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Abstract. Job shop scheduling(JSS) is a hard problem with most of
the research focused on scenarios with the assumption that the shop pa-
rameters such as processing times, due dates are constant. But in the
real world uncertainty in such parameters is a major issue. In this work,
we investigate a genetic programming based hyper-heuristic approach
to evolving dispatching rules suitable for dynamic job shop scheduling
under uncertainty. We consider uncertainty in processing times and con-
sider multiple job types pertaining to different levels of uncertainty. In
particular, we propose an approach to use exponential moving average
of the deviations of the processing times in the dispatching rules. We
test the performance of the proposed approach under different uncertain
scenarios. Our results verified the effectiveness of the newly developed
terminal when the level of uncertainty is not high. In addition, the train-
ing configuration selection has an important impact on the generalisation
of the evolved rules.

1 Introduction

Most researches on job shop scheduling (JSS) [22] use a deterministic model, in
which the shop parameters such as processing times are constant throughout the
realization of a schedule. However, in practice, the job shop environment always
has uncertainty which makes scheduling a challenging and difficult task [12].
Handling uncertainty during scheduling is of practical importance.

Note that uncertainty is different from dynamic environment. For example,
in dynamic JSS (DJSS), the processing time of a job becomes a known constant
after its arrival, although unknown in advance. However, with uncertainty in
processing time, the actual processing time is uncertain until the operation is
completed, and may be different from the (expected) value upon the job ar-
rival. In this paper, we focus on the DJSS with uncertain processing time, since
processing time has a huge impact on most scheduling objectives.

Dispatching rules have been shown to be a promising approach for solving
DJSS. There have been extensive studies (e.g. [7, 6, 14, 16, 13]) for using dispatch-
ing rules for scheduling under uncertainty, and dispatching rules specifically for
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dealing with uncertainty such as the “largest variance first” [21] and “smallest
variance first” [20] rules were proposed.

Design of dispatching rules is challenging and requires rigorous experimen-
tal validation. Recently genetic programming (GP) has been successfully used to
automatically evolve dispatching rules [2] due to its flexible representation. How-
ever, the existing studies only focus on JSS without uncertainty, in which the
properties of each job is exactly known after its arrival. The JSS with uncertainty
has been overlooked so far.

It is unknown whether GPHH for JSS without uncertainty can be generalised
to JSS with uncertainty. In this paper, our goal is to investigate the generalisation
of GPHH under the uncertain processing time, i.e. the processing time of each
operation can only be known after it is completed. Specifically, we have the
following research objectives:

– Develop a new simulation model for JSS with uncertain processing time for
evaluating dispatching rules;

– Study the generalisation of GPHH under different levels of uncertainty;
– Propose new specific terminals for GPHH to improve its ability to tackle

uncertainty.

The rest of the paper is organised as follows. In the next section, we present
the background to JSS and GPHH. In Section 3, we develop a new simulation
model that includes the uncertain processing time. In Section 4, we describe
our proposed method which is based on using exponential moving average of
processing time deviation in the dispatching rules. In Sections 5 and 6, we present
and discuss the experiment design and results. Finally, our conclusions and future
work are given in Section 7.

2 Background

2.1 Job Shop Scheduling

JSS problem is to complete n jobs by a job shop with M machines. Each job j
has an arrival time rj , a due date dj , and a sequence of operations (oj,1 → oj,2 →
, . . . , oj,nj

), following a predefined route. The ith operation oj,i has a processing
time pj,i and the machine mj,i to process it. The problem is to complete all
the jobs so that (1) each machine processes no more than one operation at any
time and (2) for each job, an operation cannot be started until all its precedent
operations in the route have bee completed. Additional assumption included no
recirculation of jobs, no preemption, no machine breakdown, and zero transit
time between machines.

