
Toward Evolving Dispatching Rules for Dynamic Job Shop
Scheduling Under Uncertainty

ABSTRACT
Dynamic job shop scheduling (DJSS) is a complex problem which
is an important aspect of manufacturing systems. Even though
the manufacturing environment is uncertain, most of the existing
research works consider merely deterministic problems where the
time required for processing any job is known in advance and never
changes. However many DJSS problems in practice involve high
level of uncertainty that must be explicitly addressed. In this work,
we consider DJSS problems with varied uncertainty con�gurations
of machines in terms of processing times. We �nd that with the
varying levels of uncertainty, more and more machines cannot ful-
�ll their duties as scheduled and will become bo�lenecks of the job
shop. To cope with uncertainties, it is therefore essential to identify
these bo�leneck machines and schedule the jobs to be performed
by them carefully. Driven by this idea, we develop a new e�ective
method to evolve pairs of dispatching rules each for a di�erent bot-
tleneck level on the machines. A clustering approach to classify the
bo�leneck level of the machines arising in the system due to uncer-
tain processing times is proposed. �en, a cooperative co-evolution
technique to evolve pairs of dispatching rules which generalizes
well across di�erent uncertainty con�gurations is presented. We
perform empirical analysis to show its generalization characteristic
over the di�erent uncertainty con�gurations and show that the
proposed method outperforms the current approaches.

CCS CONCEPTS
•Computing methodologies→ Planning under uncertainty;
Heuristic function construction;

KEYWORDS
job shop scheduling, uncertainty, genetic programming.
ACM Reference format:
. 2017. Toward Evolving Dispatching Rules for Dynamic Job Shop Sched-
uling Under Uncertainty. In Proceedings of �e Genetic and Evolutionary
Computation Conference, Berlin, Germany, July 2017 (GECCO’17), 8 pages.
DOI: 10.475/123 4

1 INTRODUCTION
Job shop scheduling is an NP-hard problem [26] and is vital for
industrial manufacturing. Generally, research works consider de-
terministic job shop scenarios; though in practice, uncertainty in
manufacturing environments is ubiquitous. Machine breakdowns,
rework, operator skill and availability, variation in raw material

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO’17, Berlin, Germany
© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . .$15.00
DOI: 10.475/123 4

quality, variable due dates, etc. are some of the sources of uncer-
tainty. Apparently scheduling becomes much more di�cult with
the increasing uncertainty in the shop �oor [15].

Dynamic job shop scheduling (DJSS) problems are characterized
by continuous arrival of new jobs to the shop and no prior infor-
mation about them is known. In the deterministic case, once the
information of a new job is known, it stays constant. However, in an
uncertain scenario, the information varies at the time of realization
of the schedule. For example, the processing time of a job varies
when a schedule is realized and is di�erent from its expected value.
In this paper, we consider DJSS with processing time uncertainty
because it a�ects most scheduling objectives.

Some of the methods used to describe the uncertainty [17] are: (1)
bounded f orm, (2)probability description and (3) f uzzy description.
�e literature review [17] shows that probability description is
more widely used. �e di�erent approaches used for optimization
under uncertainty depend on the description method(s). Broadly,
these approaches are classi�ed into preventive schedulinд and
reactive schedulinд. Preventive scheduling, which employs his-
torical information to generate schedules robust under uncertain
events, is further classi�ed into stochastic scheduling [2], robust op-
timization [15], fuzzy programming [7] and sensitivity analysis [24].
Reactive scheduling methods modify the generated schedule in re-
sponse to any uncertain events with the help of dispatching rules.

A dispatching rule is a function which assigns priority values
to every operation queued on a machine. �e operation with the
lowest priority value is then processed on the machine. As the
new jobs arrive, their operations get queued on the machines as
de�ned in their routes. Dispatching rules are e�cient in generat-
ing schedules for di�erent scheduling objectives. For scheduling
under uncertainty, the approaches using dispatching rules usually
performed very well. For example, Lawrence et al. [16] compare
the performance of their method using dispatching rules against
branch-and-bound technique and show that with the increasing
uncertainty in processing times, dispatching rules appeared to per-
form relatively be�er. Literature review [8, 13, 16, 18, 21] shows
that dispatching rules are highly successful for job shop scheduling
under uncertainty.

As an e�cient method to generate schedules with very li�le
computational cost, dispatching rules are practical, but their design
requires considerable e�ort due to the need of rigorous experi-
mental analysis. In order to solve this problem, researchers have
proposed genetic programming based hyper-heuristic (GPHH) ap-
proach to evolve dispatching rules [3, 12]. �e approach is shown to
be highly successful in various empirical studies [3, 21]. Moreover,
it is possible to learn diverse dispatching rules for di�erent shop
characteristics by exploiting the �exible representation of genetic
programs. Since GPHH approach makes it convenient to evolve
multiple rules, it is feasible to evolve rules corresponding to dif-
ferent shop scenarios. For example, [20] proposes a cooperative

GECCO’17, July 2017, Berlin, Germany Karunakaran et. al.

co-evolutionary approach to design dispatching rules for di�er-
ent scheduling objectives with due-date assignment. Cooperative
co-evolution [27] in particular has shown the ability to evolve solu-
tions for problems with interacting subcomponents. Cooperative
co-evolution shows itself as a key technique to be investigated
when scheduling is considered in a job shop with di�erent sets of
machines pertaining to varying bo�leneck levels, but a�ecting the
system as a whole.

