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ABSTRACT
Uncertain Capacitated Arc Routing Problem (UCARP) is a vari-
ant of the well-known CARP. It considers a variety of stochastic
factors to re�ect the reality where the exact information such as
the actual task demand and accessibilities of edges are unknown
in advance. Existing works focus on obtaining a robust solution
beforehand. However, it is also important to design e�ective heuris-
tics to adjust the solution in real time. In this paper, we develop
a new Genetic Programming-based Hyper-Heuristic (GPHH) for
automated heuristic design for UCARP. A novel e�ective meta-
algorithm is designed carefully to address the failures caused by the
environment change. In addition, it employs domain knowledge to
�lter some infeasible candidate tasks for the heuristic function. �e
experimental results show that the proposed GPHH signi�cantly
outperforms the existing GPHH methods and manually designed
heuristics. Moreover, we �nd that eliminating the infeasible and
distant tasks in advance can reduce much noise and improve the
e�cacy of the evolved heuristics. In addition, it is found that simply
adding a slack factor to the expected task demand may not improve
the performance of the GPHH.
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1 INTRODUCTION
Capacitated Arc Routing Problem (CARP) [10] aims to determine a
set of routes to serve the edge tasks with minimal costs subject to
some prede�ned constraints. Many applications in the real world
can be modelled as CARP such as street watering, snow removal
[4] and waste collection [1]. Researches on CARP are helpful for
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improving the work e�ciency in related service industries. Lots of
methods, ranging from exact methods [2, 3] to heuristics [9, 20, 26]
and meta-heuristics [5, 18, 21], have been proposed to solve CARP.
Most of them show promising performance in both solution quality
and running time [15], even for large-scale CARP instances [14].

Existing works mainly focus on static CARP [5, 15], i.e., the CARP
that is formulated based on a static network with deterministic
parameters such as task demands and deadheading costs along
edges. However, the static CARP has a large gap from the practice,
in which problem parameters are o�en stochastic and unknown
before edges are served or traversed [16]. For example, in waste
collection, the amount of garbage on streets may vary weekly and
can only be known exactly a�er the service [23]. �e CARP models
with stochastic parameters is closer to reality.

Fleury et al. [7, 8] proposed a CARP model with stochastic
demands, namely Stochastic CARP (SCARP), along with a Memtic
Algorithm (MA) for solving it. �eir work pushed the researches
about CARP to a more realistic area, and several new algorithms
for SCARP have been proposed since then (e.g. [6, 11]). To include
more real-world factors, Mei et al. [16] proposed the Uncertain
CARP (UCARP) with four stochastic parameters, i.e., presence of
tasks, demands of tasks, presence of paths and traversal costs of
paths. �ey gave the de�nition of robustness measures for solutions
to UCARP and provided some preliminary solutions. �en Wang
et al. proposed a MA [24] and an estimation of the distribution
algorithm [23] for solving UCARP, respectively.

�ere are two obvious shortcomings in the existing works for
solving UCARP. First, most existing approaches are not �exible
in real-time adjustment. �ey optimise robust solutions based on
expected values, and employ a straightforward recourse operator
to apply the solutions to the realised scenarios. �at is, if the actual
demand of the current task is greater than expected, making it
infeasible to complete the current service (so-called route failure),
the vehicle will go back to the depot to re�ll, and then come back
to continue the remaining service of the task. Such a recourse
operation can lead to huge increase of the cost of �nal solutions
in some realised scenarios. Second, most existing approaches to
UCARP assume that the actual demand of the next task is known as
soon as the vehicle completes serving the previous task in the same
route (e.g. [23, 24]). With such an assumption, they can �nd more
robust solutions by completely avoiding route failures. However,
this assumption is not consistent with reality, in which the exact
demand of a task cannot be known until the vehicle arrives its place,
or even a�er �nishing its service. How to e�ciently solve UCARP
without such an unrealistic assumption is a challenging problem.

UCARP can be seen as a form of dynamic routing problem. Pil-
lac et al. [17] gave a comprehensive review on dynamic vehicle
routing including a variety of methods to address it, including peri-
odic reoptimisation and memory-based approaches. Ritzinger et al.
[19] gave another survey which mentioned routing policy learning.
Routing policy is a heuristic telling the vehicle what the next task to
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go as soon as it becomes idle. Due to the computational e�ciency,
it is particularly e�ective in dynamic problems where immediate
response is required. Weise et al. [25] proposed a Genetic Program-
ming Hyper-Heuristic (GPHH) to evolve routing policy for static
CARP and tested on the uncertain CARP with unknown task set, i.e.
stochastic presence of tasks. However, their heuristic design does
not consider the stochastic demand, and thus cannot well cope with
the route failure situation when the actual demand of the current
task exceeds the remaining capacity. So far, there is no study on
evolving heuristics for a general UCARP with various stochastic
factors such as the problem de�ned in [16].

�e goal of this paper is to develop a new GPHH approach for
the general UCARP de�ned in [16]. To be speci�c, we have the
following research objectives in this paper:

• Develop a new framework (meta-algorithm) for evolving
heuristics, i.e. routing policies, for the UCARP with sto-
chastic presences of tasks and edges as well as stochastic
task demands and deadheading cost of edges;

• Develop a GPHH approach for evolving heuristics for the
UCARP;

• Analyse the proposed meta-algorithm and the GP-evolved
heuristics on the UCARP benchmark instances.