In dynamic environment, the jobs arrive at the shop in real time. The prop-
erties of each job such as the processing times and machines for its operations
are unknown until its arrival. When new jobs arrive, the current schedule needs
to be adjusted immediately to adapt to the environment change (add the new
jobs in the schedule). Furthermore, in JSS with uncertain processing time, the
exact processing time of each operation is unknown until it has been completed.
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Commonly considered objectives in JSS include the makespan, total flowtime,
mean weighted tardiness, number of tardy jobs, etc. In this paper, we consider
minimising the total flowtime, which is defined as F =

∑
j(Cj − rj), where Cj

is the completion time of job j.

2.2 Genetic Programming Based Hyper Heuristics (GPHHs)

Hyper-heuristics are a set of approaches which automate the design of heuristics
to solve hard problems, particularly combinatorial optimization problems [4].
They search for heuristic rather than solution.

GP has been shown to be a promising hyper-heuristic [5], and has been suc-
cessfully applied to evolving dispatching rules in JSS [2]. A variety of important
and challenging issues have been investigated, such as rule representations [19,
3], feature selection [10, 18], reusability [17], many-objective JSS [15], machine-
related rules [11] and flexible JSS [9]. For example, Tay and Ho [9] evolved scal-
able and flexible dispatching rules for multi-objective flexible job shop problem.
Hildebrandt et al. [8] used GPHH to evolve dispatching rules which generalize
well across varying scenarios in the job shop. Hunt et al. [10] introduced “less-
myopic” terminals to evolved better dispatching rules. Motivated by the success
of GPHH in DJSS, we also use GPHH for evolving dispatching rules for DJSS
with uncertain processing time.

3 Simulation Model with Uncertain Processing Time

To carry out experimental studies, a simulation model is required to take un-
certain processing time into account. There is no such model so far. Therefore,
we develop a new simulation model by extending from the simulation without
uncertainty. When a job j arrives, the processing time of each operation oj,i is
known as a random variable Pj,i rather than a fixed value pj,i.

The distribution of the uncertain processing time should refect the real situa-
tion. Rai et al. [23] considered the scheduling in printing industry, where the job
characteristics are the main sources of variation in processing times [23]. Akker
et al. [1] considered processing times with a deterministic component and a ran-
dom disturbance, which are identically distributed for the operations belonging
to the same job. Based on the above existing studies, we assume that (a) the
processing time the operations of the same job follow the same distribution and
(b) the processing time of different jobs follow different distributions.

In the proposed simulation model, for each operation oj,i, the processing
time pj,i without uncertainty is assumed to be the expected value, and the
actual processing time p′j,i is assumed to be the expected processing time plus
a random non-negative delay that is proportional to the expected value, i.e.
p′j,i = (1+δj,i)pj,i, δj,i ≥ 0. Here, we assume that the delay factor δj,i follows the
Gamma distribution, which is widely used to model parameters that are required
to be positive or skewed, and have been used to model uncertainty (e.g. [13]). The
Gamma distribution has two parameters, shape (α ∈ R+) and scale (β ∈ R+).
To facilitate study, we choose α = 1 and β ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.2} in
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our experiments. The choice of α = 1 is motivated by the evidence from literature
that the information contained in standard deviation of uncertain processing
times is useful for scheduling [21, 13]. For a Gamma distribution, the standard
deviation is equal to α× β2 and the mean is equal to α× β. If we assign α = 1,
then the mean and the standard deviation of this Gamma distribution are β
and β2 respectively. Note that when α = 1, the distribution essentially becomes
exponential, which has been frequently used to model uncertain processing times.

4 Exponential Moving Average (EMA) Terminal for
Handling Uncertain Processing Time

When evolving dispatching rules for JSS with uncertain processing time, it is
natural to design new terminals for GP to capture the information about the
uncertainty, e.g. the distribution of the uncertain processing times. To this end,
we develop a new terminal based on the exponential moving average of the pre-
vious delays, which can be used to estimate the future delay. The new terminal,
called EMA, is described as follows.

