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ABSTRACT
Web services have become increasingly popular in recent years,
given their modular nature and reusability potential. A particularly
promising application is in Web service composition, where multi-
ple individual services with speci�c functionalities are composed
to accomplish a more complex task. Researchers have successfully
proposed evolutionary computing techniques for creating service
compositions that are not only feasible, but also have the best
possible �ality of Service (QoS). Some of these previous works
employed multi-objective techniques to tackle the optimisation
of compositions with con�icting QoS a�ributes, but they are not
fully automated, i.e. they assume the composition work�ow struc-
ture is already known. �is assumption is o�en not satis�ed, as
the work�ow is o�en unknown. �is paper proposes a genetic
programming-based method to automatically generate fully au-
tomated service compositions in a multi-objective context, based
on a novel fragmented tree representation. An evaluation using
benchmark datasets is carried out, comparing existing methods
adapted to the multi-objective composition problem. Results show
that the fragmented method has the lowest execution time overall.
In terms of quality, its Pareto fronts are equivalent to those of one
of the approaches but inferior to those of the other. More impor-
tantly, this work provides a foundation for the future investigation
of multi-objective fully automated service composition approaches.

CCS CONCEPTS
•Mathematics of computing→ Combinatorial optimization;
•Information systems→Web services; •�eory of computa-
tion→ Evolutionary algorithms;
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1 INTRODUCTION
Web services, which are so�ware modules o�ering speci�c opera-
tions and data over a network [1], have recently become a popular
method for structuring applications, in what is known as Service-
Oriented Architecture (SOA) [27]. �e idea of this paradigm is to
create reusable modules that can be incorporated into new appli-
cations, thus liberating developers from rewriting already existing
code. A natural consequence of this idea is to create applications
entirely by combining a set of services into an execution work�ow,
in what is known as Web service composition [16]. Signi�cant re-
search has been conducted on the creation of systems to compose
services in an automated way, with evolutionary computing (EC)
approaches showing particular promise [4, 21]. One of the advan-
tages of EC is that it supports the creation of compositions where
�ality of Service (QoS) [15] aspects of services are also taken into
account.

�e EC approaches to Web service composition can be divided
into two groups, depending on whether single-objective or multi-
objective optimisation techniques are used. In single-objective
composition approaches, techniques such as genetic programming
(GP) enable the creation of compositions with varying structures,
without the need for prior knowledge concerning the overall struc-
ture of the work�ow [13, 18]. �is �exible mode of operation is
known in the �eld as fully automated composition [17]. �e lim-
itation of these approaches is that they assume that users have
optimisation preferences regarding certain QoS a�ributes, and pro-
vide a single solution based on the aggregation of con�icting QoS
values. However, users o�en do not have preferences before being
presented with a series of options to choose from. Multi-objective
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composition approaches [20, 24], on the other hand, are naturally
suited to handling the optimisation of service compositions with
con�icting QoS a�ributes, and can produce a set of trade-o� so-
lutions for users to choose from. However, the works in this area
assume that the overall structure of the composition work�ow is
already known, leaving the optimisation technique purely in charge
of selecting the best possible service to ful�l each functionality com-
ponent. Approaches that require an abstract composition work�ow
are commonly referred to as semi-automated [17].

�e goal of this paper is to propose the �rst GP-based multi-
objective Web service composition approach that not only tackles
the optimisation of con�icting QoS a�ributes, but also supports
the creation of service work�ows in a fully automated manner. In
order to reach this goal, two objectives are accomplished in this
work. Firstly, a novel service composition representation that uses
a fragmented tree is proposed, and corresponding genetic operators
are designed. Secondly, a new multi-objective method for Web
service composition is developed using the new representation
and NSGA-II [8]. �is method enables service compositions to be
optimised in an e�cient manner. We examine the e�ectiveness of
the new approach by comparing it with state-of-the-art composition
methods using WSC-2008 and WSC-2009, which are well-known
service composition benchmark datasets [3, 9].