�e rest of this paper is structured as follows. Section 2 presents
the backgrounds including formal de�nition of UCARP and related
work. Section 3 describes our approach for UCARP, especially the
new meta-algorithm. Section 4 shows the experimental studies.
Section 5 gives the conclusion and future work.

2 BACKGROUND
In this section, we �rst present the mathematical de�nition of
UCARP and then discuss existing works on UCARP.

2.1 Problem De�nition
A UCARP instance can be represented by a connected graph G =
{V ,E}, where V is the set of vertices and E is the set of edges.
Each edge is indirect but can be seen as two arcs with opposite
directions. Each edge e is associated with three features: a demand
d(e) ≥ 0, a serving cost sc(e) ≥ 0 and deadheading cost dc(e) ≥
0. Deadheading cost means the cost of travelling along the edge
without serving it. Edges with non-zero demand and serving cost
are called tasks, which are represented by T ⊆ E. �ere is a depot
nodev0 ∈ V . �e capacity of vehicle isQ , which is smaller than the
total demand of all the tasks. Hence, multiple routes are needed.
�is can be achieved by using multiple vehicles, each with one
route, or one vehicle with several routes (re�lls). In the serving
process, each edge can be traversed many times, but each task
should be served only once, on either direction.

�e di�erences between UCARP and static CARP lie in the sto-
chastic factors about demand and deadheading cost. First, the
demand of each task is unknown until a vehicle �nishes serving it.
If the demand equals 0, then the task is not needed to be served in
the current environment, and can be removed from the current task
set. Second, the deadheading cost of each edge is unknown until an
vehicle travelled through the edge. �e actual deadheading cost can
be in�nite, indicating that the edge becomes unaccessible (e.g. the
street is under maintenance) and can not be traversed temporarily.

In this situation, detour is needed. �e accessibility of an edge can
only be obtained when the vehicle arrives the head of the edge.
When the deadheading cost of an edge is in�nite, its demand must
be zero, as it cannot be traversed or served.

�e above two uncertain factors may lead to two kinds of uncon-
trollable failures in uncertain environments, called as route failures
and edge failures. �ey are de�ned as follows:

• Route failure: the actual demand of the current task exceeds
the remaining capacity of the vehicle. In this case, the
vehicle has to go back to the depot to re�ll in the middle of
the service, and then come back to complete the remaining
service.

• Edge failure: the current edge to go is unaccessible, and
the vehicle has to �nd a detour.

�e goal of UCARP is to �nd a feasible heuristic (i.e. rout-
ing policy) that can generate solutions to satisfy all tasks at the
lowest possible costs under all possible environments. A solu-
tion is represented by a set of routes. Under the vertex repre-
sentation scheme [16], a solution is represented as S = (X ,Y ),
where X = {X (1),X (2), ...,X (m)} is route set in which each element
X (k) = (x (k )1 , ...,x

(k)
Lk
) represents the vertex sequence that a vehicle

travels in one route, where Lk represents the number of vertices
in the route k . Y = {Y (1),Y (2), ...,Y (m)} is a set of vectors, each
for a route. Y (k ) = (y(k )1 , ...,y

(k)
Lk−1), in which y(k )i = 1 means that

the edge (x (k )i ,x
(k)
i+1) is a task and is being served. On the contrary,

y
(k )
i = 0 means that the vehicle travels through the edge (x (k )i ,x

(k )
i+1)

without serving it. Finally, due to the existence of the route failures,
we allow a continuous value y(k )i ∈ (0, 1) in the solution, indicating
that the edge (x (k )i ,x

(k)
i+1) is a task and being served partially in the

current position. In this case, y(k )i is the fraction of demand served
before the vehicle goes back to the depot.

�e problem formulation of UCARP is given in Eqs. (1)–(7). Eq.
(1) is the objective function, which can be either the average or
worst-case performance over all the possible realised instances.
�ere are three constraints in UCARP. First, a vehicle must start
from and end at the depot in each route, as shown in Eq. (2). Second,
all tasks should be served exactly once by one vehicle, as shown in
Eqs. (3)-(6), where T (ξ ) and |T (ξ )| are the task set and the number
of tasks under environment ξ , and k1 , k2 or i1 , i2 in Eqs. (5)
and (6). �ird, the total demand of each route must not exceed the
vehicle’s capacity, as shown in Eq. (7).

min F (S), (1)

s .t . x
(k)
1 = x

(k )
Lk
= v0, ∀k = 1, 2, ...,m, (2)

m∑
k=1

Lk−1∑
i=1

y
(k)
i = |T (ξ )|, (3)

(x (k )i ,x
(k )
i+1) ∈ T (ξ ), ∀y(k )i ≥ 0, (4)

(x (k1)
i1
,x
(k1)
i1+1) , (x

(k2)
i2
,x
(k2)
i2+1), ∀y(k1)

i1
= y
(k2)
i2
= 1, (5)

(x (k1)
i1
,x
(k1)
i1+1) , (x

(k2)
i2+1,x

(k2)
i2
), ∀y(k1)

i1
= y
(k2)
i2
= 1, (6)
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Lk−1∑
i=1

d(x (k )i ,x
(k )
i+1) · y

(k )
i ≤ Q, ∀k = 1, 2, ...,m, (7)

As per the objective function, the average and worst-case per-
formance measures are de�ned in Eq. (8) and Eq. (9) respectively,
where C(S, ξ ) is the cost of solution S in the environment ξ , and
|Ξ| is the number of uncertain environments for a static CARP.

