the categorization is purely based on
problem size, which is an intuitive way to classify instances
into difference difficulty levels.

The results of the compared algorithms on the 48 benchmark
instances are shown in Tables V–IX. For each instance and
each algorithm, the mean, standard deviation and best results
over the 20 independent runs are reported, along with the
deviation of the mean and best results to the corresponding
lower bound, i.e. ∆fit

LB(%) = fit−LB
LB ×100%, where LB refers

to the lower bound obtained by the branch-and-cut approach.
For the branch-and-cut approach, the percentage deviation of
its upper and lower bounds, i.e. ∆bc(%) = UB−LB

LB × 100%
is reported as well, where UB refers to the upper bound.

1) Small Instances: Table V shows the average perfor-
mance of the compared methods on the 12 small instances. The
instances have layouts of either 4×25 or 10×10 in the format
of M×L. For each layout, there are six instances with different
α values. The Mann-Whitney U test is conducted between
the results of the GP, MSRS and tabu search algorithms (with

significance level of 0.05 and Bonferroni correction). The entry
is highlighted in bold if the corresponding algorithm performs
significantly better than both of the other two algorithms. The
entry is marked with ∗ if the corresponding algorithm performs
significantly better than one of the other algorithms.

From Table V, we can see that the branch-and-cut approach
can obtain both upper and lower bounds for all the small in-
stances except Instance 9, on which no feasible solution (UB)
is found. The ∆bc(%) values of some instances (e.g. Instances
1, 5, 10 –12) are very small, indicating that the branch-and-
cut approach can obtain near optimal or optimal results for
these instances. Among the heuristic search approaches (GP,
MSRS and tabu search), it is clear that tabu search significantly
outperforms the other two algorithms. Both MSRS and tabu
search perform significantly better than the GP algorithm, and
achieved less than 1% of deviation to the lower bound obtained
by the branch-and-cut approach on most small instances (9
out of 12 instances for MSRS and all 12 instances for tabu
search). This demonstrates the efficacy of the proposed BIGO
model in solving SLAP-GC. Note that for Instance 1, both
MSRS and tabu search consistently reached the upper bound
(59793) obtained by the branch-and-cut approach in all the
20 runs. Therefore, it is possible that all of them reach the
optimal results for Instance 1. In addition, we can observe from
the table that for the MSRS and tabu search approaches, the
value of ∆mean

LB (%) decreases with the increase of the α value.
This partially demonstrates that the difficulty of the instance
decreases with the increase of the α value.

Table VI exhibits the best (smallest) fitness values obtained
in 20 runs of the compared algorithms on the small instances.
The UB and LB of the branch-and-cut approach are also given
for reference. For each instance, the smallest min value among
the GP, MSRS and tabu search methods is highlighted in bold.
The second smallest min value is marked with ∗. Overall,
the best performance of the compared methods is consistent
with the average performance. The tabu search consistently
shows better performance than MSRS and GP, and MSRS
performs better than the GP method for most instances. When
comparing to the best solutions obtained by the branch-and-
cut approach (UB), the tabu search obtained better results on
seven small instances, while slightly worse results on only
three instances in the best case. This shows the effectiveness
of the BIGO model and the tabu search in solving SLAP-GC.

2) Medium Instances: Table VII shows the average perfor-
mance of the compared methods on the 12 medium instances,.
The instances have layouts of either 10× 40 or 20× 20. For
each layout, there are six instances with different α values.
Among these 12 medium instances, the branch-and-cut ap-
proach successfully obtained both upper and lower bounds for
only five instances. Also, the UB values of the branch-and-cut
approach on these instances are much worse than the results
obtained by the GP, MSRS and tabu search algorithms. This
indicates that the medium instances are difficult for the branch-
and-cut approach to find promising solutions effectively.

Then we compare the heuristic search algorithms on these
medium instances and find similar patterns to that of the small
instances. The tabu search performs significantly better than
GP and MSRS on all the 12 medium instances. The ∆mean

LB



IEEE TRANSACTIONS ON CYBERNETICS: #CYB-E-2016-08-1185 10

TABLE V
THE AVERAGE PERFORMANCE OF THE 100-ITEM SMALL INSTANCES. THE MANN-WHITNEY U TEST IS CONDUCTED BETWEEN THE RESULTS OF THE
GP, MSRS AND TABU SEARCH ALGORITHMS (WITH SIGNIFICANCE LEVEL OF 0.05 AND BONFERRONI CORRECTION). THE ENTRY IS HIGHLIGHTED IF

THE CORRESPONDING ALGORITHM PERFORMS SIGNIFICANTLY BETTER THAN BOTH OF THE OTHER TWO ALGORITHMS. THE ENTRY IS MARKED WITH ∗

IF THE CORRESPONDING ALGORITHM PERFORMS SIGNIFICANTLY BETTER THAN ONE OF THE OTHER TWO ALGORITHMS.