Genetic programming based hyper-heuristic (GPHH) approach
to evolve dispatching rules for dynamic job shop scheduling is thus
a promising area. Some recent works [13] have used genetic pro-
gramming to evolve rules for dynamic job shop scheduling under
uncertain processing times. [13] considers job speci�c uncertainty
characteristics and propose an exponential moving average ter-
minal for evolving be�er rules. To be speci�c, in a dynamic job
shop machines di�erent uncertainty con�gurations could result in
varying bo�leneck levels of machines. �ere are limited existing
research works which consider identifying and managing the bot-
tlenecks separately e.g. [11]. Our research therefore exploits this
opportunity to investigate the e�cacy of evolving speci�c dispatch-
ing rules for bo�leneck machines. Exploring GPHH approaches to
solve this problem holds good potential. Considering the potential
of GPHH approach to evolve rules for di�erent shop characteristics,
particularly using multi-population algorithms like cooperative
co-evolution, it is a promising research direction to develop meth-
ods to design dispatching rules which perform well under varied
uncertainty characteristics of a dynamic job shop.

�e main goal of this work is to develop a method to design
dispatching rules for dynamic job shop scheduling under uncertain
processing times, which perform well under varied uncertainty con-
�gurations of the machines. �e speci�c objectives are: (1) Develop
a new training process using speci�c uncertainty con�gurations
pertaining to bo�leneck and non-bo�leneck scenarios. (2) Develop
a new e�ective method to classify the di�erent bo�leneck levels
arising in a dynamic job shop with uncertain processing times,
which could then be associated with speci�c dispatching rules. (3)
Develop a cooperative co-evolutionary method to evolve (pairs of)
dispatching rules which are able to generalize well for the varying
scenarios in the shop.

In the next section, we present the background to the job shop
scheduling problem, the genetic programming based hyper-heuristic
approach and cooperative co-evolution. Some related works are
presented in Section 3. In Section 4, we describe our proposed meth-
ods. In Sections 5 and 6, we describe the experiment design and
results respectively. Section 7 consists of conclusions and future
work.

2 BACKGROUND
2.1 Job Shop Scheduling
We brie�y describe the dynamic job shop scheduling (DJSS) problem.
In a DJSS problem the jobs arrive at the shop continuously which
are assumed to follow a Poisson distribution [21]. A job j has nj
operations which are processed in a prede�ned route, which can
be de�ned in the form of (oj,1 → oj,2 →, . . . ,oj,nj), for a set of
operations O j in job j. Each operation must be processed on one
particular machine in the route.

Each operation has a processing time, say pj,i . In practice, the
actual processing time which is realized in the shop, which we
denote as p′j,i is o�en di�erent from pj,i . Typically, the sources
of uncertainty are events like repair, rework, unscheduled mainte-
nance, etc which will always delay the processing of operations on
a machine. So p′j,i > pj,i is a practical assumption.

Total tardiness, makespan, total �ow time , etc. are some of the
scheduling objectives considered in the literature. We consider total
�ow time as the objective in the DJSS problem. Total �ow time is
de�ned as

F =
∑
j
(Cj − r j)

r j and Cj are the release times and completion times of the jobs.
�e general assumptions for DJSS, such as no preemption, no

recirculation of jobs, no machine failure, no alternate routing and
zero transit times are also considered in this work.

2.2 Genetic Programming Based Hyper
Heuristics (GPHHs)

For hard problems in combinatorial optimization like job shop
scheduling, hyper-heuristic techniques [4] are useful as they search
in the heuristic space rather than in the solution space. In other
words, they are used to automate the selection of heuristics. �e
designed heuristics generate the �nal solution to the problem.

Genetic programming based hyper-heuristic approach [5] has
shown good success [20]. Particularly when compared with other
representations like neural network or linear, the �exible represen-
tation of a genetic program is usually considered more desirable [3].
�e representation is conducive to incorporate the desired charac-
teristics of a job shop into the dispatching rule. For example, Hunt
et al. [10] develop new terminals which generate “less myopic”
schedules for DJSS problem. Similarly, in [21] new representations
of genetic programming are presented for DJSS problem to evolve
be�er solutions.

2.3 Cooperative Co-evolution
Cooperative co-evolution algorithms (CCEA) are characterized by
two or more interacting subspaces within a search space such that
the �tness of an individual is evaluated based on its interactions
with other individuals (subspace) [30]. A problem is decomposed
into subproblems and solutions to the subproblems are then evolved.
�ese are then combined together to form the �nal solution. �e
subpopulations belong to di�erent “ecological niches” [27].

CCEA have been employed before for di�erent DJSS problems.
Park et al. [22] propose a cooperative co-evolution based multi-level
genetic programming approach to evolve ensembles of dispatching
rules for DJSS. �ey had also developed a similar co-evolutionary
approach to evolve ensembles of rules for static JSSP [23]. In a
related work [14], a co-evolutionary algorithm is proposed to in-
tegrate the planning and scheduling activities in �exible manu-
facturing systems. �e success of CCEAs to develop solutions to
complex problems in manufacturing systems by considering its
sub-components motivates us to explore their utility in DJSS prob-
lems under uncertainty leading to multi-bo�leneck levels. To our
knowledge, there is no previous work which considers cooperative
co-evolutionary approach toward evolving dispatching rules over

Toward Evolving Dispatching Rules for Dynamic Job Shop Scheduling Under Uncertainty GECCO’17, July 2017, Berlin, Germany

di�erent scenarios in dynamic shop arising due to uncertainty in
shop parameters.

3 RELATED WORKS
Adams et al. [1] develop a shi�ing bo�leneck procedure for job shop
scheduling to minimize makespan. �is work has been modi�ed
to solve varied classes of problems [6, 25]. Moreover, bo�leneck
identi�cation has been shown to be a useful step in order to provide
additional computational resources to optimize the sequencing at
that machine [29, 31].