F1 =

∑
ξ ∈Ξ | C(S, ξ )
|Ξ| (8)

F2 = max
ξ ∈Ξ

C(S, ξ ) (9)

2.2 Related Work
Motivated by real scenarios such as waste collection in which de-
mands vary over time, Fleury et al. [8] �rst extended the static
CARP to SCARP. In SCARP, the deterministic demands in static
CARP are replaced by normally distributed random variables. �ey
investigated the robustness of a static CARP solution under the
stochastic demands. �e experiments were conducted by calcu-
lating the cost enlargement rate between the stochastic instance
and corresponding static instance. Experimental results show that
using reduced vehicle capacity in algorithm calculation (called as
slack approach) can generate more robust solutions than using full
vehicle capacity directly (called as tight approach). �is �nding is
useful for designing robust strategies for stochastic problems.

In order to solve SCARP, Fleury et al. [7] proposed a Stochastic
Memetic Algorithm (SMA). SMA modi�es the objective function
and local search strategy on the basis of MA for static CARP by
[13]. Experimental results show that SMA can generate higher
quality and more robust solutions than the slack approach. To our
knowledge, SMA is the �rst evolutionary algorithm proposed for
solving SCARP, and their work opens this research area. A�erwards,
lots of new algorithms have been proposed for solving SCARP.
For example, in [6], SCARP was formulated as a set partitioning
problem and an exact method based on branch-and-price algorithm
was developed.

A closer model to reality than SCARP is the UCARP proposed
by Mei et al. [16]. In UCARP, both paths and tasks being presence
stochastically and both deadheading costs of paths and demands of
tasks are stochastic variables. Along with the detailed de�nition of
UCARP, they analyzed several robustness measures and proposed a
performance measure for solutions to UCARP based on the average
performance over all the possible environments (Eq. (8)).

To deal with UCARP, Wang et al. [23, 24] proposed two di�erent
evolutionary algorithms. In [24], Handa’s MA [12] and the memetic
algorithm with extended neighborhood search (MAENS) [22] were
combined to form a new MA for UCARP. Experimental results in
terms of the expected costs were given to show the high quality
of the newly proposed MA. In [23], Wang et al. proposed an Es-
timation of Distribution Algorithm with Stochastic Local Search
(EDASLS) for UCARP. Experimental results in terms of the worst-
case solution costs (see Eq. (9)) showed that EDASLS outperforms
the other existing algorithms. �eir analysis showed that the ex-
cellent performance of EDASLS was mainly caused by pu�ing the
adjacent tasks closer to each other in the solutions.

Although Wang’s algorithms take the stochastic factors of both
demand and deadheading cost into consideration, they assume that

the practical demand of a task can be obtained as soon as the vehicle
�nishes serving the previous task. Such an assumption prevents the
route failures from occurring, since the vehicle can go back to the
depot immediately a�er serving the previous task without visiting
the next infeasible task. As a result, they obtained very promising
results in terms of the worst-case performance over all the possible
environments. However, the assumption of knowing the actual
demand of tasks in advance is usually not true in reality. In this
paper, we move a step forward towards the reality, and assume that
the actual demand of a task is not known until the vehicle �nishes
serving the task.

Weise et al. [25] proposed a GPHH for evolving heuristics for
static CARP and stochastic CARP with variable task sets. In their
approach, GP was used to evolve a heuristic function that will be
used to rank the tasks in the waiting list of a vehicle while de-
ciding which task the vehicle should serve next. To this end, a
meta-algorithm was designed, and a set of state a�ributes were
carefully chosen as the terminal set of the GPHH. Compared to
other existing methods such as the robustness optimisation meth-
ods in [23, 24], the GPHH has three advantages. First, the evolved
heuristics make step-by-step decisions only using the current lo-
cal information, and thus are very computationally e�cient and
scalable. Second, the evolved heuristics can be used to generate
high-quality initial solutions in unseen future instances, to adapt to
the environment change quickly. �ird, by observing the evolved
heuristic functions, we are given more chance to discover hidden
knowledge on how to e�ective generate high-quality CARP solu-
tions in di�erent environments, which can be used to guide the
method development for similar problems. Weise et al. also tested
their algorithm on stochastic CARP with random task set, and the
GP-evolved heuristics showed much be�er test performance than
the manually designed heuristics. However, the GPHH only con-
sidered the random presence of tasks, but ignored the stochastic
demand. As a result, it cannot cope with the route failures well.
Furthermore, it does not consider the stochastic deadheading cost,
and cannot deal with edge failure either.

3 GENETIC PROGRAMMING
HYPER-HEURISTIC FOR UCARP

A GPHH consists of two key components [25]: (1) a training set
and (2) a meta-algorithm. We develop a new framework of GPHH,
as described as follows:

Step 1: (Initialisation) randomly generate a GP population with
n heuristic functions.

Step 2: (Evaluation) For each heuristic function, evaluate the �t-
ness by applying the meta-algorithm with the heuristic function to
the training set, e.g. as the average objective values of the generated
solutions over the training set.

Step 3: If the stopping criteria are met, then return the heuristic
function that has the best �tness in this process. Otherwise go to
Step 4 to start a new generation.

Step 4: Generate a new population of o�springs using GP search
operators. �en go to Step 2.