No. M L α
branch-and-cut GP MSRS Tabu

UB LB ∆bc(%) mean± std ∆mean
LB (%) mean± std ∆mean

LB (%) mean± std ∆mean
LB (%)

1 4 25 0.00 59793 59256 0.91 60018.7 ± 102.7 1.29 * 59793.0 ± 0.0 0.91 * 59793.0 ± 0.0 0.91
2 4 25 0.14 76912 75503 1.87 76845.7 ± 135.8 1.78 * 76497.8 ± 83.2 1.32 75929.3 ± 5.1 0.56
3 4 25 0.25 34832 27379 27.22 29087.9 ± 451.3 6.24 * 27675.0 ± 35.7 1.08 27594.7 ± 41.5 0.79
4 4 25 0.33 21396 16422 30.29 17472.5 ± 467.0 6.40 * 16516.4 ± 11.8 0.57 16506.1 ± 11.2 0.51
5 4 25 0.50 29160 29151 0.03 29951.4 ± 227.3 2.75 * 29284.1 ± 29.1 0.46 29169.9 ± 2.2 0.06
6 4 25 0.53 32790 32663 0.39 33416.8 ± 932.6 2.31 * 32852.8 ± 26.4 0.58 32736.1 ± 9.9 0.22

7 10 10 0.08 12200 9765 24.94 9877.6 ± 24.3 1.15 * 9831.0 ± 7.4 0.68 9793.7 ± 1.2 0.29
8 10 10 0.19 14886 14775 0.75 14992.7 ± 23.4 1.47 * 14939.6 ± 13.6 1.11 14885.6 ± 1.7 0.75
9 10 10 0.25 - 10971 - 11118.1 ± 35.4 1.34 * 11001.3 ± 3.3 0.28 10988.3 ± 1.4 0.16
10 10 10 0.33 14898 14898 0.00 15106.0 ± 95.1 1.40 * 14944.2 ± 7.1 0.31 14902.1 ± 1.2 0.03
11 10 10 0.48 11834 11834 0.00 11937.5 ± 77.6 0.87 11893.3 ± 9.6 0.50 11841.2 ± 3.5 0.06
12 10 10 0.60 24505 24482 0.09 24816.7 ± 223.8 1.37 * 24533.2 ± 7.7 0.21 24507.9 ± 2.7 0.11

values of the tabu search approach are all relatively small (less
than 1%). Although worse than the tabu search, MSRS still
performs significantly better than the GP method on nine out
of the 12 medium instances while only outperformed by GP
on three instances.

TABLE VI
THE min FITNESS VALUES OF THE 20 RUNS OF THE COMPARED METHODS

ON SMALL INSTANCES. THE UB AND LB OF THE BRANCH-AND-CUT
APPROACH IS GIVEN FOR REFERENCE. FOR EACH INSTANCE, THE
SMALLEST min VALUE AMONG GP, MSRS AND TABU SEARCH IS

HIGHLIGHTED. THE SECOND SMALLEST min VALUE IS STARRED (∗).

No. branch-and-cut GP MSRS Tabu Smallest

UB LB min min min ∆min
LB (%)

1 59793 59256 59793 59793 59793 0.91
2 76912 75503 76497 * 76361 75924 0.56
3 34832 27379 27983 * 27593 27578 0.73
4 21396 16422 16702 * 16498 16495 0.44
5 29160 29151 29652 * 29222 29167 0.05
6 32790 32663 33018 * 32772 32732 0.21

7 12200 9765 9834 * 9815 9793 0.29
8 14886 14775 14963 * 14911 14882 0.72
9 - 10971 11083 * 10994 10986 0.14
10 14898 14898 14978 * 14922 14899 0.01
11 11834 11834 * 11855 11875 11835 0.01
12 24505 24482 24604 * 24520 24505 0.09

Table VIII shows the smallest fitness values obtained by the
compared methods on the medium instances. It can be seen
that tabu search obtains the smallest min values among all
the compared algorithms on all the medium instances. MSRS
obtains smaller min fitness values than the GP method on
seven out of the 12 medium instances.

3) Large Instances: Table IX shows the average perfor-
mance of the compared methods on the 24 900-item large
instances, which include four different layouts (10 × 90,
15 × 60, 20 × 45, and 30 × 30). For each layout, there are
six instances with different α values. Due to the complexity
of the large instances, the branch-and-cut method is no longer
applicable. In fact, JVM (JAVA Virtual Machine) on the test
platform runs out of memory for most of the cases. Overall, the
tabu search still performs the best among the three compared

TABLE VIII
THE min FITNESS VALUES OF THE 20 RUNS OF THE COMPARED METHODS

ON MEDIUM INSTANCES. THE UB AND LB OF THE BRANCH-AND-CUT
APPROACH IS GIVEN FOR REFERENCE. FOR EACH INSTANCE, THE
SMALLEST min VALUE AMONG GP, MSRS AND TABU SEARCH IS

HIGHLIGHTED. THE SECOND SMALLEST min VALUE IS STARRED (∗).

No. branch-and-cut GP MSRS Tabu Smallest

UB LB min min min ∆min
LB (%)

13 - 317084 338352 * 322554 321041 1.25
14 387934 347721 * 352103 355406 349786 0.59
15 747116 368271 * 371841 372073 369516 0.34
16 - 192857 196214 * 195788 194092 0.64
17 197151 178079 * 180470 181861 179280 0.67
18 - 160712 * 162969 163330 161634 0.57

19 350797 338826 * 341385 342943 339885 0.31
20 441729 234583 237792 * 236008 235308 0.31
21 - 317153 321024 * 319609 318891 0.55
22 - 307822 309951 * 309348 308660 0.27
23 - 175234 176644 * 176481 175572 0.19
24 - 273963 276473 * 275665 274993 0.38

methods. It outperforms both of the other two methods on 21
of the 24 large instances. In addition, MSRS outperforms the
GP method on 20 of the 24 instances. We observe that for the
instances on which the tabu search performs the best, MSRS
performs no worse than the GP method (either significantly
better or no significant difference). There are only three large
instances (Instances 30, 36, and 42) on which the tabu search
failed to show the best performance. Note that these instances
have relatively high α values (0.57, 0.57 and 0.56). We can
see that they have the highest α values among the instances
with the same layout. Recall that the α value partially reflects
the difficulty of the instance, and a higher α indicates a
simpler instance. Therefore, the three instances may be simpler
than the other five instances with the same layout, and the
advantage of MSRS and tabu search becomes less evident.