Jakobovic̀ et al. [11] propose a genetic programming based method
for static job shop scheduling where they consider evolving separate
rules for bo�leneck and non-bo�leneck machines. �e machines
are classi�ed using a decision rule which is a genetic program with
a di�erent set of terminals. Since this work is closely related to our
research we compare our methods with it. In the next section we
present some more details about this work before describing our
proposed methods.

4 PROPOSED METHODS
In this Section, we describe our proposed methods in detail. Firstly,
we discuss the work by Jakobović et al. [11] which proposes an
adaptive scheduling heuristic for bo�leneck and non-bo�leneck
machines in a static job shop scheduling problem. We make some
required modi�cations for it to work on DJSS. We call this method
as GP3. We use this method and the standard GP approach as our
benchmarks. �en we develop a new method (GP2-K) which uses
unsupervised clustering of machines’ states to classify the bo�le-
neck and non-bo�leneck machines. Unlike our benchmarks, in
GP2-K we use two speci�c uncertainty con�gurations for evolv-
ing bo�leneck and non-bo�leneck machines. Finally, we present
a cooperative co-evolutionary (CGP2-K) approach which aims to
evolve dispatching rules with be�er generalization characteristics
for varied levels of uncertainty.

Jakobović et al. [11] propose an adaptive scheduling heuristic,
where they evolve a pair of dispatching rules, one for the bo�leneck
machine and the other for non-bo�leneck machine. In order to
classify a machine into the two types, they use a third rule, decision
rule, which uses a di�erent set of terminals. �ese terminals are
shown in Table 1.

Table 1: Terminal Set: Jakobović-GP3 (Decision rule)

Terminal De�nition

MTWK Total processing time of all operations on a machine
MTWKr Processing time of all remaining operations on a machine
MTWKav Average duration of all operations on a machine.
MNOPr Number of remaining operations on a machine.
MNOPw Number of waiting operations on a machine.
MUTL Machine Utilization.

Compared to static job shop scheduling, in DJSS problems under
uncertain processing times, the variation in the bo�leneck charac-
teristics of a machine is more prominent. �erefore, the terminals,
in particular, the machine utilization (MUTL) terminal should repre-
sent the current state of machine. We determine machine utilization

by using exponentially decreasing weights for older time periods,
so that the recent load on the machine is be�er represented.

Algorithm 1: GP2-K [Training]
Input:

• Gτ , total number of generations.
• DJSS training instance (Pt).

– Simulation parameters
– Ul uncertainty con�guration (low)
– Uh uncertainty con�guration (high)

Output: Pair of dispatching rules : {DRl ,DRh }
1 Initialize subpopulations S1,S2
2 Set д ← 0
3 while д ≤ Gτ do
4 д ← д + 1
5 foreach individual I ∈ S1 do
6 assign �tness to I using DJSS simulation withUl

con�g.
7 end
8 foreach individual in S2 do
9 assign �tness to I using DJSS simulation withUh

con�g.
10 end
11 Evolve individuals in S1,S2 using crossover and mutation.
12 end

4.1 GP2-K-means (GP2-K)
Although GP3 moves a step towards the scenario-dependent rule
learning, it is di�cult to evolve both the dispatching rules and the
decision rule together. Speci�cally, the error made by the decision
rule can potentially a�ect the dispatching rule learning, since the
dispatching rule is applied to a wrong scenario. To address this
issue, we propose a new GP training process, which is called GP2-K.
GP2-K separates the dispatching rule learning from the decision
rule learning. To this end, we select two training sets, one with
high uncertainty, and the other with low uncertainty. �en we keep
two sub-populations, one for DRl and the other for DRh . �is way,
we can guarantee that the dispatching rule is always applied to the
correct scenario, and thus its performance can be evaluated more
accurately.

�e proposed training process is described in Algorithm 1. Note
that di�erence between the uncertainty levels of the two con�gu-
rations should not be too high, as the goal is to evolve solutions
which work under subtle variation in uncertainty levels; which is
also more practical. If the variation were stark, both the bo�leneck
classi�cation and the design of dispatching rules would be easier.
�e two subpopulations are then evolved independently (lines 3-12).
�e pair of best evolved rules from subpopulations at the end of
last generation is the �nal output. Note that the newly proposed
training process does not include the decision rule learning. During
the test process, we need to classify the current state to decide
which dispatching rule to use. To this end, we propose a clustering
approach to avoid the need of the decision rule learning.

GECCO’17, July 2017, Berlin, Germany Karunakaran et. al.

�e K-means clustering component of the method is explained
using Algorithm 2. A machine state vector is constructed using
the terminal set used in GP3 method (line 5). Initially the set of
machine state vectorsH is empty. As the simulation progresses,
the machine-state vectors are stored inH .

At the outset, when the simulation is just warming-up and the
size ofH is very small we use the following steps. Initially we start
simply by using the queue lengths (MNOPr , number of remaining
operations on a machine) to classify between bo�leneck and non-
bo�leneck machines; higher value of MNOPr implies high level
of bo�leneck. Once the number of state vectors is greater than 2
(k = 2), we are able to apply clustering method but we continue as-
sociating (labeling) the centroids to bo�leneck and non-bo�leneck
machines using the feature MNOPr ; this is done for a small num-
ber(10) of jobs during the warm-up period. �erea�er, when H
becomes su�ciently large, for every new pair of centroids their
distance is calculated from the pair of centroids obtained in the
previous step which are already labeled as bo�leneck (Ch) and non-
bo�leneck (Cl). Based on the distance values, the new centroids
are then labeled (line 8).

Once the labeled centroids are obtained, (either using MNOPr
initially or using the preceding centroids labels) their distance from
the current machine state vector is determined (lines 9-12) and those
values are used to decide the dispatching rule from {DRl ,DRh }, to
be used for sequencing. �e preliminary study showed that a�er the
warm-up period of DJSS simulation, during which a �xed number of
jobs are ignored for total �ow time computation, there are su�cient
number of machine-state vectors for the cluster centroids Cl and
Ch to be distinct.

