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Abstract. Web service location allocation problem is an important prob-
lem in the modern IT industry. In this paper, the two major objectives,
i.e. deployment cost and network latency, are considered simultaneously.
In order to solve this new multi-objective problem effectively, we adopted
the framework of binary Particle Swarm Optimization (PSO) due to its
efficacy that has been demonstrated in many optimization problems.
Specifically, we developed two PSO variants, one with weighted-sum
fitness function (WSPSO) and the other with dominance-based fitness
function. Concretely, it uses the fast Non-dominate Sorting scheme, and
thus is called NSPSO. The experimental results showed that both PSO
variants performed better than NSGA-II, which is the one of the most
commonly used multi-objective genetic algorithms. Furthermore, we have
found that NSPSO achieved a more diverse set of solutions than WSPSO,
and thus covers the Pareto front better. This demonstrates the efficacy
of using the dominance-based fitness function in solving multi-objective
Web service location allocation problem.

1 Introduction

The Web Service Location Allocation Problem (WSLAP) is a significant problem
that is important for many modern IT enterprises. Given a set of Web services
and candidate locations, WSLAP is to assign each Web service to at least one
location (one or more copies) to optimize certain objective such as the total de-
ployment cost and response time. To accommodate business agility, it is usually
preferred to use existing applications instead of developing them from scratch.
To this end, a contemporary approach is to package the software resources as
Web services (e.g. in the service oriented architecture [6] [18]), which are well-
defined, self-contained modules that provide standard business functionality and
are independent of the state or context of other services [20]. It has been demon-
strated that the Web service technology has the advantages of convenience, low
cost and capacity to be composed into high-level business processes [1]. This



provides possibility of combining coarse-grained Web servies to build complex
applications using standards such as WS-BPEL [17].

In practice, the Web services are generally located in some physical places
(e.g. servers) by Web server providers, and can be called by users from various
locations. In this situation, how to select proper locations for the Web services
becomes an important problem. Therefore, one needs to assign the given Web
services to proper locations. In WSLAP, in addition to the functionality require-
ment (e.g. the system can response to any type of requests), there are a number
of Quality of Service (QoS) objectives for the Web service providers to consider
to become competitive in the market. QoS, also known as non-functional re-
quirements to Web services, is the degree to which a Web service meets specified
requirements or user needs [25]. The common QoS measures include deployment
cost, response time, security and availability. Web service location allocation
has significant impact on two QoS measures, i.e. deployment cost and response
time. Therefore, in this paper, we study Web service location allocation with
two objectives, minimizing the deployment cost and network latency.

It is obvious that the two objectives are conflicting with each other. For
example, to reduce the deployment cost, one needs to reduce the number of
Web services deployed. This will increase the network latency due to the lack of
services nearby. The deployment cost and network latency have been considered
separately in literature [9] [12]. However, to the best of our knowledge, there is
no study trying to minimize the cost and response time simultaneously.

In our study, we aim to solve the Multi-Objective WSLAP (MO-WSLAP)
that minimizes the cost and response time simultaneously. Instead of providing
a single solution, we expect to provide a set of trade-off solutions, which are
so-called Pareto optimal solutions. Evolutionary algorithms are chosen to solve
the problem since they maintain a population of individuals during the search,
and thus are able to provide a set of solutions in a single run. To be more spe-
cific, the framework of binary Particle Swarm Optimization (PSO) was adopted
here because it has been successfully applied to many real-world optimization
problems.

In summary, our goals in the paper are given as follows.

1. The total deployment cost and network latency simultaneously are consid-
ered, which leads to a Multi-Objective WSLAP (MO-WSLAP);

2. Two binary PSO approaches are designed for solving the MO-WSLAP, con-
sidering different multi-objective fitness assignment schemes;

3. The efficacy of using binary PSO to solve the MO-WSLAP are verified
by comparing with a well known multi-objective optimization algorithm
(NSGA-II).

The rest of the paper is organized as follows: Section 2 introduces the back-
ground, including the problem description and related work. Then, the PSO
algorithms proposed for solving MO-WSLAP is described in Section 3. The ex-
perimental studies are conducted in Section 4. Finally, the conclusions and future
work are given in Section 5.