2 BACKGROUND
2.1 Problem Description
�e key idea of Web service composition is to allow a user to send
a composition request of an application to be built, then have a
system automatically produce it from a set of pre-existing func-
tionality blocks. A composition request is represented as R =
〈input (R),output (R)〉, where input (R) denotes the inputs that will
be initially available to run the composition, and output (R) de-
notes the outputs the composition is expected to produce a�er
complete execution. �e functionality blocks used by the com-
position are known as Web services, and they require a set of
inputs in order to run, produce a set of outputs once �nished,
and operate at a certain QoS level. A service is represented as
S = (intput (S ),output (S ), {q1, ...,qn }), whereq1, ...,qn are the QoS
a�ributes associated with the service. �e set of accessible services
is maintained in a service repository SR = {S1, ...Sk }, which contains
k services. During the composition process, the services with ap-
propriate functionality are selected from SR and combined in order
to produce output (R), using input (R) as the starting point. �e
objective is to create a composition that displays the best possible
overall QoS a�ributes, which are optimised according to a set of ob-
jective functions f1, ..., fn , where each function corresponds to one
quality a�ribute. �e resulting compositions should be functionally
correct, meaning that they can be fully executed given the available
input (R) and produce the required output (R). �ree constraints
must be met in order for a composition, conceptualised here as a
graph with a special start service Ss and a special end service Se ,
to be considered functionally correct:

(1) Ss and Se are included in the composition as the �rst and
last services, respectively.

(2) Ss requires no inputs and produces the composition request
inputs as its outputs, i.e. output (Ss ) = input (R).

(3) �e inputs of Se are the composition request outputs, i.e.
input (Se ) = output (R), and Se produces no outputs.

(4) �e inputs of all other services in the composition must be
completely satis�ed by the outputs of predecessors, which
are previous services in the composition work�ow that
already have their inputs satis�ed.

An example of a functionally correct Web service composition is
shown in Figure 1, which depicts a widely discussed travel planning
scenario [25, 26]. �e composition request provides information
about a customer’s trip with the objective of creating a composition
that produces the expected �ight and accommodation bookings.

input(R): customerInto, departureDate,

fromCity, toCity, durationOfStay

output(R): returnTicket, hotelBooking

Start End

FlightBooking

Service

HotelBooking

Service

customerInfo, 

departureDate, 

fromCity, toCity, 

durationOfStay

arrivalDate

returnTicket

hotelBooking

customerInfo, 

toCity, durationOfStay

Figure 1: Example of a solution to aWeb service composition
task (adapted from [6]).

2.2 QoS and Composition Constructs
Web service compositions must not only be functionally correct,
but must also perform at the highest possible quality level. Four
a�ributes have been commonly used in the literature [21] to mea-
sure the QoS of services: availability (A), which is the probability
that a service will be able to respond to a request at any given time;
reliability (R), which is the probability that a service’s response is
consistent; time (T ), which measures the time a service takes to
produce a response; cost (C), which is the �nancial cost of executing
a service. �e overall QoS for a composition is calculated accord-
ing to the QoS values of the individual services within it and the
structure of the work�ow. In this paper, two work�ow constructs
are considered, both supported by composition languages [22].

2.2.1 Sequence Construct. Services in this construct are chained
together so that the outputs of the preceding service ful�l the
inputs of the next one, as shown in Figure 2. �e overall A and R
probabilities are calculated by multiplying the individual values
associated with each service in the construct, and the overallT and
C are calculated by adding up the individual values.

2.2.2 Parallel Construct. As shown in Figure 3, services in this
construct are independently executed, consequently having their
inputs independently ful�lled and their outputs independently pro-
duced. A, R, and C are calculated using the same strategy as the
sequence construct. T , on the other hand, is simply the time of
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m∏
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n=1

cn

Figure 2: Sequence construct and corresponding QoS calcu-
lation formulae [23].

S1
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C =
m∑
n=1

cn A =
m∏
n=1

an R =
m∏
n=1

rn

T = MAX {tn |n ∈ {1, . . . ,m}}

Figure 3: Parallel construct and corresponding QoS calcula-
tion formulae [23].

the service with the highest individual T value in the construct.
As services are executed in parallel, this gives all other services
enough time to �nish executing.