4.2 Co-evolutionary GP2-K (CGP2-K)
GP2-K is designed to evolve a pair of DRs independently in sepa-
rate subpopulations and then they are applied to a DJSS problem
instance where they interact with each other through sequencing
decisions. GP2-K method does not take into account the e�ect of
this interaction between the two dispatching rules. Cooperative
co-evolution is a technique which is applicable to a problem with
interacting sub-components. �erefore we propose a cooperative
co-evolutionary GP2-K i.e. CGP2-K.

In CGP2-K we divide the evolution into two stages as described
in Algorithm 3. In the �rst stage, for some generations the dispatch-
ing rules are evolved in separate sub-populations. In this stage,
each subpopulation is associated with a speci�c uncertainty con-
�guration, similar to GP2-K method. In the second stage, which
is the co-evolutionary stage the �tness is assigned using trials, in
which each individual in a sub-population is paired with the best
individual from the other subpopulation. In this stage, a single
uncertainty con�guration is used for both subpopulations which
corresponds to lower uncertainty level.

In the lines 3-12 of Algorithm 3, the �rst stage of the method is
presented. �e evolution in the subpopulations happen separately
using speci�c uncertainty con�gurations without any interaction
between the two. �e co-evolutionary stage is described in lines
13-24. For each generation, the best individuals from each subpop-
ulation is determined (lines 15-16). For calculating the �tness of
an individual, the best individual from the other subpopulation is

Algorithm 2: K-means-clustering approach: GP2-K & CGP2-K
Input:

• Pair of dispatching rules : {DRl ,DRh }
• DJSS problem instance.

– uncertainty uon�guration.
– set of machinesM.
– Simulation parameters.

Output: Total �ow time :T
1 Set of system state vectors: H ← ∅.
2 Cluster Centroids: {Cl ,Ch } ← ∅.
3 while new jobs arrive do
4 foreachm ∈ M do
5 F (m) =

[MTWK ,MTWKr ,MTWKav,MNOPr ,MNOPw,MUTL].
6 if size (H) > 2 then
7 {C1,C2} ← KmeansCluster (H)

8 {Cl ,Ch } ← associateClusters ({C1,C2})
9 if distance (Cl ,F (m) ≤ distance (Ch ,F (m) then

10 Use DRl for sequencing on machinem
11 else
12 Use DRh for sequencing on machinem
13 else
14 Use DRl for sequencing on machinem.
15 Add F (m) toH .
16 end
17 Update T .
18 end

paired with it and to assign the �tness value, this pair is evaluated
using the procedure described in Algorithm 2; which is same as
what was used for GP2-K. For evaluation, the uncertainty con�g-
uration used is the one which of lower level, Ul . A�er all the
generations are complete, the combination of best individuals from
the last generation is returned as output. �e procedure used for
testing is similar to the one used with GP2-K.

5 EXPERIMENT DESIGN
5.1 Simulation Model
We assume that the uncertainty in processing times of the opera-
tions is machine speci�c. Each machine in the job shop is charac-
terized with its own uncertainty distributions. A machine could be
associated with more than one uncertainty distributions depending
on other factors, e.g. maintenance schedule. �is assumption is
practical and is a characteristic of imperfect production systems [28].
�erefore, in our model we consider machines with one or more
levels of uncertainty.

For an operation oj,i if the processing time without uncertainty
is pj,i , then the processing time with uncertainty p′j,i follows the
relation

p′j,i = (1 + θ j,1)pj,i , θ j,1 ≥ 0.
Here θ j,i is the delay ratio which is a measure of the severity of
the disturbances. Based on [13], θ in our simulation model should
follow exponential distributions.

Toward Evolving Dispatching Rules for Dynamic Job Shop Scheduling Under Uncertainty GECCO’17, July 2017, Berlin, Germany

Algorithm 3: Co-evolutionary method - CGP2-K
Input:

• Gc , the generation a�er which co-evolutions starts.
• Gτ , total number of generations.
• DJSS training instance (Pt).

– Simulation parameters
– Ul uncertainty con�guration (low)
– Uh uncertainty con�guration (high)

Output: Pair of dispatching rules : {DRl ,DRh }
1 Initialize subpopulations S1,S2
2 Set д ← 0

/* Stage: 1 */

3 while д ≤ Gc do
4 д ← д + 1
5 foreach individual I ∈ S1 do
6 assign �tness to I using DJSS simulation withUl

con�g.
7 end
8 foreach individual in S2 do
9 assign �tness to I using DJSS simulation withUh

con�g.
10 end
11 Evolve individuals in S1,S2 using crossover and mutation.
12 end

/* Stage: 2 - cooperative co-evolution starts */

13 while Gc < д ≤ Gτ do
14 д ← д + 1
15 I1 ← BestIndividual(S1)
16 I2 ← BestIndividual(S2)
17 foreach individual I ∈ S1 do
18 assign �tness to the pair {I} using Algorithm 2 with

Ul con�guration and {DRl ,DRh } ← {I,I2} for
problem-instance Pt .

19 end
20 foreach individual I ∈ S2 do
21 assign �tness to the pair {I} using Algorithm 2 with

Ul con�guration and {DRl ,DRh } ← {I1,I} for
problem-instance Pt .