In our algorithm, we select the typical tree-based representation,
and the traditional GP crossover and mutation operators during
the evolution process.
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3.1 Meta-algorithm
Meta-algorithm is the key component of the GPHH, as it is required
for evaluating the GP individuals, which are heuristic functions. A
meta-algorithm is expected to take any heuristic function and any
UCARP instance, and return a feasible solution. Here, we employ
the constructive heuristic-like meta-algorithm, which starts from
empty routes, and adds one task to the end of a route at each step.
�e meta-algorithm constructs the routes sequentially. �at is, it
will not open a new route unless the current route is closed. �is
corresponds to the situation in which there is only one vehicle. For
serving all the tasks, the vehicle goes back to the depot to re�ll its
capacity when fully-loaded (closing the current route).

�e meta-algorithm is described in Algorithm 1. During the
initialisation stage (lines 1–3), the solution is initialised to be empty,
and the �rst route (X (1),Y (1)) is initialised to start from the depot.
�e current location loc of the vehicle isv0, and the initial remaining
capacity Q̄ is Q . All the tasks are unserved initially. �en, the meta-
algorithm uses the heuristic function h(·) to decide the next task
that the vehicle should go (or go back to depot to re�ll) until all the
tasks are served. For deciding the next destination of the vehicle,
a subset of candidate tasks is �rstly selected from the pool by the
function Filter() (line 5). If no candidate task can be selected,
then the vehicle goes back to the depot to re�ll, closes the current
route and opens a new one (lines 7–9). Otherwise, the task u∗ with
the minimal heuristic value is selected to be served next, and the
vehicles goes to its head node (lines 11–13). While serving the task,
if the actual demand exceeds the remaining capacity (i.e. route
failure occurs), the route is then repaired by the function Refill().
Otherwise, the task is served as normal (lines 17–18). Finally, the
served task u∗ and its opposite task û∗ (i.e. head(û∗) = tail(u∗) and
tail(û∗) = head(u∗)) are removed from the set of unserved tasks,
since an edge with positive demand is to be served only once in
either direction.

�e proposed meta-algorithm has three advantages:
1) It takes advantage of a �lter function Filter() to select a

subset of candidate tasks out of the entire pool. �is way, one can
remove the tasks that are obviously unpromising from considera-
tion, and reduce the noise of the heuristic learning by GPHH;

2) It handles the edge failure by frequently detecting the change
of the network connectivity (as will be shown in the description
of the GoTo() function), and adjusting the subsequent decisions
accordingly in an e�cient way;

3) It deals with the route failure in two aspects. First, it adopts
the straightforward return-and-re�ll operation (line 15) when a
route failure occurs. Second, by carefully designing the Filter()
function, one can potentially remove the tasks that are more likely
to cause route failure in advance, and thus reduce the probability
of having route failures.

3.1.1 The Filter Function. �e purpose of the �lter function is to
select a subset of promising candidate tasks from the pool to reduce
the noise to the GPHH-based heuristic learning. Since the prob-
lem aims to minimise the total cost without violating the capacity
constraint, the demand and deadheading cost to the current location
are clearly the two important a�ributes of the tasks. First, to pre-
vent route failures, it is reasonable to eliminate the infeasible tasks
whose demands are greater than the remaining capacity. Second,

Algorithm 1 �e meta-algorithm of the GPHH for UCARP.
Input: Graph G = (V ,E), environment ξ , task set T , heuristic

function h(·)
Output: A feasible solution S = (X ,Y )

1: X ← ∅, Y ← ∅, k = 1;
2: X (k ) ← (v0), Y (k ) ← (), loc ← v0, Q̄ ← Q ;
3: U ← T ; . U is the pool of unserved tasks
4: whileU , ∅ do
5: U ′ ← Filter(U );
6: if U ′ = ∅ then . Go back to depot and re�ll
7: GoTo(X (k ),Y (k ),v0);
8: X ← X ∪ X (k ), Y ← Y ∪ Y (k ), k ← k + 1;
9: X (k ) ← (v0), Y (k ) ← (), loc ← v0, Q̄ ← Q ;

10: else
11: Calculate the heuristic value h(u) for each task u ∈ U ′;
12: u∗ = arg minu ∈U ′ h(u);
13: GoTo(X (k ),Y (k ),head(u∗));
14: if Q̄ < dξ (u∗) then . Route failure
15: Refill(X ,Y ,k,u∗);
16: else . Serve the task
17: X (k ) ← (X (k ), tail(u∗)), Y (k ) ← (Y (k ), 1);
18: loc ← tail(u∗), Q̄ ← Q̄ − dξ (u∗);
19: end if
20: U ← U \ u∗, U ← U \ û∗;
21: end if
22: end while
23: return S = (X ,Y );

to minimise the total cost, the tasks that are closer to the current
location (with smaller deadheading cost) should be more favourable
than the distant tasks. Based on these two factors, we develop the
�lter function as described in Algorithm 2. It includes two stages.
First, it �lters the tasks based on demand (lines 2–6). Speci�cally,
it selects the tasks satisfying the condition α · d̃(u) ≤ Q̄ , where
d̃(u) is the expected demand of the task u, and α is a parameter to
control the slack. �en, in the second stage (lines 7–13), it further
�lters the tasks by the deadheading cost from the current location,
where c̃(v1,v2) indicates the expected deadheading cost from v1 to
v2, and 0 ≤ β ≤ 1 is another parameter to specify the threshold. If
β = 0, the only the nearest tasks are selected. If β = 1, then all the
tasks are selected regardless of the distance.