2.3 Related Work
Agent-based techniques have been proposed to plan composition
work�ows in a distributed fashion [19]. While these approaches
are well-suited to dynamic scenarios, they are not focused on the
global optimisation of a solution’s QoS, which invites the investi-
gation of alternative composition approaches. In the realm of EC,
single-objective approaches for composition have been extensively
investigated. �e work in [18] employs GP for the fully automated
creation of composition work�ows, creating candidate trees with
the help of a context free grammar and then using a �tness func-
tion with penalisation components to encourage the generation
of functionally correct solutions. In [5], the composition process
begins by creating a graph that models the potential connections
between services in the repository. Nodes in this graph are clus-
tered according to their functionality, then Cuckoo search is used
to select which services from each cluster should be included in
the composition. Compositions in [13] are obtained by employing
a constrained form of GP that ensures solutions are functionally
correct at all stages of the run, with a �tness function that encour-
ages the highest possible QoS values. Despite mostly supporting
fully automated composition, the approaches discussed above do
not address the con�icting nature of QoS a�ributes, and instead
simply merge them into a single optimisation objective.

Multi-objective (MO) approaches for service composition have
also been discussed in the literature. In [12], a genetic algorithm
(GA)-based dynamic method is used to optimised a pre-existing

work�ow structure. �e time and cost of each candidate are op-
timised independently, with reputation and reliability used as op-
timisation constraints. A MO genetic algorithm called E3-MOGA
is used in [20], independently optimising the QoS a�ributes, i.e.
the throughput, latency, and cost of compositions for di�erent user
levels. An abstract work�ow is also assumed, and the focus is on
producing Pareto fronts that are well distributed and that do not
overlook extreme trade-o� solutions. �e work in [24] uses a dis-
crete version of particle swarm optimisation (PSO) that has been
modi�ed to handle a MO search space. �e approaches discussed
above do treat con�icting QoS a�ributes independently, however
they only support semi-automated Web service composition and
thus cannot be used to identify promising work�ow structures.

�ere are two candidate representations that are especially suit-
able to performing fully automated Web service composition. �e
�rst representation is a tree [2, 18], which can be directly used in
conjunction with GP. In this representation, the inner nodes of
the tree typically contain the composition constructs used in the
work�ow, while the leaf nodes contain the atomic services that
have been included in the composition. �e advantage of the tree
representation is that it can be evolved using standard GP opera-
tors, but problems with slow convergence have been reported for
unconstrained population-based composition methods [14]. �e
second representation is a graph [6], where nodes contain atomic
services and composition constructs are implicitly de�ned by the
structure of the graph. �is representation facilitates the checking
of dependencies between services when performing constrained
optimisation, but it requires complex genetic operators for updating
the candidates. �ese shortcomings motivate the investigation of a
new representation in GP for fully automated composition.

3 A NEW GP APPROACHWITH
FRAGMENTED TREE REPRESENTATION

�e novel Web service composition representation proposed in this
work structures individuals as a series of fragments, where each
fragment records the predecessors of a service in the composition.
A fragment is identi�ed by its root service, which is the service
that receives incoming edges. �e fragmented tree representation
may be thought of as a series of pieces to be connected, where
the predecessor service Sn of a fragment can be replaced by the
fragment where Sn is the root. A complete composition work�ow
is produced once all pieces have been connected. One advantage
of organising individuals in this fashion is that it facilitates the
process of performing genetic operations on them, since updates
can easily be applied to individual fragments. Another bene�t of
this fragmented representation is that it prevents services from
being replicated throughout the candidate, which reduces the space
complexity in scenarios with larger composition work�ows [13].
Finally, the �exibility of this representation aids in the exploration
of di�erent work�ow structures, which is ideal for the fully auto-
mated composition process. Figure 4 shows how the previously
discussed composition example, which was displayed as a work�ow
in Figure 1, is represented using a fragmented tree. �e original
composition work�ow has four nodes, therefore four fragments are
created, each containing information on the root service’s predeces-
sors. For the end node, the outputs of two services (FlightBooking
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and HotelBooking) are necessary to ful�l its set of outputs, so two
predecessors are included. Likewise, HotelBooking requires out-
puts from two sources (FlightBooking and the start node), so it
also has two predecessors. FlightBooking can be executed solely
using outputs from the start node, so it has a single predecessor.
�e start node has no predecessors, therefore the corresponding
fragment only contains a root node. �e following subsections
describe the generation of candidates, the genetic operators, and
the interpretation of solutions using this representation.