Table X compares the best performance of the compared
methods on the 24 large instances. For each instance, the
table also gives the number of products and the maximum
and mean size of the products for references. For Instance 30
on which MSRS had the best average performance, one can



IEEE TRANSACTIONS ON CYBERNETICS: #CYB-E-2016-08-1185 11

TABLE VII
THE AVERAGE PERFORMANCE OF THE 400-ITEM MEDIUM INSTANCES. THE MANN-WHITNEY U TEST IS CONDUCTED BETWEEN THE RESULTS OF THE
GP, MSRS AND TABU SEARCH ALGORITHMS (WITH SIGNIFICANCE LEVEL OF 0.05 AND BONFERRONI CORRECTION). THE ENTRY IS HIGHLIGHTED IF

THE CORRESPONDING ALGORITHM PERFORMS SIGNIFICANTLY BETTER THAN BOTH OF THE OTHER TWO ALGORITHMS. THE ENTRY IS MARKED WITH ∗

IF THE CORRESPONDING ALGORITHM PERFORMS SIGNIFICANTLY BETTER THAN ONE OF THE OTHER TWO ALGORITHMS.

No. M L α
branch-and-cut GP MSRS Tabu

UB LB ∆bc(%) mean± std ∆mean
LB (%) mean± std ∆mean

LB (%) mean± std ∆mean
LB (%)

13 10 40 0.00 - 317084 - 342720.1 ± 3052.7 8.08 * 324467.2 ± 703.6 2.33 321842.3 ± 863.0 1.50
14 10 40 0.11 387934 347721 11.56 * 353429.4 ± 749.3 1.64 356618.1 ± 725.1 2.56 349881.9 ± 60.8 0.62
15 10 40 0.22 747116 368271 102.87 376124.1 ± 4105.4 2.13 * 372450.1 ± 227.5 1.13 369634.4 ± 76.9 0.37
16 10 40 0.40 - 192857 - 198672.1 ± 1585.7 3.02 * 196106.1 ± 142.6 1.68 194177.9 ± 57.4 0.68
17 10 40 0.41 197151 178079 10.71 181889.4 ± 1149.6 2.14 * 182319.2 ± 251.7 2.38 179338.2 ± 49.2 0.71
18 10 40 0.53 - 160712 - * 163596.2 ± 376.9 1.79 163788.3 ± 224.1 1.91 161718.6 ± 64.8 0.63

19 20 20 0.06 350797 338826 3.53 * 341515.8 ± 96.7 0.79 344157.1 ± 429.0 1.57 339922.9 ± 36.9 0.32
20 20 20 0.10 441729 234583 88.30 240217.4 ± 1223.0 2.40 * 236113.3 ± 66.2 0.65 235368.1 ± 35.5 0.33
21 20 20 0.26 - 317153 - 324931.2 ± 2042.5 2.45 * 319868.6 ± 105.9 0.86 318974.0 ± 77.1 0.57
22 20 20 0.40 - 307822 - 312305.5 ± 2437.9 1.46 * 309657.0 ± 124.3 0.60 308701.9 ± 28.9 0.29
23 20 20 0.46 - 175234 - 177487.7 ± 1472.4 1.29 * 176625.4 ± 81.9 0.79 175601.7 ± 13.5 0.21
24 20 20 0.52 - 273963 - 277548.0 ± 850.5 1.31 * 275802.0 ± 88.2 0.67 275029.5 ± 22.2 0.39

TABLE IX
THE AVERAGE PERFORMANCE OF THE 900-ITEM LARGE INSTANCES.

THE MANN-WHITNEY U TEST IS CONDUCTED BETWEEN THE RESULTS OF
THE GP, MSRS AND TABU SEARCH ALGORITHMS (WITH SIGNIFICANCE

LEVEL OF 0.05 AND BONFERRONI CORRECTION). THE ENTRY IS
HIGHLIGHTED IF THE CORRESPONDING ALGORITHM PERFORMS

SIGNIFICANTLY BETTER THAN BOTH OF THE OTHER TWO ALGORITHMS.
THE ENTRY IS STARRED (∗) IF THE CORRESPONDING ALGORITHM

PERFORMS SIGNIFICANTLY BETTER THAN ONE OF THE OTHER TWO
ALGORITHMS.