3.1.2 The GoTo function. �e GoTo() function handles the po-
tential edge failures while traveling to the next task. It is described
in Algorithm 3. It updates the real-time deadheading cost matrix
C̃ |V |× |V | when reaching each vertex along the shortest path (line
5). If the edge to the next vertex becomes unaccessible, it adjusts
the subsequent path by �nding the shortest path using the latest
information (line 3).

3.1.3 The Refill function. �e Refill() function aims to ad-
dress the route failure issue. Here, we adopt the repair operator
proposed by [6]. �e function is described in Algorithm 4. At �rst,
the fraction of demand θ that can be served by the current route is
calculated. It is assumed that the vehicle can immediately go back
to the depot at the location where the route failure occurs, and the
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Algorithm 2U ′ ← Filter(U )
Input: �e unserved task set U , parameters α and β
Output: �e �ltered task set U ′ ⊆ U

1: U ′ ← ∅, U ′′ ← ∅;
2: for u ∈ U do . Filter by demand
3: if α · d̃(u) ≤ Q̄ then
4: U ′′ ← U ′′ ∪ u;
5: end if
6: end for
7: cmax ← maxu ∈U ′′ c̃(loc,head(u));
8: cmin ← minu ∈U ′′ c̃(loc,head(u));
9: for u ∈ U ′′ do . Filter by deadheading cost

10: if c̃(loc,head(u)) ≤ cmin + β · (cmax − cmin) then
11: U ′ ← U ′ ∪ u;
12: end if
13: end for
14: returnU ′;

Algorithm 3 GoTo(X (k ),Y (k ),des)

1: loc ← X (k )[end]; . Current location
2: while loc , des do
3: (loc,p1, . . . ,pl ,des) ← Dijkstra(loc,des, C̃ |V |× |V |);
4: for i = 1→ l do
5: Set C̃(loc,pi ) ← cξ (loc,pi ); . Update real-time info
6: if cξ (loc,pi ) = ∞ then . Edge actually unaccessible
7: break;
8: end if
9: X (k ) ← (X (k ),pi ), Y (k ) ← (Y (k ), 0), loc ← pi ;

10: end for
11: end while

demand is uniformly distributed along the edge. �erefore, from
the route failure location, the cost tohead(u) is θ ·cξ (u), and the cost
to tail(u) is (1−θ ) ·cξ (u). �en, the algorithm compares the cost of
the two re�ll directions via the head node and via the tail node, and
selects the be�er direction (lines 2–6). �en, the vehicle goes back
to the depot, closes the current route and opens a new one (lines
7–9). A�er that, the vehicle selects the be�er direction to go back
to serve the remaining demand of the task again (lines 10–17). Note
that in line 15, there is a subsequence X (k ) = (. . . ,vt ,vh ,vt ) and
Y (k) = (. . . , 0, 1 − θ ). �is means that the vehicle traverses from vt
towards vh , but stops at the fraction of (1 − θ ), i.e. the route failure
location. �en it turns around and serves the remaining demand
from the route failure location to vt .

3.2 Terminal and Function Sets
Similar to the terminal set used in [25], the terminal set in this work
consists of the following a�ributes.

(1) demand: the expected demand of the task, normalised by
the capacity.

(2) load: the remaining capacity, normalised by the capacity.
(3) cost: the cost of serving the task from the current location.

It is normalised into [0, 1] by maximal cost value among
all the candidate tasks.

Algorithm 4 Refill(X ,Y ,k,u)
1: θ ← Q̄/dξ (u), vh ← head(u), vt ← tail(u);
2: if δ̃ (vh ,v0) + θ · cξ (u) < δ̃ (vt ,v0) + (1 − θ ) · cξ (u) then
3: X (k ) ← (X (k),vt ,vh ), Y (k ) ← (Y (k ),θ , 0);
4: else
5: X (k ) ← (X (k),vt ), Y (k ) ← (Y (k ),θ );
6: end if
7: (X (k ),Y (k )) ← GoTo(X (k ),Y (k ),v0);
8: X ← X ∪ X (k), Y ← Y ∪ Y (k ), k ← k + 1;
9: X (k ) ← (v0), Y (k ) ← (), loc ← v0, Q̄ ← Q ;

10: if δ̃ (v0,vh ) + θ · cξ (u) < δ̃ (v0,vt ) + (1 − θ ) · cξ (u) then
11: (X (k),Y (k )) ← GoTo(X (k ),Y (k),vh );
12: X (k ) ← (X (k),vt , ), Y (k ) ← (Y (k ), 1 − θ );
13: else
14: (X (k),Y (k )) ← GoTo(X (k ),Y (k),vt );
15: X (k ) ← (X (k),vh ,vt ), Y (k ) ← (Y (k ), 0, 1 − θ );
16: end if
17: loc ← vh , Q̄ ← Q̄ − (1 − θ ) · dξ (u);

(4) depotCost: the cost from the tail of the task to the depot.
It is normalised into [0, 1] by the maximal depotCost value
among all the candidate tasks.

(5) satis�ed: the fraction of tasks that have already been satis-
�ed (served).

(6) heuristicValue: the heuristic value calculated in the previ-
ous round.

(7) constant: a random constant terminal.