2 Background

2.1 Problem Description

In WSLAP, a set of user centres U = {U1, . . . , Um} and a set of candidate
locations A = {A1, . . . , An} are given. A user centre indicates a centre city of a
user-concentrated area. A candidate location is the geographic location that is
suitable to deploy the Web services, e.g. the locations of the existing Web server
hosting providers. There is a pool of Web services W = {W1, . . . ,Ws}. Each
Web service Wi ∈ W must be deployed to at least one location. Note that a Web
service can have multiple copies that are located in different locations. For each
Web service Wi ∈ W and each candicate location Aj ∈ A, there is a deployment
cost Cij induced by deploying service Wi at location Aj . For each user centre
Uk ∈ U and each candicate location Aj ∈ A, there is a latency Ljk, which
affects the response time from the location Aj to the user centre Uk. It mainly
depends on the distance between the two geographical locations. For each Web
service Wi ∈ W and each user centre Uk ∈ U , there is an invocation frequency
Fik, indicating the frequency of the service Wi invoked by the users from Uk.
Given all the above information, the problem is to design a plan to deploy the
services, so that each service is deployed in one or more locations, and the total
deployment cost f1 and network latency f2 of the system is minimized. The
deployment cost and network latency can be calculated as follows:

f1 =

s∑
i=1

n∑
j=1

Cijxij , (1)

f2 =

s∑
i=1

m∑
k=1

Fikrik, (2)

where xij takes 1 if service Wi is assigned in location Aj , and 0 otherwise.
rik stands for the response time of service Wi to the user centre Uk, which is
calculated as

rik = min{Ljk | j ∈ {1, . . . , n} and xij = 1}. (3)

Then, the problem can be stated as follows:

min f1 =

s∑
i=1

n∑
j=1

Cijxij , (4)

min f2 =

s∑
i=1

m∑
k=1

Fikrik, (5)

s.t. :

n∑
j=1

xij ≥ 1, ∀ i ∈ {1, . . . , s}, (6)

xij ∈ {0, 1}, ∀ i ∈ {1, . . . , s}, ∀ j ∈ {1, . . . , n}. (7)



Eqs. (4) an (5) are the two objectives to be minimized. Eq. (6) indicates that
each service must be deployed in at least one location. Eq. (7) gives the domain
of the decision variables xij .

2.2 Related Work

Most of the previous work treated WSLAP as a single objective problem. In [1]
[22], integer linear programming techniques were used to solve the problem. In
particular, the work in [22] solved the problem by employing greedy and linear
relaxation.

Researches on network virtualization [2] [8] employed greedy algorithms to
allocate virtual machines (VMs) in the data center so that the requirements of
network bandwidth are met. [14] presented a multi-layer and integrated fashion
through a convex integer programming formulation.

The major drawback of greedy algorithm is that it is easy to be stuck at local
optima. On the other hand, it is well known that integer linear programming
has a high complexity and thus does not scale well. It can only be used in small
or medium sized problem instances. In this case, heuristics and meta-heuristics
such as genetic algorithms are promising to achieve better solutions within a
short time.

Huang [9] proposed an enhanced Genetic Algorithm (GA)-based approach
for the problem. However, only network latency was considered in the paper.
Kessaci [12] proposed a new multi-objective genetic algorithm called MOGA-CB
for minimizing the cost of VMs instance and response time. A framework called
Green Monster was proposed in [19] to dynamically move Web services across
Internet data centres for reducing their carbon footprint while maintaining their
performance. Green monster applied a modified version of NSGA-II [7] with an
additional local search process.

In summary, although there have been a number of works trying to solve
WSLAP in different ways, no work exists to consider minimizing the deployment
cost and network latency simultaneously. Therefore, in this paper, we formulate
the multi-objective model and attempt to solve it with PSO.

3 Particle Swarm Optimization for Multi-Objective Web
Service Location Allocation

PSO was proposed by Kennedy and Eberhart in 1995 [10]. It is a simple yet
powerful optimization algorithm that mimics the flock behavior to search in the
solution space. It has been successfully applied to various optimzation problems.
Thus, we adopt the PSO framework to solve the MO-WSLAP in this paper. The
generic PSO framework is given in Algorithm 1.

In line 4, the personal best location of each particle is the location with
the best objective value that the particle found so far. In line 5, the global best
location is the best location among the personal best locations of all the particles.