22 end
23 Evolve individuals in S1,S2 using crossover and mutation.
24 end

We use a discrete event simulation system (see Jasima [9]) to
generate DJSS problem instances under uncertainty. Similar to
many previous works [10, 20] we consider 8 operations per job
and 10 machines in each problem. �e processing times of the
operation are uniformly samples from [1, 49]. �is is a simulation
con�guration which has been followed in many other studies [10,
19]. �e job arrival is assumed to be a Poisson process with λ =
0.85 [13]. We consider total �ow time as the scheduling objective for
all our experiments. For every run of the simulation �rst 500 jobs
are ignored (warm-up period) and the total �ow time is calculated
only over the next 2000 jobs. We conduct 30 independent runs for
each method on same training data.

Table 2: Machine uncertainty (scale parameter (β) values of
exponential distributions)

m0 m1 m2 m3 m4 m5 m6 m7 m8 m9
I 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

II 0.1 0.1 0.1 0.1 0.1 0.2 {0.35,
0.1}

{0.35,
0.1}

{0.2,
0.1}

{0.3,
0.1}

III 0.1 0.1 0.1 0.1 0.1 0.3 {0.6,
0.3}

{0.6,
0.3}

{0.2,
0.1}

{0.3,
0.1}

IV 0.3 0.3 0.3 0.3 0.3 0.5 {0.8,
0.5}

{0.8,
0.5}

{0.4,
0.3}

{0.5,
0.3}

V 0.3 0.3 0.3 0.3 0.3 0.9 {1.2,
0.75}

{1.2,
0.75}

{0.65,
0.4}

{0.75,
0.4}

VI 0.1 0.1 0.1 0.35 0.35 0.35 0.65 0.65 0.65 0.65

Uncertainty Configurations. We have considered six uncertainty
con�gurations for the machines which are presented in Table 2. �e
columns correspond to the machines. Each machine is associated
with one or more θ parameter se�ings which follow exponential
distributions. �e scale parameter (β) of the associated exponential
distributions are given. In practice, a production environment is
characterized by varying defect and rework rates [28] which is
re�ected through the variation in levels of uncertainty. �erefore,
some of the machines are associated with a pair of parameter values,
e.g. m6 in con�guration I I I is associated with two scale parameters,
{0.6, 0.3}. �e duration for which a machine is associated with a
speci�c uncertainty level is sampled from [1000, 1700]. For our sim-
ulation, we found that this is a su�cient duration for the machine
to move through transient to a steady bo�leneck level.

We require two levels of uncertainty con�gurations during train-
ing for the methods GP2-K and CGP2-K. �ese two con�gurations
are shown in bold in Table 2. �e con�gurations I I I and V I cor-
respond to the low and high levels respectively. As explained in
Section 4.1, the di�erence between the uncertainty levels of two
con�gurations is not high. In the con�guration V I , for the ma-
chines m6 −m9 associated with β = 0.65 the uncertainty level is
marginally higher but consistent. Similarly for machinesm3 −m5,
β = 0.35 which is marginally higher. �e di�erent test and train
con�gurations used are summarized in the Table 3. GP1(l) and
GP1(h) are the standard GP methods.

Table 3: Training and Test Con�gurations

Train Test
GP1(l) III I, II, III, IV, V, VI
GP1(h) VI I, II, III, IV, V, VI
GP3 III, VI I, II, III, IV, V, VI
GP2-K III, VI I, II, III, IV, V, VI
CGP2-K III, VI I, II, III, IV, V, VI

5.2 Genetic Programming System
For genetic programming, we list the terminal and function sets in
Table 4. �e function i f has three arguments; if �rst is less than
0, it returns third argument and the second otherwise. For all our
methods, we consider a population size of 1000 and the evolution
is run over 50 generations. �e maximal tree depth for a genetic

GECCO’17, July 2017, Berlin, Germany Karunakaran et. al.

program is set to 8, crossover rate is 0.85, elitism is 0.5 and mutation
is 0.1 [20].

For CGP2-K method (we choose Gc = 30, Algorithm 3) the
�rst 30 generations are used to evolve dispatching rules in inde-
pendent subpopulations and the next 20 generations are used for
co-evolution.

Table 4: Function and Terminal Sets for GP.

Function Set Meaning
+ Addition
− Subtraction
∗ Multiplication
/ Protected Division

Max Maximum
Min Minimum
I f Conditional

Terminal Set Meaning
PT Processing time of operation
RO Remaining operations for job
RJ Ready time of job
RT Remaining processing time of job
RM Ready time of machine
ERC Ephemeral Random constant

6 RESULTS & DISCUSSION
In this Section, we present the results from our experiments. We
compare f ive methods over six test con�gurations (Table 3). For
each method the solutions are tested over 30 problem instances.
�e Wilcoxon-rank-sum-test is used to compare the performance
of the methods. A signi�cance level of 0.05 is considered.

�e results are summarized in Tables 5-9 and Figure 1. Each
cell in the tables consists of a triplet detailing the corresponding
statistical test result. Consider the �rst cell of Table 5, [25 − 5 − 0]
which should be read as [win −draw − lose]. �e Table 5 compares
the GP1(l) method against the other 4 methods. �e cell [25− 5− 0]
corresponds to the column of test con�guration I and row of method
GP1(h). It means that the GP1(l) performed signi�cantly be�er in 25
problem instances, is similar in 5 instances and is signi�cantly poor
in 0 instances. Furthermore, for those cells which show signi�cant
di�erence in more than 5 problem instances, color shading is used.
�e ‘green’ color is used to show those cases where signi�cant
improvement is observed in more than 5 problem instances i.e.
win ≥ max (5, loss). Similarly ‘orange’ denotes signi�cantly worse
performance, lose ≥ max (5,win). For each table, heading mentions
the method name and associated training con�gurations.

In Table 5, we compare the standard GP method, GP1(l) which is
trained on con�guration I I I . For the test con�guration I , which is
characterized by low uncertainty level, it outperforms all methods.
It is be�er than CGP2-K by a thin margin. However as the level
of uncertainty increases, its generalization drops rapidly. For test
con�gurations IV to V I , GP1(l) performed noticeably worse than
other methods. Refer the cells marked in orange.