No. M L α
GP MSRS Tabu

mean± std mean± std mean± std

25 10 90 0.03 946656.7 ± 5009.0 * 938069.5 ± 1271.0 922575.7 ± 128.5
26 10 90 0.19 819444.3 ± 4006.5 820352.0 ± 1060.0 810266.3 ± 1780.5
27 10 90 0.30 1023981.6 ± 5407.5 * 1017074.7 ± 1113.7 1012774.8 ± 3112.9
28 10 90 0.33 687530.3 ± 4713.7 * 682615.5 ± 775.3 680184.3 ± 1293.5
29 10 90 0.45 774225.2 ± 5798.7 * 768617.7 ± 1181.9 761268.8 ± 2232.2
30 10 90 0.57 * 820525.1 ± 3955.7 818885.8 ± 782.9 824876.1 ± 4223.5

31 15 60 0.05 939930.9 ± 17197.9 * 891829.6 ± 595.5 884329.1 ± 98.8
32 15 60 0.16 664661.7 ± 3758.0 663755.7 ± 635.4 653696.5 ± 371.3
33 15 60 0.29 657982.1 ± 6174.2 * 651130.8 ± 713.1 644007.6 ± 1113.2
34 15 60 0.33 1025081.8 ± 12961.8 * 1017069.1 ± 1170.7 1006818.1 ± 1111.6
35 15 60 0.46 639202.2 ± 8906.7 * 632040.4 ± 584.4 625477.1 ± 713.1
36 15 60 0.57 651079.7 ± 852.5 * 654358.4 ± 728.9 657585.0 ± 2749.7

37 20 45 0.06 266480.0 ± 5513.5 264461.3 ± 144.1 260628.1 ± 114.7
38 20 45 0.10 285562.3 ± 4682.2 * 280832.7 ± 202.5 277421.3 ± 55.2
39 20 45 0.26 673607.3 ± 4520.0 * 671745.2 ± 320.9 666923.4 ± 242.6
40 20 45 0.34 846090.4 ± 10846.3 * 837884.9 ± 527.7 830619.5 ± 357.6
41 20 45 0.45 566952.4 ± 2440.0 * 564728.9 ± 477.7 558523.2 ± 186.4
42 20 45 0.56 648025.6 ± 2480.4 651660.4 ± 549.8 * 650959.4 ± 2426.6

43 30 30 0.09 715113.1 ± 2594.5 * 707268.6 ± 354.3 701639.6 ± 92.9
44 30 30 0.12 709222.6 ± 5020.1 * 683525.9 ± 359.6 678996.6 ± 38.7
45 30 30 0.26 904422.4 ± 6690.6 * 900490.8 ± 488.4 893578.7 ± 282.8
46 30 30 0.33 837076.0 ± 11900.3 * 829445.7 ± 614.8 822313.6 ± 199.3
47 30 30 0.49 535063.6 ± 3659.5 * 531984.3 ± 432.3 526106.5 ± 67.1
48 30 30 0.54 544058.6 ± 2174.3 * 541775.5 ± 599.2 536154.8 ± 83.1

see in Table X that MSRS did not get the best min fitness
value. Instead, the GP method obtained the better min result
than MSRS (812037 versus 817452). For Instances 36 and
42 on which the GP method had better average performance
than the other two methods, it also achieved the smallest min
results. Note that these three instances all have much larger
number of products than the other instances. Hence, besides

TABLE X
THE SMALLEST FITNESS OF THE 20 RUNS OF THE COMPARED METHODS

ON LARGE INSTANCES. THE NUMBER OF PRODUCTS P AND THE
MAXIMUM AND AVERAGE NUMBER OF ITEMS PER PRODUCT ARE GIVEN

FOR REFERENCE. FOR EACH INSTANCE, THE SMALLEST min VALUE
AMONG GP, MSRS AND TABU SEARCH IS HIGHLIGHTED. THE SECOND

SMALLEST min VALUE IS STARRED (∗).

No. P
Np GP MSRS Tabu

max mean

25 40 70 22 939832 935494 922381
26 100 38 9 811144 817551 807203
27 111 48 8 1013161 1015451 1008675
28 110 40 8 679782 680123 677147
29 128 44 7 766954 764802 756927
30 295 14 3 812037 817452 814545

31 38 74 23 906285 890483 884193
32 97 36 9 661345 662068 653131
33 109 43 8 651257 649417 642350
34 112 33 8 1011551 1014342 1004760
35 134 41 6 632633 630625 623880
36 298 16 3 649038 652295 653593

37 88 47 10 263123 264141 260431
38 78 56 11 279853 280468 277345
39 103 45 8 670935 671131 666439
40 101 43 8 838218 836766 830000
41 130 41 6 564181 563664 558245
42 299 16 3 645353 650622 647250

43 57 54 15 707900 706358 701470
44 52 59 17 693006 682847 678913
45 108 35 8 900145 899567 893214
46 109 49 8 828049 827680 822082
47 130 43 6 531240 530880 526033
48 144 38 6 541652 540588 536041

the difficulties of the instances, there could be two reasons for
the BIGO algorithms not showing better performance than the
GP method on these instances.

• First, the number of products in an instance has impact on
the performance of the tabu search. The tabu search gen-
erates neighboring solutions for the current solution based
on two operators, i.e. resizeInSlf and resizeXSlf,
both of which are defined based on products. Thus, the
neighborhood size increases with the increase of the number



IEEE TRANSACTIONS ON CYBERNETICS: #CYB-E-2016-08-1185 12

of products. Furthermore, a larger number of products also
leads to a longer tabu tenure. As we can see from Table X,
Instances 30, 36, and 42 all have nearly 300 products, which
is much bigger than the other instances. As a result, the tabu
search fails to achieve the best average and minimum fitness
values on these instances. Instance 48 also have the highest
α value among Instances 43-48, but it only consists of 144
products, and the tabu search still obtained the best average
and minimum results on it.