Algorithm 1: The generic framework of PSO

1 Randomly generate an initial swarm and the velocities;
2 repeat
3 foreach particle i in the swarm do
4 Update the personal best location pi;
5 Update the global best location g;

6 end
7 foreach particle i in the swarm do
8 Update particle velocity vi;
9 Update and evaluate particle location xi;

10 end

11 until termination criterion is met ;
12 return the global best g;

In line 8, the standard way of updating each dimension vid of the velocity vi is
as follows:

vid ← w · vid + c1 · r1i · (pid − xid) + c2 · r2i · (gd − xid), (8)

where w is the inertia weight, c1 and c2 are the acceleration factors, and r1i
and r2i are random variables sampled from uniform distribution between 0 and
1. vid, xid, pid and gd stand for the value in dimension d of vi, xi, pi and g
respectively. In MO-WSLAP, the decision variables xij are binary variables, i.e.
they can only take 0 or 1. In this case, we employ the Binary PSO (BPSO) [11].
In line 9, the location is updated as follows:

xid =

{
1, if rand() < 1

1+e−vid
,

0, otherwise.
(9)

where rand() is a value sampled from the uniform distribution between 0 and 1.
When solving MO-WSLAP, problem-specific solution representation, fitness

evaluation and constraint handling must be designed. They will be described
one by one in this section.

3.1 Solution Representation

In MO-WSLAP, the decision variables are xij , where i = 1, . . . , s, and j =
1, . . . , n. That is, the decision variables form a s×n matrix. Note that PSO was
designed for vector-based solutions. Therefore, we simply adopt the flatten ma-
trix representation that transforms the matrix Xs×n into a (s×n)–dimensional
vector y. The element xij in X corresponds to the (n · (i− 1) + j)th element in
y. For example, given a 3× 3 matrix as follows:

X =

0 1 0
0 0 1
1 0 0

 ,



the flatten matrix (vector) is y = (0, 1, 0, 0, 0, 1, 1, 0, 0). A (s × n)–dimensional
velocity vector v is defined accordingly, each for an element y ∈ y. The vector
y is used in the update phase. Then, during the fitness evaluation, y is first
decoded into the original matrix X.

3.2 Fitness Evaluation

After decoding y into the corresponding matrix X, the total deployment cost
and network latency can be directly calculated by Eqs. (1) and (2). In MO-
WSLAP, since the two objectives are considered simultaneously, it is important
to normalize them so that they have the same scale. To this end, the lower
and upper bounds of both the total deployment cost and network latency are
calculated. Specifically, for the total deployment cost, the lower bound f1,min is
obtained by deploying each Web service once in the location that leads to the
minimal deployment cost, while the upper bound f1,max is obtained by employing
each Web service in all the locations. For the network latency, the lower bound
f2,min is achieved by deploying all the Web services in all the locations, and
the upper bound f2,max is obtained by an exhaustive search in which each Web
service is allocated in only one location. The search space to find f2,max is s×n.

Based on the bounds of f1 and f2, the linear normalization is conducted to
obtain the normalized objective values, which are denoted as f̂1 and f̂2.

There are various ways for fitness assignment in evolutionary multi-objective
optimization [3] [5] [7] [13] [15] [16]. In this paper, two different fitness assign-
ment schemes are selected and compared. The first one is the weighted sum
aggregating function, which is the most straightforward way that combines mul-
tiple objectives into a single one. The resultant PSO is called the Weighted Sum
PSO (WSPSO). In WSPSO, the fitness function is defined as follows:

fitness = λ · f̂1 + (1− λ) · f̂2. (10)

That is, particle y1 is considered to be better than particle y2, if fitness(y1) <

fitness(y2). Note that the fitness value depends not only on f̂1 and f̂2, but also
the weight coefficient λ. In the experimental studies, λ is simply set to 0.5 as a
rule of thumb. That is, the two objectives are of the same importance. However,
in practice this value can be obtained from service providers.