In Table 6, the standard GP method trained on higher uncer-
tainty level corresponding to con�guration V I is compared. Its
performance is signi�cantly be�er than GP1(l) for con�gurations
IV − V I , as evidenced by the cells marked in green. �ese cells

Table 5: GP1(l) (Con�guration-III)

I II III IV V VI
GP1(h) [25-5-0] [18-12-0] [0-26-4] [0-5-25] [0-0-30] [0-1-29]
GP3 [29-1-0] [25-5-0] [0-27-3] [0-8-22] [0-1-29] [0-4-26]
GP2-K [19-11-0] [18-12-0] [0-26-4] [0-7-23] [0-0-30] [0-1-29]
CGP2-K [5-25-0] [3-27-0] [0-26-4] [0-4-26] [0-0-30] [0-1-29]

correspond to con�gurations with relatively higher uncertainty
levels. GP1(h) performs poorly for con�gurations I − I I for GP1(l)
and CGP2-K. Refer the colored cells in the �rst two columns. Its
is almost an exact draw with GP2-K across all con�gurations. For
con�gurations with higher level of uncertainty it is signi�cantly
similar to CGP2-K for most test problems.

Table 6: GP1(h) (Con�guration-VI)

I II III IV V VI
GP1(l) [0-5-25] [0-12-18] [4-26-0] [25-5-0] [30-0-0] [29-1-0]
GP3 [4-26-0] [3-27-0] [0-30-0] [0-29-1] [1-27-2] [3-26-1]
GP2-K [0-29-1] [0-30-0] [0-30-0] [0-30-0] [0-30-0] [0-30-0]
CGP2-K [0-21-9] [0-22-8] [0-27-3] [1-27-2] [4-26-0] [2-28-0]

In Table 7, the performance of GP3 is presented. It outperforms
GP1(l) on con�gurations IV −V I but is signi�cantly poor for most
of the test problems on con�guration I − I I (refer the orange cells).
Apparently, the bo�lenecks arising for higher level of uncertainty
con�guration (con�guration V I) have had a dominating in�uence
during training. Consequently, the generalization characteristic of
GP3 is poor.

Table 7: GP3 (Con�guration III & VI)

I II III IV V VI
GP1(l) [0-1-29] [0-5-25] [3-27-0] [22-8-0] [29-1-0] [26-4-0]
GP1(h) [0-26-4] [0-27-3] [0-30-0] [1-29-0] [2-27-1] [1-26-3]
GP2-K [0-21-9] [0-28-2] [1-29-0] [1-28-1] [0-30-0] [0-29-1]
CGP2-K [0-3-27] [0-12-18] [0-25-5] [1-29-0] [1-29-0] [0-29-1]

In Table 8, the results from GP2-K, which uses clustering method
during testing, are shown to be similar to GP1(h), as mentioned
earlier. It outperforms GP3 for test con�guration I , even though
they both use same con�gurations in training. �is is because
in GP2-K the dispatching rules for bo�leneck and non-bo�leneck
scenarios are learned using speci�c training con�guration and later
a clustering method is used to choose the rules during testing
against a non-linear GP classi�er in the former.

Table 8: GP2-K (Con�guration III & VI)

I II III IV V VI
GP1(l) [0-11-19] [0-12-18] [4-26-0] [23-7-0] [30-0-0] [29-1-0]
GP1(h) [1-29-0] [0-30-0] [0-30-0] [0-30-0] [0-30-0] [0-30-0]
GP3 [9-21-0] [2-28-0] [0-29-1] [1-28-1] [0-30-0] [1-29-0]
CGP2-K [0-26-4] [0-21-9] [0-27-3] [0-28-2] [3-27-0] [2-28-0]

Toward Evolving Dispatching Rules for Dynamic Job Shop Scheduling Under Uncertainty GECCO’17, July 2017, Berlin, Germany

In Table 9, the performance of the co-evolutionary method is
shown. Across all the test con�gurations this method is able to per-
form well. �ough it is marginally poor in test con�guration I with
a very low uncertainty level. It outperforms GP1(h), GP3 and GP2-K
on con�gurations I − I I I as evidenced by green cells. In the case of
test con�gurations IV −V I , the performance CGP2-K outperforms
GP1(l) and is almost similar to other methods. �is shows that the
generalization characteristic of the proposed method is superior to
all other methods considered in this work. �e co-evolution process
takes into account the interactions of the dispatching rules through
their sequencing decisions in combination with a more e�ective
clustering method to classify the bo�leneck and non-bo�leneck
dispatching rules.

Table 9: CGP2-K (Con�guration III & VI)

I II III IV V VI
GP1(l) [0-25-5] [0-27-3] [4-26-0] [26-4-0] [30-0-0] [29-1-0]
GP1(h) [9-21-0] [8-22-0] [3-27-0] [2-27-1] [0-26-4] [0-28-2]
GP3 [27-3-0] [18-12-0] [5-25-0] [0-29-1] [0-29-1] [1-29-0]
GP2-K [4-26-0] [9-21-0] [3-27-0] [2-28-0] [0-27-3] [0-28-2]

In Figure 1, we present boxplots to compare generalization per-
formance of the methods on individual instances. We picked 5 out
of the total 30 problem instances under the two test con�gurations
I I and V . �e groups of 4 boxplots correspond to one problem
instance each. A boxplot is marked in green if its median is lower
than the medians corresponding to all other boxplots in the same
group. �e order of methods is same as mentioned in the caption.
In a large number of the cases, the boxplot corresponding to CGP2-
K enjoyed the smallest median value, with respect to these two
con�gurations.