Flight

Booking

Hotel

Booking

End

Start
Flight

Booking

Hotel

Booking

Start

Flight

Booking
Start

Figure 4: Example of a composition in the fragmented rep-
resentation (root services are accentuated).

3.1 Layer Identi�cation and Candidate
Initialisation

Before generating candidates, this representation requires the ser-
vice repository to be preprocessed once. �is is done in order to
identify the composition layer of a service, which measures the
minimum distance that a service will have from the start node of a
composition. In the composition shown in Figure 1, for example,
the FlightBooking service belongs to layer 1, since its inputs can be
entirely ful�lled by the outputs of the start node. �e HotelBooking
service, on the other hand, belongs to layer 2, since it requires the
output of a service from layer 1 in order to be executed. Algorithm
1 shows the steps used to determine the composition layers for the
services in the repository. �e algorithm begins by initializing a
search set with the composition request inputs. �en, the group
of services whose outputs can be satis�ed by the search set con-
tents is discovered. �is process is repeated until no new services
are discovered, each time recording the current layer number and
updating the search set.

Once this preprocessing step has taken place, new composition
candidates can be generated. �is is accomplished by employing Al-
gorithm 2, providing the end service and an empty set of fragments
as inputs. �is algorithm begins by creating a queue of services
for which fragments should be created, initially containing only
Si . It then processes the services in the queue, repeatedly creating
fragments for them as required. When creating the fragment for a
service Sj , it is necessary to identify a set of suitable service pre-
decessors. �is is done by �nding services whose layers precede
Sj ’s layer (immediately or otherwise), then selecting a subset of
these services whose outputs ful�l Sj ’s inputs. �e predecessors

Algorithm 1: Steps of the layer identi�cation process [7].
Input :input (R), output (R), SR

1: Initialise search set with input (R);
2: Set layer counter to 1;
3: Discover services satis�ed by search set;
4: while at least one service discovered do
5: Set services’ layer number with counter value;
6: Add the outputs of these services to the search set;
7: Discover additional services satis�ed by the updated

search set;
8: Increment layer counter;

Algorithm 2: Initialisation of a service composition.
Input :Root service Si , Set of fragments
Output :Updated set of fragments

1: Add start Ss fragment to set, if not already there;
2: Create service queue, and put Si in it;
3: while queue is not empty do
4: Remove next service Sj from queue;
5: if no fragment exists in set for Sj then
6: Find a random set of predecessor services that

satisfy Sj ;
7: Create a fragment for Sj using predecessors;
8: Add Sj fragment to set;
9: Add predecessors of Sj to queue;

10: return Set of fragments

are then connected to the root and also added to the queue for
processing, and this completes the fragment creation process. �e
algorithm will continue until comes across instances of the start
service, at which point no further predecessors are required. Finally,
the updated set of fragments is returned.

3.2 Mutation and Crossover
�e genetic operators used during the evolutionary process must
ensure that the functional correctness of candidates is maintained
throughout the run. For the mutation operator, this is done by
employing the same algorithm used during the initialisation to
regenerate the chosen fragments. More speci�cally, the mutation
begins by randomly selecting a fragment with a root service Sn
to be modi�ed (excluding the start and end fragments). �en, the
chosen fragment is removed from the individual, and Algorithm
2 is run with Sn and the individual’s set of fragments as the input.
�e algorithm will add a newly generated fragment for Sn , and also
any other fragments that are required as a consequence of that.
Figure 5 shows a mutation example for fragment 8 of a candidate.
Algorithm 2 is invoked and it generates a new fragment for service
8, this time listing service 5 as the only predecessor. �e existing
set does not include a fragment for service 5, so the algorithm also
creates fragment 5 with the start node as the predecessor. �is
concludes the mutation process. Fragment 7 is no longer useful
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a�er these modi�cations, as no other fragments contain service 7
as a predecessor. �us, that fragment is removed from the set.