The second strategy is the dominance-based fitness assignment scheme, and
the resultant PSO is called the Non-Dominated PSO (NSPSO) [15]. Given a
set of objective functions, solution x1 is said to dominate solution x2, if (1) x1
is no worse than x2 in all the objectives, and (2) x1 is better than x2 in at
least one objective. Based on the dominance relation, Deb et al. [7] designed a
fast non-dominated sorting procedure, which is efficient in sorting a population
of individuals from the best to the worst. The basic idea is to first divide the
individuals into different fronts. The first front consists of all the individuals
that are not dominated by any other individuals in the population. Then, each
subsequent front includes the individuals that are dominated by no other in-
dividuals than those in the previous fronts. Within the same front, a crowding



distance measure is designed to measure the crowdedness around each individ-
ual. Then, the individual with a larger crowding distance is considered to be
in a less crowded region, and thus be better. Details of the fast non-dominated
sorting can be found in [7].

NSPSO adopts the fast non-dominated sorting in fitness assignment. The dif-
ferences between NSPSO and the standard PSO framework are mainly twofold.
First, in each generation, instead of replacing the original particle, the update of
each particle creates a new particle. After all the particles have been updated,
all the original particles and newly created particles are combined together and
sorted by the fast non-dominated sorting. Then, a new swarm is formed by select-
ing the first particles in the sorted set. Second, instead of choosing the location
with the best fitness value, the global best location is chosen to be the one in
the first front and with the least crowding distance value. If there are multiple
such locations, one is randomly selected.

3.3 Constraint Handling

In MO-WSLAP, each service must be allocated to at least one location. However,
during the search process, the constraint can be violated, and there might exist
some services that are not allocated to any location. That is, infeasible particle
may occur. There are a variety of strategies to handle the constraints [4]. Here,
we employ the simplest constraint handling approach, which is to ignore all
the infeasible particles. To this end, all the infeasible particles are assigned the
highest possible objective values (1 after normalization). Specifically,

f̂u(y) =

{
f̂u(y), if y is feasible,

1, otherwise.
, u = 1, 2. (11)

where f̂u(y) stands for the uth normalized objective value.

4 Experimental Studies

To verify the efficacy of the proposed WSPSO and NSPSO, we tested them on
the real-world network datasets, and compared with NSGA-II [7].

4.1 Datasets

The network dataset provided by WS-DREAM [23] [24] is used in the exper-
iments. The dataset includes 339 user centres and 5825 candidate locations,
along with the latency matrix between the user centres and the candidate lo-
cations. From Section 2.1, it is known that apart from the latency matrix, a
MO-WSLAP instance consists of the other two matrices, i.e. the deployment
cost matrix C = (Cij)s×n and invocation frequency matrix F = (Fik)s×m. The
matrices were generated as follows.



Deployment Cost: The deployment cost can include the fixed deployment fees
(e.g. monthly rent) and variable fees (e.g. extra charges for exceeded storage and
other limits) [21]. For the sake of simplicity, here we only considered the fixed
deployment fees, which is independent of the location of the service. For each
service, the deployment cost was randomly generated from a normal distribution
with mean of 100 and standard deviation of 20.

Invocation Frequency: For each user centre and each service, the invocation
frequency was randomly generated from a uniform distribution between 1 and
120.

In the experiments, we randomly generated a number of services, and se-
lected different subsets of the latency matrix to form a set of different problem
instances. The features of the generated instances are given in Table 1.

Table 1: The features of the generated problem instances.

Instance #Services #Locations #Centres

Instance 1 20 5 10
Instance 2 20 10 10
Instance 3 50 15 20
Instance 4 50 15 40
Instance 5 50 25 20
Instance 6 50 25 40
Instance 7 100 15 20
Instance 8 100 15 40
Instance 9 100 25 20
Instance 10 100 25 40
Instance 11 200 25 40
Instance 12 200 25 80
Instance 13 200 40 40
Instance 14 200 40 80

4.2 Experiment Settings

In both WSPSO and NSPSO, the population size was set to 50, and the maximal
number of generations was set to 50. c1 and c2 were set equally to 2, and w was
set to 1. In addition, NSGA-II was taken into account for comparison. NSGA-
II uses the tournament selection to select parents, and single point crossover
and flip mutation operators to generate offsprings. In NSGA-II, the population
size and maximal number of generations was set the same as that of the PSO
approaches to make a fair comparison. The crossover and mutation rates were set
to 0.8 and 0.2 respectively. For each instance and each algorithm, 40 independent
runs were conducted.