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5

15
00

00
0

17
00

00
0

19
00

00
0

(GP1(h) − GP3 − GP2−K − CGP2−K) [Test − Uncertainty Configuration− II]

M
ea

n
F

lo
w

tim
e

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5

2.
6e

+
07

3.
0e

+
07

3.
4e

+
07

(GP1(l) − GP3 − GP2−K − CGP2−K) [Test − Uncertainty Configuration− V]

M
ea

n
F

lo
w

tim
e

Figure 1: Boxplots: �e order of boxplots is same as men-
tioned in the caption. �e result with lowest medians are
marked in green.

6.1 Analysis
Dispatching Rules. We compare the pair of dispatching rules

evolved using CGP2-K. We determine the frequency of the termi-
nals obtained from the 30 runs, which is shown in Figure 2. �ere
is clear di�erence between the evolved rules with respect to their
choice of terminals. �e rules which were evolved using a con�g-
uration with higher level of uncertainty tend to use the terminals
corresponding to the jobs more o�en. A higher level of uncertainty
leads to bo�leneck machines, leading to a larger queue length. �is
makes the problem harder. �erefore, the dispatching rule which is
evolved on this con�guration tends to use more of the terminals
which correspond to the job characteristics.

In particular, the two terminals RO and R J corresponding to
remaining operations for job and ready time of job respectively.
For a bo�leneck machine, the priority value is expected to be very
di�erent for a job with many pending operations compared with
a job with fewer pending operations, due to their higher impact
on scheduling objective when compared with a non-bo�leneck
machine.

RO RJ RM RT PR

Terminals

0

50

100

150

200

250

300

F
re

qu
en

cy

Uncertainty Configuration V
Uncertainty Configuration II

Figure 2: Histogram of Frequency of Terminals

Dispatching Rule 1: CGP2-K - (low)
(* (If (If (Min RJ RO) PR (If (- RM PR)

0.580 RM)) (+ (* (Min 0.522 RJ) (*RT PR))

(* PR PR)) RT) (- (Max (- (If RO RT PR)

(Min 0.0837 RM)) (Max (/ RJ PR) (Min

0.0597 RT))) RT))
Dispatching Rule 2: CGP2-K - (high)

(Min (Min (+ RO RO) (+ (- (- (/ RT RM) (+

(Min PR PR) (* RO PR))) (Max 0.250 RT))

(/ RM (* (* RO PR) (* (Min RJ RT) PR)))))

(- (/ (+ RO (Min RJ RT)) (/ PR RO)) (* (Min

PR PR) (* (Min RJ RT) PR))))

An example of one of the best pairs of dispatching rules evolved
using CGP2-K is given above. �e terminals RO and R J are shown
in bold.

7 CONCLUSIONS
In this work, we present genetic programming based hyper-heuristic
approaches for dynamic job shop scheduling under machine-speci�c

GECCO’17, July 2017, Berlin, Germany Karunakaran et. al.

uncertain processing times. We develop methods to classify a ma-
chine as bo�leneck or non-bo�leneck in a dynamic and uncertain
environment. �en we develop methods to evolve pair of dispatch-
ing rules to minimize total �ow time in a DJSS problem under
varying levels of uncertainty. �e di�erent con�gurations which
cover both low and high levels of uncertainty in processing times
were considered. A cooperative co-evolutionary method to evolve
pairs of DRs which are able to generalize well across di�erent un-
certainty con�gurations is proposed. We empirically show that the
proposed co-evolutionary approach performs well across all the
scenarios when compared to standard GP and GP3 [11] methods.
Finally, we analyze the proposed methods to get more insights into
our results and show that features of the evolved rules correlate
with their expected role in sequencing the jobs.

In our future work, we will consider multiple scheduling ob-
jectives and di�erent types of uncertainties e.g. rush arrival of
jobs, variation in due dates etc. We would also like to combine
job speci�c processing time uncertainty in our current simulation
model.

REFERENCES
[1] Joseph Adams, Egon Balas, and Daniel Zawack. 1988. �e shi�ing bo�leneck

procedure for job shop scheduling. Management science 34, 3 (1988), 391–401.
[2] J Balasubramanian and IE Grossmann. 2004. Approximation to multistage sto-

chastic optimization in multiperiod batch plant scheduling under demand uncer-
tainty. Industrial & engineering chemistry research 43, 14 (2004), 3695–3713.

[3] Jürgen Branke, Torsten Hildebrandt, and Bernd Scholz-Reiter. 2015. Hyper-
heuristic evolution of dispatching rules: A comparison of rule representations.
Evolutionary computation 23, 2 (2015), 249–277.

[4] Edmund Burke, Graham Kendall, Jim Newall, Emma Hart, Peter Ross, and Sonia
Schulenburg. 2003. Hyper-heuristics: An emerging direction in modern search
technology. International series in operations research and management science
(2003), 457–474.

[5] Edmund K Burke, Mathew R Hyde, Graham Kendall, Gabriela Ochoa, Ender
Ozcan, and John R Woodward. 2009. Exploring hyper-heuristic methodologies
with genetic programming. In Computational intelligence. Springer, 177–201.

[6] Runwei Cheng, Mitsuo Gen, and Yasuhiro Tsujimura. 1999. A tutorial survey of
job-shop scheduling problems using genetic algorithms, part II: hybrid genetic
search strategies. Computers & Industrial Engineering 36, 2 (1999), 343–364.

[7] Philippe Fortemps. 1997. Jobshop scheduling with imprecise durations: a fuzzy
approach. IEEE Transactions on Fuzzy Systems 5, 4 (1997), 557–569.