Based on the assumption that the processing time of all the operations be-
longing to the same job follow the same distribution, we have β(δj,i1) = β(δj,i2),
∀ j. In other words, all the δ′j,is of the same job have the same mean value.
Therefore, we can use the exponential moving average of the previous δ values
to estimate the mean value of the distribution, and predict the most possible
value of the future δ values of future operations of the same job. Specifically, for
each job j, the newly proposed EMA terminal, denoted as δ̄j,i, is defined as:

δ̄j,1 = 0,

δ̄j,i+1 = κ · δj,i + (1− κ) · δ̄j,i,∀ i > 1

where δj,i = p′j,i/pj,i − 1 is the empirical delay factor. From literature, the
coefficient κ ≤ 0.3 is considered to be good. Our preliminary studies did no
show significant difference between values κ ∈ {0.1, 0.2, 0.3}. Therefore, we set
κ = 0.2 in our experiments.

5 Experiment Design

In the experimental studies, we aim to analyse the generalisation of the standard
GP on the JSS with uncertain processing time, and investigate the efficacy of
the newly developed terminal in improving the performance of GP. To this end,
we ran the standard GP with the original terminal set (shown in Table 2) and
the original terminal set plus the new terminal. The simulation model proposed
in Section 3 was used to generate the training and test instances. 30 independent
runs were conducted for each algorithm.

5.1 Training and Test Configurations

Training In the experiments, we used two configurations for generating training
instances by varying the number of job types.
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– In the first case, we assume two job types, i.e. the low-delay and high-delay
job types. The low-delay job type follows the distribution with (α = 1, β =
0.1), and the high-delay one with (α = 1, β = 0.6). Each job has 50%
probability to be either of the two job types.

– In the second case, we consider five types of jobs, whose Gamma distribu-
tion parameters are α = 1, β ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. Each job has 20%
probability to be any of the five job types.

Testing We designed seven different test sets with varying number of job types.
The configurations of the test sets are given in Table 1. Each test set consists
of 30 problem instances. The column “#job-type-ratio” shows the ratio of the
number of jobs assigned to each type. For example, in test set-II, each job has
probability of 2/3 to have β = 0.1 and probability of 1/3 to have β = 0.6.

Table 1: Test Configurations

Test-set scale (β) #job-type-ratio

I {0.1, 0.6} 1 : 1
II {0.1, 0.6} 2 : 1
III {0.1, 0.6} 3 : 1
IV {0.1, 0.3, 0.6} 1 : 1 : 1
V {0.1, 0.3, 0.6, 0.8} 1 : 1 : 1 : 1
VI {0.1, 0.2, 0.3, 0.4, 0.5} 1 : 1 : 1 : 1 : 1
VII {0.1, 0.3, 0.6, 0.8, 1.2} 1 : 1 : 1 : 1 : 1

In both training and test simulations, the other parameters are consistent
with that used in [19] (e.g. 2500 jobs and 500 jobs for warm-up). Full details can
be found in [19].

5.2 Genetic Programming System

Table 2 lists all the terminals used by the GP in the experimental studies. The
function set includes all the arithmetic operators (the protected division operator
returns 1 if the denominator is zero), the 2-argument “max” and “min” operators
and the 3-argument “If” operator that returns the second argument if the first
argument is positive, and the third argument otherwise.

In the GP system, the population size is set to 1024, and the number of gen-
erations is set to 50. The maximal depth of GP-trees is set to 8. The crossover,
mutation and elitism rates are set to 0.85, 0.1 and 0.05 respectively. This pa-
rameter setting is consistent with the one in [19].

6 Results and Discussions

Given two training sets and two compared algorithms, we obtained four sets of
results. For the sake of convenience, we denote the four results as follows:
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Table 2: Terminal Set for GP.