StartEnd

8 9

9

6

6

Start

7

Start

Parent

StartEnd

8 9

5

Start

9

6

6

Start

Child

8

5

7

Start

Mutation on fragment 8

UselessNew

8

6 7

Figure 5: Example of mutation operation on a Fragmented
candidate.

�e crossover operation begins by randomly identifying a frag-
ment root that is contained in both candidates, then it swaps the
corresponding fragments between them. For each candidate, a
check is performed to verify whether the newly introduced frag-
ment contains predecessors that have no corresponding fragment
of their own in the candidate. If that is the case, the fragment is
copied from the other candidate. �e check described above is
repeated for each newly added fragment, and the process continues
until each predecessor has a matching fragment of its own in the
candidate. An example of a crossover operation is shown in Figure
6, where fragment 4 is selected as the starting point. A�er making
the initial swap, both candidates are checked for missing fragments.
Child 1 has a missing fragment 3, so that is copied over from parent
2. Likewise, child 2 has missing fragments 1 and 2, which are copied
over from parent 1. Both children are functionally correct a�er the
check, and contain some fragments that have now become useless.
�ese are removed from the o�spring.

3.3 Fragment-based MO Method
�e second objective of this work is to investigate the use of the
Fragmented tree representation proposed in the previous section
for the creation of a fully automated composition method in a multi-
objective context. NSGA-II was chosen as the multi-objective opti-
misation strategy because it has been employed for multi-objective
Web service composition before [23], though never the fully auto-
mated kind. Algorithm 3 shows the general steps of the proposed
method. �is method utilises two independent objective functions,
f1 = T̄ +C̄ and f2 = Ā+ R̄. Both of these are minimisation functions
that produce values in the range [0,2], with 0 denoting the highest
possible quality and 2 denoting the lowest. Ā, R̄, T̄ , and C̄ are the
overall QoS a�ributes for the composition candidate, calculated us-
ing the principles described in subsection 2.2 and then normalised
(A and R values are o�set so that smaller scores denote be�er qual-
ity). �e normalisation bounds are chosen based on values found

StartEnd

4 5

4

1 2

1

Start

2

Start

5

Start

Parent 1

StartEnd

4 6

4

3

3

Start

6

Start

Parent 2

StartEnd

4 5

1

Start

2

Start

3

Start

Child 1

StartEnd

4 6

1

Start

2

Start

6

Start

Child 2

4

3

5

Start

4

1 2

3

Start

Crossover on fragment 4

New Useless

UselessNew

Figure 6: Example of crossover operation between two Frag-
mented candidates.

in the service repository. Amin and Rmin are set to 0, while Tmin
and Cmin are both set to be the lowest value found amongst all
services in the repository for that a�ribute. Amax , Rmax , Tmax ,
and Cmax are all set to be the highest value found amongst all ser-
vices in the repository for that a�ribute, withTmax andCmax then
being multiplied by the size of the repository [13]. �e decision to
independently optimise (T,C) and (A,R) was based on previous ob-
servations of the optimisation behaviour in a single-objective space,
which showed a con�ict between these two groups of a�ributes.

4 EXPERIMENT DESIGN
Experiments were conducted to compare the Fragmented method
with the two other composition methods, both adapted to work
with NSGA-II using the aforementioned objectives. �e GraphEvol
method represents compositions as directed acyclic graphs [6], and
the Encoded method represents them as sequences of services that
are then decoded into the corresponding compositions [7]. �e
methods are compared according to their execution time, as well
as the IGD and hypervolume [11] of the solutions sets produced.
�ose metrics provide a comprehensive measure the performance
of each method [11]. �e hypervolume is calculated using (2, 2) as
the reference point, and an aggregate Pareto front is used as the
reference for the IGD calculations. For each composition request,
the aggregate front is created by combining the results of all runs of
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Algorithm 3: Steps of the Fragment-based MO method.
Input :Population size N
Output :Solution set