[8] Kai Zhou Gao, Ponnuthurai Nagaratnam Suganthan, Mehmet Fatih Tasgetiren,
�an Ke Pan, and Qiang Qiang Sun. 2015. E�ective ensembles of heuristics
for scheduling �exible job shop problem with new job insertion. Computers &
Industrial Engineering 90 (2015), 107–117.

[9] T Hildebrandt. 2012. Jasima – An E�cient Java Simulator for Manufacturing
and Logistics. h�p://code.google.com/p/jasima (2012).

[10] Rachel Hunt, Mark Johnston, and Mengjie Zhang. 2014. Evolving less-myopic
scheduling rules for dynamic job shop scheduling with genetic programming.
In Proceedings of the 2014 conference on Genetic and evolutionary computation.
ACM, 927–934.

[11] Domagoj Jakobović and Leo Budin. 2006. Dynamic scheduling with genetic
programming. In Genetic Programming. Springer, 73–84.

[12] Domagoj Jakobović, Leonardo Jelenković, and Leo Budin. 2007. Genetic pro-
gramming heuristics for multiple machine scheduling. In Genetic Programming.
Springer, 321–330.

[13] Deepak Karunakaran, Yi Mei, Gang Chen, and Mengjie Zhang. 2016. Dynamic
Job Shop Scheduling Under Uncertainty Using Genetic Programming. Intelligent
and Evolutionary Systems (2016), 195.

[14] Yeo Keun Kim, Kitae Park, and Jesuk Ko. 2003. A symbiotic evolutionary algo-
rithm for the integration of process planning and job shop scheduling. Computers
& operations research 30, 8 (2003), 1151–1171.

[15] Panos Kouvelis and Gang Yu. 2013. Robust discrete optimization and its applica-
tions. Vol. 14. Springer Science & Business Media.

[16] Stephen R Lawrence and Edward C Sewell. 1997. Heuristic, optimal, static, and
dynamic schedules when processing times are uncertain. Journal of Operations
Management 15, 1 (1997), 71–82.

[17] Zukui Li and Marianthi Ierapetritou. 2008. Process scheduling under uncertainty:
Review and challenges. Computers & Chemical Engineering 32, 4 (2008), 715–727.

[18] Kuo-Ching Liu. 1998. Dispatching rules for stochastic �nite capacity scheduling.
Computers & industrial engineering 35, 1 (1998), 113–116.

[19] Su Nguyen. 2013. Automatic design of dispatching rules for dispatching rules
for job shop scheduling with genetic programming. PhD dissertation. Victoria
University of Wellington.

[20] Su Nguyen. 2013. Automatic Design of Dispatching Rules for Job Shop Scheduling
with Genetic Programming. (2013).

[21] Su Nguyen, Mengjie Zhang, Michael Johnston, and Kay Chen Tan. 2013. A
computational study of representations in genetic programming to evolve dis-
patching rules for the job shop scheduling problem. Evolutionary Computation,
IEEE Transactions on 17, 5 (2013), 621–639.

[22] John Park, Yi Mei, Su Nguyen, Gang Chen, Mark Johnston, and Mengjie Zhang.
2016. Genetic Programming Based Hyper-heuristics for Dynamic Job Shop Sched-
uling: Cooperative Coevolutionary Approaches. Springer International Publishing,
Cham, 115–132. DOI:h�p://dx.doi.org/10.1007/978-3-319-30668-1 8

[23] John Park, Su Nguyen, Mengjie Zhang, and Mark Johnston. 2015. Evolving en-
sembles of dispatching rules using genetic programming for job shop scheduling.
In European Conference on Genetic Programming. Springer, 92–104.

[24] Bernard Penz, Christophe Rapine, and Denis Trystram. 2001. Sensitivity analysis
of scheduling algorithms. European Journal of Operational Research 134, 3 (2001),
606–615.

[25] Michael Pinedo and Marcos Singer. 1999. A shi�ing bo�leneck heuristic for
minimizing the total weighted tardiness in a job shop. Naval Research Logistics
46, 1 (1999), 1–17.

[26] Michael L Pinedo. 2012. Scheduling: theory, algorithms, and systems. Springer
Science & Business Media.

[27] Mitchell A Po�er and Kenneth A De Jong. 2000. Cooperative coevolution: An
architecture for evolving coadapted subcomponents. Evolutionary computation
8, 1 (2000), 1–29.

[28] Meir J Rosenbla� and Hau L Lee. 1986. Economic production cycles with imper-
fect production processes. IIE transactions 18, 1 (1986), 48–55.

[29] Jun-Qiang Wang, Jian Chen, Yingqian Zhang, and George Q Huang. 2016.
Schedule-based execution bo�leneck identi�cation in a job shop. Computers &
Industrial Engineering 98 (2016), 308–322.

[30] R Paul Wiegand. 2003. An analysis of cooperative coevolutionary algorithms. Ph.D.
Dissertation. George Mason University.

[31] Rui Zhang and Cheng Wu. 2009. Bo�leneck identi�cation procedures for the job
shop scheduling problem with applications to genetic algorithms. �e Interna-
tional Journal of AdvancedManufacturing Technology 42, 11-12 (2009), 1153–1164.

http://dx.doi.org/10.1007/978-3-319-30668-1_8

	Abstract
	1 Introduction
	2 Background
	2.1 Job Shop Scheduling
	2.2 Genetic Programming Based Hyper Heuristics (GPHHs)
	2.3 Cooperative Co-evolution

	3 Related Works
	4 Proposed Methods
	4.1 GP2-K-means (GP2-K)
	4.2 Co-evolutionary GP2-K (CGP2-K)

	5 Experiment Design
	5.1 Simulation Model
	5.2 Genetic Programming System

	6 Results & Discussion
	6.1 Analysis

	7 Conclusions
	References