Terminal Set Meaning

DD Due date of job
PR Processing time of operation
RO Remaining operations for job
RJ Ready time of job
RT Remaining processing time of job
RM Ready time of machine
ERC Ephemeral Random constant
EMA Exponential moving average of the delay factor δj,i

– D2: the GP without the EMA terminal, trained on 2 job types;
– D5: the GP without the EMA terminal, trained on 5 job types;
– Dδ̄2: the GP with EMA terminal, trained on 2 job types;
– Dδ̄5: the GP with EMA terminal, trained on 5 job types.

Based on these four sets of results, we conducted several comparisons to
analyse (a) the efficacy of the new EMA terminal on the performance of GP to
handle the uncertain processing time and (b) the impact of different training
scenarios on the generalisation of the GP-evolved rules.

To investigate the efficacy of the newly developed EMA terminal, we compare
between Dδ̄2 and D2 and between Dδ̄5 and D5. To analyse the impact of different
training scenarios, we compare between Dδ̄2 and Dδ̄5, and between D2 and D5. We
present the comparative results in Figs. 2–3. Though we conducted our exper-
iments on 30 problem instances in each test set, we presented the comparisons
for only 9 of them due to space limitation. We observe similar pattern for other
instances. For each comparison, Wilcoxon rank sum test under significance level
of 0.05 was carried out for each of the 30 test instances, and the summary is
provided below each figure in the form of [Win – Draw – Lose]. In each figure,
the x-axis is the instance ID, and the y-axis is the test performance of the dis-
patching rules evolved by the compared algorithms. For each comparison, if the
former algorithm is significantly better, then the corresponding boxplot is filled
in red. If the latter is significantly better, then it is filled in yellow.

6.1 Efficacy of the EMA Terminal: Dδ̄
2 vs D2 and Dδ̄

5 vs D5

Fig. 2 shows the comparison between Dδ̄2 and D2 on all the seven test sets. Our
primary observation is that the newly developed EMA terminal is able to evolve
rules which perform better across most of the test configurations. For all pairs
of box plots in Fig. 2, the right one corresponds to Dδ̄2. To be specific:

– When two types of jobs are considered, as in test sets I, II & III, the perfor-
mance of Dδ̄2 is significantly better in 14, 26 and 22 out of a total 30 problem
instances respectively.

– Similar results are obtained for the test sets IV & V. In these two test sets, the
types of jobs considered are 3 and 4 respectively(Table. 1). The performance
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of the dispatching rules evolved with the EMA terminal is significantly better
in 23 and 13 out of 30 problem instances, respectively.

– We observe that when the number of job types increases to 5, the perfor-
mance is not good for the dispatching rules which were trained using two
types of jobs. In the box plots shown in Fig. 2, the performance is in fact
significantly ‘worse’, especially when the jobs have higher uncertainty levels
(test set VII).

This can be explained more clearly when we consider the role of a dispatching rule
in generating the schedule. As the jobs arrive at the shop, their operations are
queued to the appropriate machines. The dispatching rule assigns priority values
to the operations, which are used to select the next operation to be processed on
the machine. If the number of job types increases, then all the operations in the
queue have variations in processing times. Consequently, the problem becomes
harder as the processing time deviation is similarly prominent throughout all the
operations in a queue, and GP is not able to accurately prioritize the operations
using the uncertainty information contained in δ̄.

Moreover, when the ratio is skewed, i.e. a higher percentage of jobs are associ-
ated with one probability distribution than the other, the performance using the
new terminal is more significant. This is in line with the previous explanation.
The rules are able to assign the priorities more accurately, when the deviation is
very prominent in some jobs and less prominent in other. To be specific, for the
test sets II, III & IV the performance is better than others because, the devia-
tions are high for a smaller percentage of jobs (33%, 25% and 33% respectively)
and low for the remaining. In this case, GP is able to assign priorities to these
operations accurately.