• Second, the number of products also has impact on the per-
formance of Algorithm 1 (i.e. Evaluate(·)). For example,
slfSort reorganizes each shelf so that groups on each
shelf are in descending order. Having more groups on a
shelf requires more efforts to perform the sorting operation.
In addition, groupSort will require more computational
budget when there are more groups on the shelf.

Given the same total number of items, if an instance has a
larger number of products, the average product size will be
smaller. For example, the maximum product size is only 14
for Instance 30, while the maximum product size is 70 for
Instance 25. Intuitively, instances consist of small products are
usually considered as simple ones as the grouping constraint
could be tackled more easily than instances with big products.
However, the proposed BIGO algorithms show no advantages
of tackling those problems comparing to the GP method on
the large instances. Based on the analysis above, these two
methods may perform better if given longer running time.
However, more efficient operators may be designed in the
future work for this type of scenarios.

TABLE XI
SUMMARY OF THE STATISTICAL TEST RESULTS ON THE 48 BENCHMARK

INSTANCES USING THE MANN-WHITNEY U TEST WITH SIGNIFICANCE
LEVEL OF 0.05.

Win Draw Lose

MSRS v.s. GP 38 5 5
Tabu v.s. MSRS 45 1 2

Tabu v.s. GP 45 0 3

4) Summary: Table XI shows the summary of the statistical
test results for all the 48 benchmark instances including three
comparisons: (1) MSRS versus the GP method; (2) the tabu
search versus MSRS; and (3) the tabu search versus the GP
method. The first comparison is to verify the efficacy of the
BIGO model. The second and third comparison are to verify
the efficacy of the tabu search. For each comparison, the
Mann-Whitney U test is conducted between the compared
algorithms with the significance level of 0.05. The “Win”
column in the table records the numbers of instances on which
the former algorithm performs significantly better than the
later one while the “Draw” column corresponds to those with
no significant difference, and the “Lose” column shows those
with significantly worse performance. From the table, one can
see that the MSRS approach outperforms the GP method on
38 of the 48 instances. When comparing tabu search against
the other two methods, there are 45 instances on which tabu
search performs significantly better. The GP method is better
than the MSRS on only five of the instances while this number

decreases to three when comparing against tabu search. These
results clearly show that among the three compared methods,
tabu search has the best overall performance on these test
instances. In addition, the advantage of the MSRS and tabu
search algorithms demonstrates the efficacy of the proposed
BIGO model in solving SLAP-GC.

E. Experiment Results for Real-word Instances

To analyze the performance of the compared searching
heuristics, Fig. 3 depicts the box plots of the 20 independent
runs of the compared algorithms on the real-world instances.
In addition, Table XII shows the pairwise statistical test results
of the GP, MSRS, and tabu search methods on the real-world
instances.

3.3

3.32

3.34

x 10
7

GP MSRS Tabu

(a) Year 1.

9.45

9.5

9.55

9.6

x 10
6

GP MSRS Tabu

(b) Year 2.

1.68

1.69

1.7
x 10

7

GP MSRS Tabu

(c) Year 3.

2.43

2.44

2.45

2.46
x 10

7

GP MSRS Tabu

(d) Year 4.

Fig. 3. Box plot of the 20 independent runs of the GP, MSRS, and tabu
search methods on real-world instances.

TABLE XII
SUMMARY OF THE PAIRWISE MANN-WHITNEY U TEST ON Real-world

Instances WITH SIGNIFICANCE LEVEL OF 0.05.

Win Draw Lose

MSRS vs GP 2 2 0
Tabu vs MSRS 4 0 0

Tabu vs GP 4 0 0

One can observe from these figures that the tabu serach
performs significantly better than both GP and MSRS on the
real-world instances. This can also be observed from the re-
sults shown in Table III, i.e. tabu search performs significantly
better than GP and MSRS on all the real-world instances.
When comparing between the MSRS and GP method, it can be
seen that MSRS achieved much better medium fitness values
than the GP method on Year 1 and 2. Although the GP
method can achieve better minimum fitness values than the
MSRS approach, the variances of MSRS are much smaller than
those of the GP method, indicating that MSRS has a more
stable performance. In addition, one can see from Table III
that the MSRS outperforms the GP method on two of the



IEEE TRANSACTIONS ON CYBERNETICS: #CYB-E-2016-08-1185 13

four real-world instances, and there is no significant difference
between MSRS and GP on the rest of the instances. All
the aforementioned aspects indicate the effectiveness of the
proposed BIGO model, as well as the efficacy of the proposed
tabu search approach, on real-world instances.