�e function set is set to {+,−, ∗, /,max ,min}. All functions are
protected, they return 1 instead of +∞, -1 instead of −∞, and 0
instead of NaN.

4 EXPERIMENTAL STUDY
4.1 Experiment Settings
We used the UCARP instance generator proposed in [16] to ran-
domly generate the training and test instances based on the static
gdb and val datasets. For each static instance, we generated 90
UCARP training instances and 30 test instances. �e stochastic
demands and deadheading costs follow the Gamma distribution
with the shape parameter k = 20 and the scale parameter θ = f̃ /k ,
where f̃ is the static demand or deadheading cost. Details of the
generator can be found in [16].

During the GP training process, we used a mini-batch learning
process. We spli�ed the 90 training instances into 18 mini-batches,
each with 5 instances. �en we rotated the mini-batches generation
by generation. �is can signi�cantly improve the training e�ciency
as well as the generalisation.

For the parameter se�ings of GPHH, we followed the standard
GP se�ings and Weise’s suggestions in [25]. �e population size
was set to 1024. �e number of generations was 50. �e minimum
and maximum tree depths were set to 2 and 6, respectively. �e
crossover, mutation and reproduction rates were set to 2:5:2.
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4.2 Parameter Sensitivity Analysis
�e proposed GPHH has two important parameters, i.e. α and β
in the �lter function (Algorithm 2). α controls the slack of the
stochastic task demand when checking the feasibility. β sets the
threshold on the deadheading cost.

To investigate the e�ect of the two parameters on the perfor-
mance of GPHH, we �rst carried out some pilot experiments on the
static CARP instances. In this case, there is no need to estimate the
expected demand, and we can simply �x α = 1 to make sure all the
feasible tasks are included and all the infeasible tasks are excluded.
For the GPHH with each compared β value, 30 independent runs
were conducted. For each instance, we made a pairwise comparison
using the Wilcoxon rank sum test with signi�cance level of 0.05.

Table 1 shows the average total cost obtained by the proposed
GPHH with di�erent β values over the gdb and val static instances.
Due to the space limit, we only show the summary of the results
over each dataset. From the table, it can be seen that as the β
value increases, the average total cost tends to increase as well.
β = 0 achieves the best average total cost for both the gdb and
val instances. When β is too large (β ≥ 0.10 for gdb and β ≥ 0.05
for val instances), the total cost of the obtained solutions increases
dramatically.

Table 1: �e average total cost of the proposed GPHH with
di�erent β values over the gdb and val static instances. �e
best results are marked in bold.

Data β = 0 β = 0.02 β = 0.05 β = 0.10
gdb 257.31(0.15) 257.49(0.07) 257.60(0.23) 258.13(0.15)
val 361.82(0.59) 361.86(0.53) 363.80(0.58) 369.37(0.77)

Table 2 shows the corresponding Win-Draw-Lose results. It is
clear that for both datasets, β = 0 and β = 0.02 perform signi�cantly
be�er than β = 0.05 and β = 0.10. β = 0 performed signi�cantly
be�er than β = 0.02 on only one gdb instance.

Table 2: �e Win-Draw-Lose results between the total
cost obtained by the GPHH with di�erent β values using
Wilcoxon rank sum test with the signi�cance level of 0.05.

β = 0 β = 0.02 β = 0.05 β = 0.10

gdb
β = 0 – 1-22-0 2-20-1 7-15-1

β = 0.02 – – 0-23-0 6-16-1
β = 0.05 – – – 5-17-1

val
β = 0 – 0-34-0 10-24-0 27-6-1

β = 0.02 – – 13-21-0 28-6-0
β = 0.05 – – – 25-9-0

Note that when β = 0, the meta-algorithm is reduced to a nearest-
neighbor heuristic. Although it cannot guarantee optimality, the
results in Table 1 show that there is a tradeo� between the com-
prehensiveness of the candidate task set and the noise brought by
including more distant tasks. In this case, it seems that the noise
plays a more important role, and thus β = 0 reached the best results
by minimising the noise. Based on the above observations, we set
β = 0 for the GPHH in the subsequent experiments.

�e sensitivity analysis for α was conducted on the UCARP in-
stances. Here, we assume that the random demands follow the
Gamma distribution (as mentioned in [16]), and their mean and
standard deviation can be estimated accurately. For a random de-
mand d , its mean value d̃ is given by the corresponding static value,
and the standard deviation is σ =

√
k · θ = d̃/

√
20 (θ = d̃/k , and k

was set to 20). In the experiment, we set α = 1+ λσ/d̃ = 1+ λ/
√

20,
where λ = 0, 0.25, 0.50 and 0.75. For each compared α value and
each UCARP instance, we used the GPHH to train a heuristic func-
tion, and record its test performance on the test set. Again, we
conducted pairwise Wilcoxon rank sum test with signi�cance level
of 0.05 between the results of di�erent α values.

Table 3 shows the average test performance of the GPHH with
di�erent α values over the Ugdb and Uval instances. Table 4 shows
the corresponding Win-Draw-Lose results on the Ugdb instances.
Similar pa�erns were found on Uval instances. From the tables, on
can see that the α values obtained similar results. α = 1 (λ = 0)
and α = 1 + 0.25/

√
20 ≈ 1.06 tend to produce slightly be�er results

than the greater α values (e.g. Ugdb instances with objective F1).
From Table 3, it seems like that λ = 0.75 achieve the best test
performance on the Ugdb instances with objective F2. However,
as shown in Table 4, such advantage is not signi�cant. In terms
of the Win-Draw-Lose result, λ = 0.75 is even slightly worse than
λ = 0.25 (2-20-1).