Fig. 3(a) shows the comparative results between Dδ̄5 and D5 on some repre-
sentative test sets. Our primary observation is that when using 5 types of jobs in
the training set, there is no significant difference between the GPs with and with-
out the new terminal on all the test sets. Our explanation to this phenomenon is
similar to the one given before. The scheduling problem becomes more difficult
when the number of levels of uncertainty assigned to the different jobs increase.
Also, this result points to the fact that Dδ̄2 suffers from over-fitting problem when
presented with problems with five levels of uncertainties in jobs as test sets.

6.2 Impact of Training Configurations: Dδ̄
2 vs Dδ̄

5 and D2 vs D5

We also cross-compare the test results between the set of evolved rules which
are trained on different configurations. The results are shown as box plots in
the Figs. 3 (b and c). For these pairs of box plots, the left one always corre-
sponds to rules trained with 2 job types. From the figures, we have the following
observations.

– For test set I with two different job types, the results show that the rules
trained on 2 job types are significantly better than those trained on 5 job
types. This is an expected result.
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– Similarly, for test set VI with 5 job types, the rules obtained by Dδ̄5 performed
significantly better than those obtained by Dδ̄2 on 13 test instances.

The comparisons show the importance of choosing proper training instances
depending on the level of uncertainty in processing time.

6.3 Analysis of Dispatching rules

Now we analyze the evolved rules to make more sense of our observations. Firstly,
we count the number of each terminal in the set of 30 evolved rules from Dδ̄2. The
bar chart is shown in Fig. 1. It can be seen that the EMA terminal was the third
most frequently chosen terminal, which indicates that the terminal is useful.
Furthermore, we counted the number of occurrences of pairs of the terminal
EMA and of PR, RT. These pairs are highlighted (in bold) in the example
of a dispatching rule below (Listing 1.1). These terminals are chosen because
the EMA value is expected to combine with terminals related to processing
times. We found that among the 30 rules, they occurred 92 times (multiple
occurrences within the same rule). Moreover, we calculated the frequency of
these combinations for the dispatching rules in Dδ̄5. We found that the frequency
is 61, which indicates that for a configuration with 5 job types, the effect of EMA
is less prominent.

RT PR EMA RM RO RJ DD
0

100

200

300

400

500

600

Frequency

Fig. 1: Frequency of terminals

An example of one of the best evolved dispatching rules is presented below.
We can see that the occurrences of the terminal EMA and its combination with
the terminals related to processing times is frequent.

Listing 1.1: One of the best evolved rules

(* (Min (* RT EMA) (- (/ 0.584 RO) (+ (Max 0.724 RT)

(+ (* (* (If (+ (Max EMA 0.219) (- RO DD)) (Max

(+ EMA(- RT RO))(If (+ 0.990 (* RT EMA))

0.341 (/ 0.956 (+(/ 0.584 RO) (Max(*RT EMA) (/ 0.584 RO)

))))) 2)(+(+ EMA(- RT RO)) (Min (Min (*EMA PR) (Max RJ
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RM)) (- RT RO)))) (+ (Min RO 0.321) (Min RO 0.321))) (Max

(* RT EMA) (/ 0.584 (If (+ (Max (*RT EMA)

(/ 0.584 RO)) (- RO DD)) (Max 0.724 RT) (+ 2 ))))))))

(Max RO PR))

7 Conclusions

In this paper, we focused on evolving dispatching rules using a GP-based hyper
heuristic approach for dynamic job shop scheduling problem under uncertain
processing times. In particular, we introduced a new terminal to capture the
information about uncertainty in processing times to evolve more promising dis-
patching rules. The terminal computes the exponential moving average of the
delay factor, i.e. the proportion of the delay relative to the expected processing
time. We considered different uncertainty levels in processing times and consid-
ered different ratios of jobs pertaining to these levels.