1: Preprocess repository to identify layers;
2: Initialise the population of fragmented candidates;
3: Perform non-dominated sorting on candidates;
4: while stopping criteria not met do
5: Choose N best candidates from the population and place

them in a mating pool;
6: Select candidates from mating pool and apply crossover

and mutation;
7: Combine mating pool and o�spring as the new population,

calculate crowding distance, and perform non-dominated
sorting;

8: return solution set with highest-rank candidates

each method, then identifying the non-dominated solutions within
that group. WSC-2008 and WSC-2009 [3, 9] with the QoS metrics
used in [13] were the datasets employed in this comparison, both
containing a service repository, a taxonomy of input and output
concepts, and a series of composition requests to be ful�lled. �e
parameters for the three methods were based on commonly used
se�ings in the literature [10]. For GraphEvol and the Fragmented
method, 500 candidates were evolved for 51 generations, with a
crossover probability of 0.8, a mutation probability of 0.1, and a re-
production probability of 0.1. Tournament selection was employed,
with a tournament size of 2. �e Encoded method used mostly the
same parameters, except for the genetic operators, which in this
case were crossover with a probability of 0.95 and local search with
a probability of 0.05. For each method, 30 independent runs were
carried out per composition request, using a personal computer
with an Intel Core i7-4770 CPU (3.4GHz) and 8 GB RAM.

5 RESULTS AND DISCUSSIONS
5.1 Overall Results – Accuracy
�e experiment results are displayed in Table 1, which contains
the mean IGD values and associated standard deviation for each
method, Table 2, which contains mean and standard deviation re-
garding hypervolume, and Table 3, which contains the mean and
standard deviation for the execution time of each method. �e
QoS scores for each solution have been renormalised before em-
ploying the performance metrics for display purposes, using upper
and lower QoS bounds retrieved from the set of all �nal composi-
tions produced. Statistical tests were performed using Wilcoxon
rank-sum with a 0.05 signi�cance level to ascertain whether any
di�erence between the results produced by the three methods is
statistically signi�cant. For each dataset, the results of each method
were compared to those of all other methods in a pairwise fashion,
without a Bonferroni correction. �e outcome of these compar-
isons was then used to rank the performance of each method. For
example, comparisons reveal that the execution time of the Frag-
mented approach was signi�cantly lower than both of the others
for composition task 08-1, thus it is bolded.

Table 1: Mean and standard deviation for IGD scores of each
method.

Task (Repo. size) Fragmented GraphEvol Encoded
WSC2008-1 (158) 0.14 ± 0.02 0.19 ± 0.07 0.13 ± 0.01
WSC2008-2 (558) 0.09 ± 0.02 0.09 ± 0 0.09 ± 0
WSC2008-3 (604) 0.65 ± 0.08 0.73 ± 0.09 0.06 ± 0.03
WSC2008-4 (1041) 0.28 ± 0.14 0.11 ± 0.03 0.06 ± 0
WSC2008-5 (1090) 0.68 ± 0.01 0.88 ± 0.06 0.04 ± 0.02
WSC2008-6 (2198) 0.84 ± 0.05 0.46 ± 0.01 0.06 ± 0.02
WSC2008-7 (4113) 0.5 ± 0.07 0.41 ± 0.04 0.09 ± 0.01
WSC2008-8 (8119) 0.32 ± 0.04 0.24 ± 0.08 0.28 ± 0
WSC2009-1 (572) 0.03 ± 0.03 0.04 ± 0.01 0 ± 0
WSC2009-2 (4129) 0.15 ± 0.03 0.24 ± 0.05 0.04 ± 0.02
WSC2009-3 (8138) 0.2 ± 0.27 0.11 ± 0.07 0.02 ± 0
WSC2009-4 (8301) 0.31 ± 0.08 0.36 ± 0.05 0.05 ± 0.01
WSC2009-5 (15211) 0.31 ± 0.07 0.23 ± 0.03 0.03 ± 0.01

Table 2: Mean and standard deviation for hypervolume
scores of each method.