4.3 Performance Measures

The Hypervolume and Inverted Generational Distance (IGD) indicators were
chosen as the performance measures. The hypervolume is the area of the region
in the objective space dominated by the given set of solutions. A larger hypervol-
ume value indicates a better solution set. The IGD value is defined as the average
distance from a Pareto-optimal solution to the closest solution in the given so-
lution set. A smaller IGD value indicates that the given solution set is closer
to the true Pareto front, and thus is better. The optimal IGD value is 0. The
performance measures were calculated based on the normalized objective values.
For the hypervolume, the nadir point was set to (1, 1). For the IGD, since the
true Pareto front is unknown, we selected the non-dominated solutions among
the final solutions obtained by all the runs of WSPSO, NSPSO and NSGA-II as
the approximation of the true Pareto front.

4.4 Results and Discussions

Performance of WSPSO: First, we analyse the performance of WSPSO, since
it can be seen as the basic PSO version for solving MO-SWLAP. Table 2 shows
the mean and standard deviation of the hypervolume of WSPSO on the tested
instances. From the table, one can see that as the problem size increases, the
performance of WSPSO decreased (the hypervolume value dropped).

Table 2: The mean and standard deviation of the hypervolume of WSPSO on the tested
instances.

Instance 1 Instance 2 Instance 2 Instance 4 Instance 5

0.89 ± 0.016 0.61 ± 0.01 0.69 ± 0.007 0.71 ± 0.008 0.67 ± 0.007

Instance 6 Instance 7 Instance 8 Instance 9 Instance 10

0.63 ± 0.005 0.63 ± 0.006 0.65 ± 0.008 0.62 ± 0.005 0.58 ± 0.005

Instance 11 Instance 12 Instance 13 Instance 14

0.55 ± 0.003 0.56 ± 0.003 0.56 ± 0.004 0.57 ± 0.003

Fig. 1 shows the convergence curve of WSPSO on Instance 4. All the other
instances showed a similar pattern. From the figure, it is clear that WSPSO
converged well during the search process. More importantly, it seems that 50
generations is not sufficient for WSPSO to converge since the convergence curve
is still dropping at generation 50. Note that MO-WSLAP is essentially a multi-
objective optimization problem, and thus the weight sum fitness value is not
comprehensive. Therefore, it is necessary to observe the temporal behavior of
WSPSO in terms of both objectives rather than the aggregated fitness.



Fig. 1: The convergence curve (average fitness of the global best over 40 independent runs)
of WSPSO on Instance 4.

Fig. 2 shows the evolution trajectory of all the particles in the 2D objective
space at different stages of the search process on Instance 4. From the figure, one
can see that the particles in generation 50 do not dominate those in generation
10. Instead, they have a different trade-off between the total deployment cost
and network latency. More specifically, from generation 10 to generation 50, the
total deployment cost is reduced, while the network latency increases. It can be
seen that as early as in generation 10, the network latency already achieved the
best value (0.025 after normalization). In contrast, the total deployment cost
is much harder to improve (around 0.5 after normalization). Thus, much more
effort has been put in improving the total deployment cost with a slight sacrifice
in the network latency. Therefore, the downward convergence curve in Fig. 1
does not indicate that the particles are improved in both objectives. Instead,
the total deployment cost is improved and the network latency is deteriorated,
but to less extent.

Finally, although WSPSO is a single-objective optimization algorithm, there
are a swarm of particles maintained in the last generation, from which one may
still obtain the non-dominated set. To observe the distribution of the particles in
the final swarm, we draw the scatter plot of the particles in the last generation
of one run in the objective space on Instance 4, as shown in Fig. 3. All the
other instances showed a similar pattern. It can be seen that there is still a non-
dominate set in the final swarm, and the best particle with the minimal fitness
value is the one with the minimal total deployment cost. This partly shows the
capability of WSPSO in obtaining a set of trade-off solutions for MO-WSLAP.



Fig. 2: The objective values of the particles at generation 10, 20, 30, 40 and 50 of WSPSO
on Instance 4.

Fig. 3: The distribution of the final swarm in the objective space for Instance 4.