Table 3: �e average test performance of the GPHHwith dif-
ferent α (i.e. λ) values over the Ugdb and Uval instances. �e
best results are marked in bold.

Data λ = 0 λ = 0.25 λ = 0.50 λ = 0.75

F1
Ugdb 285.87(0.44) 286.86(0.52) 286.86(0.73) 287.77(0.59)
Uval 394.85(0.71) 395.67(0.66) 396.11(0.76) 396.97(0.51)

F2
Ugdb 327.23(1.69) 325.79(2.20) 328.28(1.90) 327.92(1.73)
Uval 445.28(2.21) 445.68(1.61) 446.33(1.68) 447.24(1.75)

Table 4: �eWin-Draw-Lose results between di�erent α (i.e.
λ) values on the Ugdb instances using Wilcoxon rank sum
test with the signi�cance level of 0.05.

λ = 0 λ = 0.25 λ = 0.50 λ = 0.75

F1
λ = 0 – 2-19-2 4-18-1 4-16-3

λ = 0.25 – – 2-20-1 3-18-2
λ = 0.50 – – – 0-21-2

F2
λ = 0 – 2-20-1 2-18-3 3-17-3

λ = 0.25 – – 0-23-0 2-20-1
λ = 0.50 – – – 2-19-2

In summary, we have the following observations from the sensi-
tivity analysis.

• β = 0 is the best choice for the static instances.
• When β = 0, α = 1 or α = 1.06 are reasonably good choice.

If α is too large, then the test performance will drop.
�erefore, we select α = 1 and β = 0 for our GPHH. For the sake

of convenience, it will be denoted as GPHH(1,0).
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4.3 Comparison with Existing Methods
To the best of our knowledge, the GPHH proposed by Weise et al.
[25] is the only existing GPHH for UCARP. It was selected as the
baseline GPHH (denoted as W-GPHH ) for comparison. In addition,
we compared with �ve manually designed heuristic functions [13].
�ey are denoted as H1, . . . ,H5, and described as follows:

H1 selects the task with the maximal distance to the depot;
H2 selects the task with the minimal distance to the depot;
H3 selects the task with the maximal demand/serveCost value;
H4 selects the task with the minimal demand/serveCost value;
H5 uses H1 if load ≥ 0.5, and H2 otherwise.
Tables 5 and 6 show the average test performance and corre-

sponding Win-Draw-Lose results of the compared methods against
the proposed GPHH(1,0). From the tables, it can be seen that W-
GPHH performed much worse than GPHH(1,0) and the manually
designed heuristics. �is demonstrates the importance of the care-
fully designed meta-algorithm that �lters the tasks based on fea-
sibility and distance. Without such mechanism, W-GPHH failed
to learn e�ective heuristics. Furthermore, GPHH(1,0) signi�cantly
outperformed H1 to H4. It was defeated by only H5 on the small
and simple Ugdb instances. �is is consistent with our expectation,
since H5 is a more sophisticated heuristic than the other four. In ad-
dition, the advantage of GPHH becomes more obvious on the larger
Uval instances, which tend to have more complicated pa�erns for
making good decisions.

Table 5: �e F1 test performance andWin-Draw-Lose results
of the compared methods against GPHH(1,0).

H1 H2 H3 H4 H5 W-GPHH GPHH(1,0)

Mean 299.59 308.30 297.68 305.49 285.85 316.43 285.87
Ugdb Std (0.00) (0.00) (0.00) (0.00) (0.00) (0.59) (0.44)

W-D-L 1-0-22 0-0-23 0-3-20 1-0-22 8-6-9 –

Mean 409.79 448.51 424.28 431.72 407.69 427.25 394.85
Uval Std (0.00) (0.00) (0.00) (0.00) (0.00) (1.13) (0.71)

W-D-L 0-3-31 0-0-34 0-0-34 0-0-34 3-1-30 –

Table 6: �e F2 test performance andWin-Draw-Lose results
of the compared methods against GPHH(1,0).

H1 H2 H3 H4 H5 W-GPHH GPHH(1,0)

Mean 345.25 352.92 344.28 347.68 330.48 366.58 327.23
Ugdb Std (0.00) (0.00) (0.00) (0.00) (0.00) (1.83) (1.69)

W-D-L 2-2-19 1-2-20 0-3-20 1-3-19 6-8-9 –

Mean 456.16 497.49 477.75 485.51 456.40 482.23 445.28
Uval Std (0.00) (0.00) (0.00) (0.00) (0.00) (2.43) (2.21)

W-D-L 5-7-22 1-0-33 1-4-29 0-1-33 6-7-21 –

4.4 Further Analysis
4.4.1 The evolved heuristic function. Eq. (10) shows an arbitrar-

ily selected evolved heuristic function. �is heuristic is an aggre-
gation of two components (lines 1–2 and 3–4, respectively). �e
�rst component contains demand, implying that the heuristic tends
to favour the tasks with smaller demands. Furthermore, the high-
lighted fragment in the �rst component shows that when load >

0.51, i.e. the vehicle is less than half-full, demand/depotCost has a
positive coe�cient, and thus the heuristic tends to select the tasks
with larger depotCost. Otherwise, the coe�cient of demand/depotCost
is negative, and the depotCost tends to be minimised. �is observa-
tion is consistent with H5, which means that GPHH can identify
the sophisticated relationship between the a�ributes automatically.