Task (Repo. size) Fragmented GraphEvol Encoded
WSC2008-1 (158) 1.33 ± 0.01 1.31 ± 0.02 1.34 ± 0.01
WSC2008-2 (558) 2.06 ± 0.01 2.06 ± 0 2.06 ± 0
WSC2008-3 (604) 0.14 ± 0.1 0.23 ± 0.18 1.39 ± 0.06
WSC2008-4 (1041) 1 ± 0.26 1.36 ± 0.03 1.4 ± 0
WSC2008-5 (1090) 0.35 ± 0.02 0.18 ± 0.03 2.32 ± 0.05
WSC2008-6 (2198) 0.12 ± 0.15 0.03 ± 0.01 1.04 ± 0.15
WSC2008-7 (4113) 0.31 ± 0.21 0.51 ± 0.1 1.4 ± 0.04
WSC2008-8 (8119) 0.46 ± 0.1 0.61 ± 0.37 0.83 ± 0.03
WSC2009-1 (572) 2.1 ± 0.09 2 ± 0.06 2.19 ± 0
WSC2009-2 (4129) 0.92 ± 0.09 0.67 ± 0.11 1.39 ± 0.1
WSC2009-3 (8138) 2.54 ± 0.67 2.91 ± 0.3 3.04 ± 0
WSC2009-4 (8301) 0 ± 0.01 0 ± 0 0.24 ± 0.28
WSC2009-5 (15211) 0.31 ± 0.24 0.64 ± 0.12 1.24 ± 0.13

�e IGD and hypervolume results show that the Pareto fronts
generated by the Encoded method have generally be�er quality
than those produced by the other approaches. �e hypervolume
of the Encoded fronts is signi�cantly higher (i.e. be�er) than that
of the GraphEvol and Encoded methods for all tasks except 08-2,
while the IGD of the Encoded method is signi�cantly lower (i.e.
be�er) than that of the other methods for most of the tasks, also
excluding 08-2. �e quality of the solution fronts produced for
task 08-2 is practically equivalent for the three approaches. When
comparing the IGD and hypervolume results of the Fragmented
method to those of the GraphEvol method, we notice that despite
some �uctuations the two produce fronts with equivalent quality.
�is suggests that if the focus is on producing fronts with the best
possible quality, then the Encoded approach is the most promising.

5.2 Computational Time
�e Fragmented method is quite e�cient in terms of computational
time. �e comparison on the execution time of the three approaches
shows that the Fragmented method has signi�cantly lower times
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for most tasks considered (except 09-2, 09-3, and 09-4), and also
that the Encoded method performs very ine�ciently, particularly
for more complex tasks such as 08-6, 08-7, 08-8, 09-4, and 09-5. �is
is likely due to the decoding step used to convert service sequences
into composition work�ows for evaluation. �is suggests that if
the focus is on producing solutions as quickly as possible, then the
Fragmented approach is the most promising.

Table 3: Mean and standard deviation of execution time (s)
for each method.

Task Fragmented GraphEvol Encoded
WSC08-1 0.72 ± 0.05 1.96 ± 0.2 17.37 ± 2.09
WSC08-2 0.62 ± 0.02 1.24 ± 0.06 22.62 ± 4.5
WSC08-3 2.61 ± 0.19 7.63 ± 0.36 563.78 ± 36.39
WSC08-4 1.49 ± 0.11 2.43 ± 0.27 25.17 ± 3.55
WSC08-5 1.59 ± 0.13 3.66 ± 0.13 768.83 ± 136.78
WSC08-6 11 ± 0.38 11.1 ± 0.43 11606.46 ± 1526.67
WSC08-7 1.58 ± 0.08 8.31 ± 0.45 7219.27 ± 867.27
WSC08-8 5.15 ± 0.42 8.98 ± 0.56 12668.87 ± 1340.09
WSC09-1 0.66 ± 0.03 1.43 ± 0.08 32.55 ± 2.59
WSC09-2 14.12 ± 0.76 5.07 ± 0.21 3991.17 ± 449.69
WSC09-3 5.8 ± 0.29 3.16 ± 0.13 3897.65 ± 360.19
WSC09-4 19.45 ± 1.33 16.78 ± 0.88 194089.64 ± 12302.51
WSC09-5 10.02 ± 0.64 10.96 ± 0.86 48600.75 ± 8161.52