Performance of NSPSO: Then we evaluate the performance of NSPSO by com-
paring with WSPSO and NSGA-II. Tables 3 and 4 shows the mean and standard
deviation of the hypervolume and IGD values of WSPSO, NSGA-II and NSPSO
on the tested instances. The Wilxocon’s rank sum test was conducted between
each pair of the three compared algorithms with significance level of 0.05. For
each instance, if one algorithm is significantly better than the other two, then
the corresponding entry is marked in bold.



Table 3: The mean and standard deviation of the hypervolume of WSPSO, NSGA-II and
NSPSO on the tested instances. If an algorithm significantly outperform the other
two algorithms with significance level of 0.05, then the corresponding entry is
marked in bold.

Instance WSPSO NSGA-II NSPSO

Instance 1 0.895 ± 0.0132 0.828 ± 0.0129 0.757 ± 0.0187
Instance 2 0.615 ± 0.0105 0.606 ± 0.0123 0.596 ± 0.0108
Instance 3 0.690 ± 0.0072 0.594 ± 0.0074 0.615 ± 0.0111
Instance 4 0.713 ± 0.0077 0.606 ± 0.0074 0.627 ± 0.0112
Instance 5 0.668 ± 0.0077 0.575 ± 0.0047 0.605 ± 0.0093
Instance 6 0.626 ± 0.0049 0.554 ± 0.0063 0.587 ± 0.0070
Instance 7 0.633 ± 0.0060 0.564 ± 0.0048 0.600 ± 0.0083
Instance 8 0.652 ± 0.0070 0.577 ± 0.0051 0.614 ± 0.0079
Instance 9 0.620 ± 0.0052 0.555 ± 0.0039 0.597 ± 0.0089
Instance 10 0.585 ± 0.0049 0.535 ± 0.0049 0.579 ± 0.0079
Instance 11 0.554 ± 0.0030 0.520 ± 0.0026 0.571 ± 0.0087
Instance 12 0.562 ± 0.0031 0.523 ± 0.0033 0.578 ± 0.0094
Instance 13 0.563 ± 0.0028 0.529 ± 0.0029 0.585 ± 0.0077
Instance 14 0.566 ± 0.0031 0.533 ± 0.0026 0.588 ± 0.0089

Table 4: The mean and standard deviation of the IGD of WSPSO, NSGA-II and NSPSO
on the tested instances. If an algorithm significantly outperform the other two
algorithms with significance level of 0.05, then the corresponding entry is marked
in bold.

Instance WSPSO NSGA-II NSPSO

Instance 1 0.194 ± 0.0176 0.066 ± 0.0114 0.092 ± 0.0110
Instance 2 0.146 ± 0.0131 0.049 ± 0.0047 0.057 ± 0.0035
Instance 3 0.146 ± 0.0089 0.036 ± 0.0029 0.023 ± 0.0028
Instance 4 0.133 ± 0.0089 0.038 ± 0.0028 0.026 ± 0.0026
Instance 5 0.110 ± 0.0060 0.037 ± 0.0030 0.017 ± 0.0022
Instance 6 0.123 ± 0.0068 0.036 ± 0.0040 0.014 ± 0.0014
Instance 7 0.128 ± 0.0091 0.037 ± 0.0036 0.011 ± 0.0015
Instance 8 0.114 ± 0.0068 0.041 ± 0.0036 0.013 ± 0.0018
Instance 9 0.100 ± 0.0045 0.039 ± 0.0025 0.007 ± 0.0016
Instance 10 0.104 ± 0.0046 0.041 ± 0.0037 0.008 ± 0.0013
Instance 11 0.077 ± 0.0038 0.036 ± 0.0018 0.005 ± 0.0007
Instance 12 0.074 ± 0.0033 0.035 ± 0.0021 0.004 ± 0.0005
Instance 13 0.076 ± 0.0027 0.044 ± 0.0024 0.004 ± 0.0005
Instance 14 0.069 ± 0.0023 0.039 ± 0.0022 0.004 ± 0.0005

From the tables, one can see that in terms of hypervolume, WSPSO per-
formed significantly the best on the first 10 instances. NSPSO performed signif-
icantly better on the large scale instances (from 11 to 14). In terms of IGD, it is
clear that NSPSO obtained significantly better values than WSPSO and NSGA-



(a) Instance 4 (b) Instance 6

Fig. 4: The best results of WSPSO, NSGA-II and NSPSO.