VII. CONCLUSIONS

In this paper, a novel Bi-level Grouping Optimization
(BIGO) model is proposed for solving the Storage Location
Assignment Problem with Grouping Constraint (SLAP-GC). A
challenging issue in SLAP-GC is that items of one product
can only be divided into at most two groups. SLAP-GC
consists of two challenging sub-problems, i.e. deciding the
optimal grouping of items and the allocation of item groups
in the warehouse. It is challenging to solve the above two
sub-problems simultaneously. Thus a novel BIGO model is
proposed in this paper to solve this problem more effectively.
The proposed model transforms the problem into a simpler
and more structured form. Based on the proposed BIGO
model, different heuristics have been proposed to focus on the
optimization of different levels of the proposed model. For
the lower level optimization, an efficient local-search-based
method is developed employing the domain knowledge of
the problem. For the upper level optimization, a Multi-Start
Random Search (MSRS) method and a tabu search algorithm
are developed. A comprehensive experimental study is carried
out to analyze the contributions of different components in the
proposed BIGO model and the proposed search algorithms.
From the experimental results, we also conclude that both
MSRS and tabu search outperform the branch-and-cut ap-
proach and the state-of-the-art GP approach for SLAP-GC.

For future studies, more investigations are required on the
relation between the efficiency of the proposed methods and
the characteristics of the test instances in order to get a better
understanding of the complexity of SLAP-GC. Moreover, the
current approaches for the real-world instances still require
relatively long running time. More efficient techniques are
required for large-scale SLAP-GC problems for practical pur-
poses. As one can see from the experimental results, the
proposed BIGO algorithms, especially the tabu search, can
still get relatively good performance when there are 900
items. The running time required by these BIGO algorithms
will tremendously increase when the problem size becomes
bigger. One possible approach to deal with this situation is
to decompose the original problem into several sub-problems
so that each sub-problem can be addressed efficiently and
effectively.

REFERENCES

[1] K. J. Roodbergen, Layout and routing methods for warehouses. Eras-
mus University Rotterdam, 2001.

[2] J. v. d. Berg and W. Zijm, “Models for warehouse management: Classi-
fication and examples,” International Journal of Production Economics,
vol. 59, no. 1, pp. 519–528, 1999.

[3] J. Gu, M. Goetschalckx, and L. F. McGinnis, “Research on warehouse
operation: A comprehensive review,” European Journal of Operational
Research, vol. 177, no. 1, pp. 1–21, 2007.

[4] L. Chen, A. Langevin, and D. Riopel, “The storage location assignment
and interleaving problem in an automated storage/retrieval system with
shared storage,” International Journal of Production Research, vol. 48,
no. 4, pp. 991–1011, 2010.

[5] P. Montulet, A. Langevin, and D. Riopel, “Minimizing the peak load: an
alternate objective for dedicated storage policies,” International journal
of production research, vol. 36, no. 5, pp. 1369–1385, 1998.

[6] L. Chen, A. Langevin, and D. Riopel, “A tabu search algorithm for the
relocation problem in a warehousing system,” International Journal of
Production Economics, vol. 129, no. 1, pp. 147–156, 2011.

[7] S. Önüt, U. R. Tuzkaya, and B. Doğaç, “A particle swarm optimization
algorithm for the multiple-level warehouse layout design problem,”
Computers & Industrial Engineering, vol. 54, no. 4, pp. 783–799, 2008.

[8] J. Xiao and L. Zheng, “A correlated storage location assignment problem
in a single-block-multi-aisles warehouse considering bom information,”
International Journal of Production Research, vol. 48, no. 5, pp. 1321–
1338, 2010.

[9] S. Hsieh and K.-C. Tsai, “A bom oriented class-based storage assignment
in an automated storage/retrieval system,” The international journal of
advanced manufacturing technology, vol. 17, no. 9, pp. 683–691, 2001.

[10] D. Ming-Huang Chiang, C.-P. Lin, and M.-C. Chen, “Data mining
based storage assignment heuristics for travel distance reduction,” Expert
Systems, vol. 31, no. 1, pp. 81–90, 2014.

[11] B. Rouwenhorst, B. Reuter, V. Stockrahm, G. Van Houtum, R. Mantel,
and W. Zijm, “Warehouse design and control: Framework and literature
review,” European Journal of Operational Research, vol. 122, no. 3, pp.
515–533, 2000.

[12] J. Gu, M. Goetschalckx, and L. F. McGinnis, “Research on warehouse
design and performance evaluation: A comprehensive review,” European
Journal of Operational Research, vol. 203, no. 3, pp. 539–549, 2010.

[13] L. Chen and Z. Lu, “The storage location assignment problem for
outbound containers in a maritime terminal,” International Journal of
Production Economics, vol. 135, no. 1, pp. 73–80, 2012.

[14] M. Ang, Y. F. Lim, and M. Sim, “Robust storage assignment in unit-
load warehouses,” Management Science, vol. 58, no. 11, pp. 2114–2130,
2012.

[15] P. Yang, L. Miao, Z. Xue, and L. Qin, “An integrated optimization of
location assignment and storage/retrieval scheduling in multi-shuttle au-
tomated storage/retrieval systems,” Journal of Intelligent Manufacturing,
vol. 26, no. 6, pp. 1145–1159, 2015.

[16] J. C.-H. Pan, P.-H. Shih, and M.-H. Wu, “Storage assignment problem
with travel distance and blocking considerations for a picker-to-part
order picking system,” Computers & Industrial Engineering, vol. 62,
no. 2, pp. 527–535, 2012.

[17] J. C.-H. Pan, P.-H. Shih, M.-H. Wu, and J.-H. Lin, “A storage assign-
ment heuristic method based on genetic algorithm for a pick-and-pass
warehousing system,” Computers & Industrial Engineering, vol. 81, pp.
1–13, 2015.

[18] G. K. Adil et al., “A branch and bound algorithm for class based storage
location assignment,” European Journal of Operational Research, vol.
189, no. 2, pp. 492–507, 2008.