First, for experimental studies, we developed a new simulation model with
uncertain processing times. Then, we conducted several comparisons to investi-
gate the efficacy of the newly developed terminal and the influence of the training
set selection on the generalisation of GP. The primary conclusion is that, the
inclusion of the new EMA terminal can help GP evolve better dispatching rules
with total flow time as the scheduling objective when the number of uncertainty
levels is up to four. When the number of uncertainty levels becomes five, the
efficacy of EMA shows a decline. This is because EMA is able to estimate the
priority of the operations more accurately when they have similar uncertainty
levels.

Furthermore, our observations concur with the fact that different job shop
scenarios require specific dispatching rules. In particular, when the following
parameters in the job shop are varied: (1) the number of different levels of un-
certainty and (2) the ratio of jobs pertaining to the different levels of uncertainty;
different sets of dispatching rules are required to maintain schedule quality.

In our future work, we will investigate better estimation techniques to evolve
dispatching rules which perform well even with higher number of levels of un-
certainty. We will also consider evolving dispatching rules which perform well
under more types of uncertainty e.g. variation in due dates.
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11. Jakobović, D., Jelenković, L., Budin, L.: Genetic programming heuristics for mul-
tiple machine scheduling. In: Genetic Programming, pp. 321–330. Springer (2007)

12. Kouvelis, P., Yu, G.: Robust discrete optimization and its applications, vol. 14.
Springer Science & Business Media (2013)

13. Lawrence, S.R., Sewell, E.C.: Heuristic, optimal, static, and dynamic schedules
when processing times are uncertain. Journal of Operations Management 15(1),
71–82 (1997)

14. Liu, K.C.: Dispatching rules for stochastic finite capacity scheduling. Computers
& industrial engineering 35(1), 113–116 (1998)

15. Masood, A., Mei, Y., Chen, G., Zhang, M.: Many-Objective Genetic Programming
for Job-Shop Scheduling. In: Proceedings of Congress on Evolutionary Computa-
tion. IEEE (2016)

16. Matsuura, H., Tsubone, H., Kanezashi, M.: Sequencing, dispatching and switching
in a dynamic manufacturing environment. The International Journal of Production
Research 31(7), 1671–1688 (1993)

17. Mei, Y., Zhang, M.: A comprehensive analysis on reusability of gp-evolved job
shop dispatching rules. In: Proceedings of Congress on Evolutionary Computation.
IEEE (2016)

18. Mei, Y., Zhang, M., Nyugen, S.: Feature selection in evolving job shop dispatch-
ing rules with genetic programming. In: Genetic and Evolutionary Computation
Conference (GECCO) (2016)

19. Nguyen, S.: Automatic design of dispatching rules for job shop scheduling with
genetic programming (2013)

20. Pinedo, M.: Stochastic batch scheduling and the “smallest variance first” rule.
Probability in the Engineering and Informational Sciences 21(04), 579–595 (2007)

21. Pinedo, M., Weiss, G.: The largest variance first policy in some stochastic schedul-
ing problems. Operations Research 35(6), 884–891 (1987)

22. Pinedo, M.L.: Scheduling: theory, algorithms, and systems. Springer Science &
Business Media (2012)

23. Rai, S., Duke, C.B., Lowe, V., Quan-Trotter, C., Scheermesser, T.: Ldp lean docu-
ment production-or-enhanced productivity improvements for the printing industry.
Interfaces 39(1), 69–90 (2009)



Dynamic Job Shop Scheduling Under Uncertainty 11

1
1

2
2

3
3*

4
4*

5
5*

6
6

7
7*

8
8

9
9*

175000001850000019500000

[1
4 

−
 1

6 
−

 0
]. 