(a) Instance 8 (b) Instance 10

Fig. 5: The best results of WSPSO, NSGA-II and NSPSO.

II on 12 out of the total 14 instances (except the first two smallest instances,
where NSGA-II performed better). Overall, NSPSO performed much better than
the other two compared algorithms in terms of IGD. To better understand the in-
consistency between the relative performance in terms of hypervolume and IGD,
we plot the best results (the non-dominated solutions among those obtained in
all the runs) of the compared algorithms in the objective space.

Figs. 4–6 show the results on Instances 4, 6, 8, 10, 12 and 14. From the
figures, one can see that in general, NSPSO covered a much wider region than
WSPSO and NSGA-II, especially when the problem size becomes larger. For
the small sized Instance 4, the advantage of NSPSO is not obvious, as it cannot



(a) Instance 12 (b) Instance 14

Fig. 6: The best results of WSPSO, NSGA-II and NSPSO.

reach the region of WSPSO, which has a smaller deployment cost. Nevertheless,
NSPSO still obtained the smallest IGD value due to the better coverage. As
the problem size increases, the advantage of NSPSO becomes more and more
obvious. As shown in Fig. 5, on Instances 8 and 10, NSPSO nearly covered the
entire area obtained by NSGA-II and the area that is slightly worse than that of
WSPSO where the deployment cost is between 0.3 and 0.4. More importantly,
NSPSO reached the area where the network latency is lower than 0.02 and 0.045
respectively, which was never reached by WSPSO or NSGA-II. As a result, the
solutions obtained by NSPSO played a major role in the approximated Pareto
front. Since the IGD value highly depends on the approximated Pareto front, it
is not surprising that NSPSO obtained significantly better IGD value. The solu-
tions obtained by WSPSO and NSGA-II covered different areas in the objective
space, which are non-overlapping with each other. The results of NSGA-II had
a better spread, and thus contributed more in the approximated Pareto front.
Thus, NSGA-II obtained better IGD values than WSPSO. Fig. 6 shows a similar
pattern as Fig. 5. In this figure, the advantage of NSPSO is more obvious, as it
nearly covered the areas of both NSGA-II and WSPSO. Therefore, it achieved
both significantly better hypervolume and IGD values.

In summary, we have the following major observations.

– Both the proposed WSPSO and NSPSO performed well in solving MO-
WSLAP. WSPSO performed better in terms of hypervolume, and NSPSO
performed better in terms of IGD;

– Both the proposed WSPSO and NSPSO performed better than NSGA-II,
which is the most commonly used multi-objective optimization algorithms;

– In MO-WSLAP, the relative performances of the compared algorithms are
inconsistent in hypervolume and IGD. This is mainly due to the different
optimization difficulties of the two objectives. Specifically, the total deploy-



ment cost is much harder to optimize than the network latency. As a result,
the final solutions still have different scales in the two objectives after nor-
malization. For example, as shown in Fig. 6b, for the final solutions, the
deployment cost ranges from 0.4 to 0.6 and the network latency ranges from
0.006 to 0.012 on Instance 14. This makes the hypervolume emphasize more
on the improvement in the deployment cost rather than the network latency.

5 Conclusions and Future Work

In this paper, the Multi-Objective Web Service Location Allocation Problem
(MO-WSLAP) is investigated. In MO-WSLAP, the total deployment cost and
network latency are to be minimized simultaneously. Two PSO variants are
proposed for solving MO-WSLAP. One uses the weighted sum fitness evaluation,
and the other uses the dominance-based fitness assignment. Both the proposed
PSO methods performed better than the compared NSGA-II. Moreover, NSPSO
performed better than WSPSO especially on larger instances. This demonstrates
the efficacy of using dominance-based fitness assignment in solving real-world
instances.

In the future, we plan to further improve the search scheme of PSO by
employing more domain knowledge of the problem (e.g. the different optimization
difficulties of the two objectives), and develop new PSO algorithms that can
overcome the weaknesses of both WSPSO and NSPSO. We expect that the new
PSO approach will be able to cover the areas of both WSPSO and NSPSO, and
may reach a wider area in the objective space.
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