[19] M. Bortolini, L. Botti, A. Cascini, M. Gamberi, C. Mora, and F. Pilati,
“Unit-load storage assignment strategy for warehouses in seismic areas,”
Computers & Industrial Engineering, vol. 87, pp. 481–490, 2015.

[20] M. Jin, X. H. Mu, L. C. Li, and F. P. Du, “Solving stereo warehouse
storage location assignment problem based on genetic algorithm,” in
Applied Mechanics and Materials, vol. 307. Trans Tech Publ, 2013,
pp. 459–463.

[21] B. Fahimnia, L. Luong, and R. Marian, “Genetic algorithm optimisa-
tion of an integrated aggregate production–distribution plan in supply
chains,” International Journal of Production Research, vol. 50, no. 1,
pp. 81–96, 2012.

[22] M. Li, X. Chen, and C. Liu, “Pareto and niche genetic algorithm
for storage location assignment optimization problem,” in Innovative
Computing Information and Control, 2008. ICICIC’08. 3rd International
Conference on. IEEE, 2008, pp. 465–465.

[23] J. Xie, Y. Mei, A. T. Ernst, X. Li, and A. Song, “A genetic programming-
based hyper-heuristic approach for storage location assignment prob-
lem,” in Evolutionary Computation (CEC), 2014 IEEE Congress on.
IEEE, 2014, pp. 3000–3007.

[24] J. F. Bard, Practical bilevel optimization: algorithms and applications.
Springer Science & Business Media, 2013, vol. 30.

[25] G. P. Cachon and S. Netessine, “Game theory in supply chain analysis,”
in Handbook of Quantitative Supply Chain Analysis. Springer, 2004,
pp. 13–65.

[26] J. F. Bard and J. T. Moore, “A branch and bound algorithm for the bilevel
programming problem,” SIAM Journal on Scientific and Statistical
Computing, vol. 11, no. 2, pp. 281–292, 1990.

[27] H. Sun, Z. Gao, and J. Wu, “A bi-level programming model and solution
algorithm for the location of logistics distribution centers,” Applied
mathematical modelling, vol. 32, no. 4, pp. 610–616, 2008.



IEEE TRANSACTIONS ON CYBERNETICS: #CYB-E-2016-08-1185 14

[28] T. Drezner, Z. Drezner, and P. Kalczynski, “A leader–follower model
for discrete competitive facility location,” Computers & Operations
Research, vol. 64, pp. 51–59, 2015.

[29] W. Hu, Y. Hou, L. Tian, and Y. Li, “Selection of logistics distribution
center location for sdn enterprises,” Journal of Management Analytics,
vol. 2, no. 3, pp. 202–215, 2015.

[30] H. I. Calvete, C. Galé, and J. A. Iranzo, “Planning of a decentralized
distribution network using bilevel optimization,” Omega, vol. 49, pp.
30–41, 2014.

[31] B. Huang and N. Liu, “Bilevel programming approach to optimizing a
logistic distribution network with balancing requirements,” Transporta-
tion Research Record: Journal of the Transportation Research Board,
no. 1894, pp. 188–197, 2004.

[32] F. Glover, “Tabu search-part i,” ORSA Journal on computing, vol. 1,
no. 3, pp. 190–206, 1989.

[33] ——, “Tabu searchpart ii,” ORSA Journal on computing, vol. 2, no. 1,
pp. 4–32, 1990.

[34] F. Glover and M. Laguna, Tabu search. Kluwer Academic, Boston,
MA, 1997.

[35] J.-Q. Li, Q.-K. Pan, P. Suganthan, and T. Chua, “A hybrid tabu search
algorithm with an efficient neighborhood structure for the flexible
job shop scheduling problem,” The international journal of advanced
manufacturing technology, vol. 52, no. 5-8, pp. 683–697, 2011.

[36] K. A. Dowsland, “Nurse scheduling with tabu search and strategic
oscillation,” European journal of operational research, vol. 106, no. 2,
pp. 393–407, 1998.

[37] C. Y. Lee and H. G. Kang, “Cell planning with capacity expansion in
mobile communications: A tabu search approach,” Vehicular Technology,
IEEE Transactions on, vol. 49, no. 5, pp. 1678–1691, 2000.

[38] T. L. Ng, “Expanding neighborhood tabu search for facility location
problems in water infrastructure planning,” in Systems, Man and Cyber-
netics (SMC), 2014 IEEE International Conference on. IEEE, 2014,
pp. 3851–3854.

[39] T. James, C. Rego, and F. Glover, “Multistart tabu search and diversi-
fication strategies for the quadratic assignment problem,” Systems, Man
and Cybernetics, Part A: Systems and Humans, IEEE Transactions on,
vol. 39, no. 3, pp. 579–596, 2009.

[40] B. Xin, J. Chen, J. Zhang, L. Dou, and Z. Peng, “Efficient decision
makings for dynamic weapon-target assignment by virtual permutation
and tabu search heuristics,” Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on, vol. 40, no. 6, pp.
649–662, 2010.

[41] S.-M. Pan and K.-S. Cheng, “Evolution-based tabu search approach to
automatic clustering,” Systems, Man, and Cybernetics, Part C: Applica-
tions and Reviews, IEEE Transactions on, vol. 37, no. 5, pp. 827–838,
2007.