Te
st

 S
et

−
 I

Mean Flowtime

1
1*

2
2*

3
3*

4
4*

5
5*

6
6*

7
7*

8
8*

9
9*

1100000012000000

[2
6 

−
  4

 −
  0

] .
 T

es
t S

et
−

 II

Mean Flowtime

1
1

2
2

3
3*

4
4*

5
5*

6
6*

7
7

8
8

9
9*

1000000011000000

[2
2 

−
  8

 −
  0

]. 
Te

st
 S

et
−

 II
I

Mean Flowtime

1
1

2
2

3
3*

4
4*

5
5

6
6*

7
7*

8
8*

9
9*

150000001600000017000000

[2
3 

−
  7

−
  0

]. 
Te

st
 S

et
−

 IV

Mean Flowtime

1
1*

2
2*

3
3

4
4*

5
5

6
6

7
7

8
8*

9
9*

2300000024500000

[1
3 

−
  1

7−
  0

]. 
Te

st
 S

et
−

 V

Mean Flowtime

1*
1

2*
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

1400000015000000

[0
 −

  2
3−

  7
]. 

Te
st

 S
et

−
 V

I

Mean Flowtime

1*
1

2*
2

3*
3

4
4

5*
5

6*
6

7*
7

8
8

9
9

3.9e+074.1e+074.3e+07

[0
 −

  1
4 

−
 1

6]
. T

es
t S

et
−

 V
II

Mean Flowtime
F

ig
.2

:
D

2
v
s
D
δ̄ 2

on
9

re
p

re
se

n
ta

ti
v
e

in
st

an
ce

s
of

th
e

7
te

st
se

ts
.

F
o
r

ea
ch

co
m

p
a
ri

so
n

,
if

th
e

le
ft

(r
ig

h
t)

b
ox

p
lo

t
is

si
g
n

ifi
ca

n
tl

y
b

et
te

r
(W

ic
ox

on
ra

n
k

su
m

te
st

u
n

d
er

si
gn

ifi
ca

n
ce

le
ve

l
o
f

0
.0

5
),

th
en

th
e

co
rr

es
p

o
n

d
in

g
b

ox
p

lo
t

is
fi

ll
ed

in
re

d
(y

el
lo

w
).



12 Deepak Karunakaran et al.

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

10500000 11500000

[0 −
 30 −

 0]. Test S
et−

 I

Mean Flowtime

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9*
9

19000000 20500000 22000000

[0−
 29−

 1]. Test S
et−

 III

Mean Flowtime

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

13500000 14500000

[0 −
 30 −

 0]. Test S
et−

 V
I

Mean Flowtime

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

4.1e+07 4.3e+07 4.5e+07

[0 −
  30 −

 0]. Test S
et−

 V
II

Mean Flowtime

(a
)
D

5
v
s
D
δ̄5 .

1*
1

2*
2

3*
3

4*
4

5*
5

6*
6

7*
7

8*
8

9*
9

1.8e+07 2.0e+07 2.2e+07

[30 −
 0 −

 0]. Test S
et−

 I

Mean Flowtime

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

13500000 14500000

[0 −
 30 −

 0]. Test S
et−

 V
I

Mean Flowtime

(b
)
D

2
v
s
D

5 .

1*
1

2*
2

3*
3

4*
4

5*
5

6*
6

7*
7

8*
8

9*
9

1.8e+07 2.0e+07 2.2e+07

[30 −
 0 −

 0]. Test S
et−

 I

Mean Flowtime

1
1*

2
2*

3
3*

4
4

5
5

6
6*

7
7

8
8

9
9

14000000 15000000

[13 −
 17 −

 0]. Test S
et−

 V
I

Mean Flowtime

(c)
D
δ̄2

v
s
D
δ̄5 .

F
ig.3

:
(a

)D
5

v
sD

δ̄5 ,
(b

)D
2

v
sD

5
a
n

d
(a

)D
δ̄2

v
sD

δ̄5
o
n

9
rep

resen
ta

tiv
e

in
sta

n
ces.

F
o
r

ea
ch

com
p

arison
,

th
e

sign
ifi

can
tly

b
etter

b
ox

p
lo

t
is

fi
lled

in
co

lo
r

(red
o
r

yellow
).