5.3 Evolutionary Process – Behaviour Analysis
�e behaviour of each method was further analysed by observing
the position of the population individuals in the objective space
at di�erent generations. Figures 7, 8, and 9 show an example of
this analysis for task 08-2, presenting a plot of the populations of
each method before, during, and a�er one run has taken place. In
Figure 7 the population is randomly initialised for each approach,
ensuring that all compositions are functionally correct. As genetic
operations are performed, solutions gradually move towards more
promising areas of the objective space, as shown in Figure 8. Fi-
nally, the populations converge to the promising areas displayed in
Figure 9. �e convergence towards a few locations is to be expected,
given the highly constrained nature of this problem. One inter-
esting observation is that, while GraphEvol and the Fragmented
methods converge very quickly during the run (as seen in Figure
8), the Encoded method manages to maintain a more diverse popu-
lation. �is may account for the Encoded method’s be�er IGD and
hypervolume results.

5.4 Further Analysis of Evolved Solutions
�e impact of a solution’s structure on its overall quality is illus-
trated by the example in Figure 10, which shows two non-dominated
solutions produced by the Fragmented approach for task 08-2. So-
lution (a) has an overallT of 8258.76, which is comparatively lower
than the T of 13761.16 from solution (b). �is di�erence is likely
a result of the increased parallelisation observed in solution (a).
Solution (a) also has a lower overall C (14.47 versus 21.87) and a
higher overall A (0.013 versus 0.001) than solution (b), though this
time the advantage is in its combination of atomic services. Despite
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Figure 7: Position of each method’s population in the objec-
tive space at generation 1 for task 08-2.
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Figure 8: Position of each method’s population in the objec-
tive space at generation 5 for task 08-2.
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Figure 9: Position of each method’s population in the objec-
tive space at generation 51 for task 08-2.

these drawbacks, solution (b) has a very high overall R (0.356) due
to the higher individual R scores of its atomic services, which is not
the case for solution (a) (R of 0.082). �e average individual R for
the atomic services of solution (b) is 81.4, while for solution (a) it is
only 62.2. �is di�erence is magni�ed when aggregating the indi-
vidual scores through multiplication. �ese examples demonstrate
the complexity involved in optimising Web service compositions,
as well as the intrinsic relationship between a solution’s structure
and its quality.
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end

serv2020713184
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serv1189164894
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serv1604119786

serv357616642 serv218752176

serv1812416485

start

serv427048875

end

(b)

Figure 10: Examples of non-dominated solutions produced
by the Fragmented method for task 08-2.

6 CONCLUSIONS
�is paper proposed a new fragment-based GP method for solving
the multi-objective Web service composition problem. Instead of
relying on a pre-existing abstract work�ow as the basis for the
creation of compositions, which is the strategy adopted by existing
multi-objective works in the �eld, this paper applies fully auto-
mated composition techniques in a multi-objective context. �is
means that the composition’s work�ow structure is evolved at
the same time its overall quality is optimised. Two contributions
are presented in this paper. Firstly, a novel Fragmented candidate
representation was proposed. Secondly, a multi-objective fully au-
tomated composition method was created by adapting NSGA-II
to the newly proposed representation and designing two problem-
speci�c operations. Experiments were conducted to compare the
performance of our proposed method with two others, which were
adapted to work with NSGA-II. In terms of e�ciency, the Frag-
mented method requires signi�cantly less time to execute than the
others, in particular the Encoded method, thus establishing itself
as a promising composition technique when fast execution is a pri-
ority. In terms of e�ectiveness, the proposed Fragmented method
produces solution fronts that match the quality of those gener-
ated by the GraphEvol method. However, the Encoded method
can produce solution fronts with be�er quality. Despite this, the
simplicity of fragmented representation makes the new method
easily understandable and extensible. More fundamentally, these
results demonstrate the feasibility of multi-objective fully auto-
mated Web service composition. Future work in this area should
investigate alternative multi-objective algorithms in the context
of fully automated composition, as well as the use of local search
techniques.
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