[42] P. Guturu and R. Dantu, “An impatient evolutionary algorithm with prob-
abilistic tabu search for unified solution of some np-hard problems in
graph and set theory via clique finding,” Systems, Man, and Cybernetics,
Part B: Cybernetics, IEEE Transactions on, vol. 38, no. 3, pp. 645–666,
2008.

[43] R. Harder, R. Hill, and J. Moore, “A java universal vehicle router
for routing unmanned aerial vehicles,” International Transactions in
Operational Research, vol. 11, no. 3, pp. 259–275, 2004.

[44] I. Gurobi Optimization, “Gurobi optimizer reference manual,” 2013.
[Online]. Available: http://www.gurobi.com

[45] D. R. White, “Software review: the ecj toolkit,” Genetic Programming
and Evolvable Machines, vol. 13, no. 1, pp. 65–67, 2012.

[46] “Victorian partnership for advanced computing.” [Online]. Available:
http://www.vpac.org/

Jing Xie received the bachelor’s degree in soft-
ware engineering from Fudan University, Shanghai,
China, and the bachelor’s degree of science (Hon-
ors) from the University College Dublin - National
University of Ireland, Dublin in 2011.

She is currently a Ph.D. candidate in the De-
partment of Computer Science and IT, School of
Science, RMIT University, Melbourne, VIC, Aus-
tralia. Her research interests include evolutionary
algorithms, meta-heuristics, and matheuristics for
combinatorial optimization problems.

Yi Mei is a Lecturer at the School of Engi-
neering and Computer Science, Victoria University
of Wellington, Wellington, New Zealand. His re-
search interests include evolutionary computation in
scheduling, routing and combinatorial optimisation,
as well as evolutionary machine learning, genetic
programming, feature selection and dimensional re-
duction.

He has more than 40 publications, including the
top journals in EC and Operations Research (OR)
such as IEEE TEVC, IEEE Transactions on Cyber-

netics, European Journal of Operational Research, ACM Transactions on
Mathematical Software, and top EC conferences (GECCO). As the sole
investigator, he won the 2nd prize of the Competition at IEEE WCCI 2014:
Optimisation of Problems with Multiple Interdependent Components. He
received the 2010 Chinese Academy of Sciences Dean?s Award (top 200
postgraduates all over China) and the 2009 IEEE Computational Intelligence
Society (CIS) Postgraduate Summer Research Grant (three to four recipients
all over the world). He is serving as the committee member of IEEE ECTC
Task Force on Evolutionary Scheduling and Combinatorial Optimisation,
IEEE CIS Task Force on EC for Feature Selection and Construction and
IEEE CIS Task Force on Large Scale Global Optimisation. He is a guest
editor of the Genetic Programming Evolvable Machine journal, and co-chair
of a number of special sessions in international conferences such as IEEE
CEC. He is serving as a reviewer of over 20 international journals including
the top journals in EC and OR and PC member of almost 20 international
conferences.

Andreas T. Ernst received the Ph.D. degree in
network optimization at the University of Western
Australia in 1995. He has spent 20 years working at
CSIRO on developing innovative operations research
solutions for a range of operations research applica-
tions. He is currently a Professor with the School of
Mathematical Sciences, Monash University, Clayton
VIC, Australia, and the deputy director of MAX-
IMA, the Monash Academy for Cross and Interdis-
ciplinary Mathematical Applications. His research
interests focus on scheduling and optimization for

large scale industrial applications, including high performance combinatorial
optimization algorithms, parallel matheuristics and network optimization. Past
projects have included optimization of coal supply chains, scheduling of
recreational vehicles (motorhomes), rostering and research into hub location
algorithms.

Xiaodong Li (M’03 - SM’07) received the B.Sc.
degree from Xidian University, Xi’an, China, and the
Ph.D. degree in information science from the Uni-
versity of Otago, Dunedin, New Zealand. He is cur-
rently an Associate Professor with the Department of
Computer Science and IT, School of Science, RMIT
University, Melbourne, VIC, Australia. His current
research interests include evolutionary computation,
neural networks, complex systems, multiobjective
optimization, and swarm intelligence.

Dr. Li was a recipient of the 2013 ACM SIGEVO
Impact Award. He serves as an Associate Editor for the IEEE TRANS-
ACTIONS ON EVOLUTIONARY COMPUTATION, Swarm Intelligence
(Springer), and the International Journal of Swarm Intelligence Research.
He is a Founding Member and currently the Vice-Chair of the IEEE
Computational Intelligence Society (CIS) Task Force on Swarm Intelligence,
and the Vice-Chair of the IEEE Task Force on Multimodal Optimization,
and the Former Chair of the IEEE CIS Task Force on Large Scale Global
Optimization. He was the General Chair of the SEAL’08, the Program Co-
Chair of AI’09 and the IEEE CEC’2012.

Andy Song is a senior lecturer with the Department
of Computer Science and IT, School of Science,
RMIT University, Melbourne, VIC, Australia. His
research area include machine learning especially
evolutionary computing based learning on solving
complex real-world problems including texture anal-
ysis, motion detection, activity recognition, event
detection, and optimization. Recently he has been
active in establishing cutting-edge techniques, which
integrate machine intelligence, mobile and crowd
sensing, to benefit transportation, logistics and ware-

house industry. He collaborates with a range of industry partners.