(+ (× (max (max (/ heuristicValue cost) load) demand)
(/ (/ demand depotCost) (- load 0.51)))

(× (+ load (× cost load)) (10)
(+ (− load satis�ed) (/ depotCost satis�ed))))

4.4.2 E�ect of α . �e sensitivity analysis on α (Tables 3 and 4)
showed that there is no obvious relationship between the α value
and the test performance. �en we conducted further analysis on
how di�erent α value a�ect the decision making during the solution
generation. To this end, we randomly select a GP-evolved heuristic
obtained from the Ugdb15 training instances, and test it on the
30 Ugdb15 test instances with di�erent α values. Here the small
and simple Ugdb15 instances are selected to facilitate investigation.
First, we plot the total cost obtained by di�erent α values for each
of the 30 test instances, as shown in Fig. 1. From the �gure, we
further pick two scenarios as follows:

• Instance 3, where larger α values performed be�er;
• Instance 5, where smaller α values performed be�er.

�en, for each scenario, we compared the routes generated by
di�erent α values.

55

57

59

61

63

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

α=1.00 α=1.06 α=1.11 α=1.17

Figure 1: �e total cost obtained by the randomly selected
GP-evolved heuristic with di�erent α values on the 30
Ugdb15 test instances.

(Scenario 1). Fig. 2 shows the scenario of test instance 3. It can be
seen that when α is smaller, there is a route failure occurring at the
end ofX (2). As a result, the total cost of the routes (a) is 60.76, while
the routes (b) without any route failure has a total cost of 57.44.
Taking a closer look at the decision situation where the task (2, 6)
was selected by routes (a), we found that the remaining capacity was
6.56 and the expected demand of (2, 6) was 6. However, the actual
demand of the task was 6.81 > 6.56. For a Gamma distribution
with k = 20 and θ = 6/20, it is very likely to have a sample of 6.81.
In this case, adding a slack α > 1.06 to the expected task demand
prevents a route failure.

(Scenario 2). Fig. 3 shows the scenario of test instance 5. In this
case, the di�erence occurred when deciding whether to serve the
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X(1): 16724321

Y(1):   1    1    1    1    1    1    1

X(2): 17364752621

Y(2):   1    1    1    1    1    1    1  0.96  0   0

X(3): 126531

Y(3):   0  0.04  1   1    1

X(4): 1451

Y(4):   1    1    1  

X(1): 16724321

Y(1):   1    1    1    1    1    1    1

X(2): 173647521

Y(2):   1    1    1    1    1    1    1    0

X(3): 13541

Y(3):   1    1    1    1  

X(4): 15621

Y(4):   1    1    1    0
(a) Routes generated by 

      α=1 and α=1.06

(b) Routes generated by

      α=1.11 and α=1.17

Figure 2: �e solutions generated by di�erent α values on
the Ugdb15 test instance 3.

task (4, 1) or not at the end of route X (2). At this decision point, the
remaining capacity was 4.03, and the expected demand of the task
(4, 1) was 4. �e actual demand is 2.57, which is much smaller than
the expected demand. When α ≥ 1.06, the task was eliminated
from the candidate task set, and the vehicle skipped it while going
back to the depot. As a result, the greater α values led to one more
route, and thus a larger total cost (56.00 versus 58.37).

X(1): 1672631

Y(1):   1    1    1    1    1    1   

X(2): 1735741

Y(2):   1    1    1    1    1    1  

X(3): 1564234521

Y(3):   1    1    1    1    1    1    1    1    1

X(1): 1672631

Y(1):   1    1    1    1    1    1   

X(2): 1735741

Y(2):   1    1    1    1    1    0

X(3): 125642341

Y(3):   1    1    1    1    1    1    1    1  

X(4): 1541

Y(4):   1    1    0
(a) Routes generated by α=1 (b) Routes generated by α=1.06, 

      α=1.11 and α=1.17

Figure 3: �e solutions generated by di�erent α values on
the Ugdb15 test instance 5.

Overall, whether α > 1 can improve the performance of the
GPHH highly depends on the scenario. Basically, if the actual
demand is no larger than the expected demand, then a smaller α
tends to be be�er. If the actual demand is greater, then a larger α is
a be�er choice.

5 CONCLUSION
In this paper, a new GPHH method for evolving routing heuristics
for UCARP was proposed. We developed a new meta-algorithm
that coped well with the route and edge failures in UCARP. Fur-
thermore, it �ltered the infeasible distant candidate tasks to reduce
the noise of the GP-based heuristic learning. �e experimental
results showed that the proposed GPHH method signi�cantly out-
performed the existing GPHH for UCARP. Furthermore, it was
found that the �lter function played an important role in improving
the performance of the GPHH. Speci�cally, it was important to
eliminate the distant tasks from the candidate task set. In addition,
when the task demands were stochastic, simply adding a slack to
the expected demands could not necessarily address the issue. Al-
though it reduced the probability of route failures, it might skip
some tasks that can actually be served on the way. It seemed that
directly using the expected demand was the best choice on average.
In future, we will investigate more intelligent ways of adding slacks,
such as scenario-adaptive α values.
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