
Investigating Machine Breakdown Genetic
Programming Approach for Dynamic Job Shop

Scheduling

John Park1, Yi Mei1, Su Nguyen1,2, Gang Chen1, Mengjie Zhang1

1Evolutionary Computation Research Group, Victoria University of Wellington, PO Box 600,
Wellington, New Zealand

2La Trobe University, Melbourne, Australia
{John.Park,Yi.Mei,Su.Nguyen,Aaron.Chen,Mengjie.Zhang}@ecs.vuw.ac.nz

Abstract. Dynamic job shop scheduling (JSS) problems with dynamic job ar-
rivals have been studied extensively in the literature due to their applicability to
real-world manufacturing systems, such as semiconductor manufacturing. In a
dynamic JSS problem with dynamic job arrivals, jobs arrive on the shop floor
unannounced that need to be processed by the machines on the shop floor. A job
has a sequence of operations that can only processed on specific machines, and
machines can only process one job at a time. Many effective genetic programming
based hyper-heuristic (GP-HH) approaches have been proposed for dynamic JSS
problems with dynamic job arrivals, where high quality dispatching rules are au-
tomatically evolved by GP to handle the dynamic JSS problem instances. How-
ever, research that focus on handling multiple dynamic events simultaneously are
limited, such as both dynamic job arrivals and machine breakdowns. A machine
breakdown event results in the affected machine being unable to process any jobs
during the repair time. It is likely that machine breakdowns can significantly af-
fect the effectiveness of the scheduling procedure unless they are explicitly ac-
counted for. Therefore, this paper develops new machine breakdown terminals for
a GP approach and evaluates their effectiveness for a dynamic JSS problem with
both dynamic job arrivals and machine breakdowns. The results show that the GP
approaches with the machine breakdown terminals do show improvements. The
analysis shows that the machine breakdown terminals may indirectly contribute
in the evolution of high quality rules, but occur infrequently in the output rules
evolved by the machine breakdown GP approaches.

1 Introduction

Job shop scheduling (JSS) problems are combinatorial optimisation problems that have
been studied over the past 60 years [1]. Due to their direct application in important real-
world manufacturing systems, extensive research has been carried out for JSS problems
to find effective and practical techniques which may be incorporated to a real-world
scenario for the manufacturers so that they gain a competitive edge in the respective
markets [1]. In a JSS problem instance, there are machines on the shop floor that are
used to process arriving jobs, and the manufacturer needs to make intelligent decisions
to process the jobs as effectively as possible. In other words, machine resources need



to be optimally allocated (given a specific criterion) by determining the sequence in
which the jobs are processed. However, optimal allocation of machines can be a diffi-
cult task. Most job shop scheduling (JSS) problems are NP-hard [1], and mathematical
optimisation techniques that return optimal solutions for problem instances do not scale
effectively with the problem size. In addition, in a dynamic JSS problem instance there
are unforeseen events that affect the properties of the shop floor, e.g., dynamic job ar-
rivals and machine breakdowns [2]. To handle dynamic JSS problems, various heuristic
approaches have been proposed to generate good solutions to problem instances while
coping with the unforeseen events. For this paper, we handle dynamic JSS problems
with dynamic job arrivals, where the jobs’ properties and their arrival times are un-
known until the job arrival times are reached during processing [3]. Dispatching rule
approaches are the most prominent method of handling dynamic JSS problems with
dynamic job arrivals due to their short reaction times and their ability to cope with the
dynamic environment [4].

In addition to manually designing effective dispatching rules for dynamic JSS prob-
lems with dynamic job arrivals, researchers have proposed various genetic program-
ming based hyper-heuristic (GP-HH) approaches to automatically evolving dispatching
rule from heuristic subcomponents [5]. GP evolved dispatching rules generally perform
better than man-made dispatching rules for JSS problems [6]. However, GP approaches
that have been proposed for dynamic JSS problems have mainly focused on dynamic
job arrivals [4, 3, 5–7]. In a real-world scenario, it is likely that there are different types
of dynamic events that occur during processing. An example is machine breakdown,
where the machines need to be serviced and repaired [2]. It is likely that disruptions
caused by machine breakdowns can likely impact the performance of the scheduling
algorithm if they are not specifically accounted for. The only GP approach that explic-
itly accounts for machine breakdowns in the literature deals with a single machine JSS
problem with no dynamic job arrivals [8]. Developing machine breakdown specific GP
approaches may allow us to improve the overall quality of rules evolved by GP for dy-
namic JSS problems with dynamic job arrivals and machine breakdowns (DJSS-MB).

1.1 Goal

The goal of this paper is to develop new machine breakdown terminals for a GP ter-
minal set commonly used in the literature [4, 7] to handle a DJSS-MB. By incorpo-
rating machine breakdown terminals into the GP terminal set, it may be possible to
evolve rules that can account for machine breakdown information. This may result in
the evolved rules being able to make better decisions for both machine breakdown and
non-machine breakdown JSS problem instances than rules evolved without machine
breakdown information, and generate better solutions overall. In other words, develop-
ing new machine breakdown terminals may allow GP to consistently evolve high quality
rules for DJSS-MB. Afterwards, by analysing specific machine breakdown GP evolved
rules, it may be possible to develop an insight into how the rules behave in DJSS-MB,
allowing us to potentially develop more effective machine breakdown GP approaches
in the future. Overall, this paper carries out the following objectives:

(a) Develop and evaluate new machine breakdown terminals for an existing GP ap-
proach [4, 7].

2



(b) Carry out a structural analysis of the machine breakdown GP rules to gain an un-
derstanding of the useful features and properties of GP rules that are evolved under
machine breakdown.

1.2 Organisation

First, we cover the background to dynamic JSS in Section 2, which includes the prob-
lem definition and outlines existing GP approaches for dynamic JSS problems. After-
wards, Section 3 describes the existing GP approach used in the literature [4, 7], the
benchmark GP terminals, and the machine breakdown GP terminals investigated in this
paper. Section 4 describes the dynamic JSS simulation model used in this paper, and
the GP parameters. Finally, Section 5 gives the results and an analysis of the findings,
and Section 6 gives the concluding remarks and the future works.

2 Background and Related Work

This section covers the problem definition for the DJSS-MB, and the GP approaches
for dynamic JSS problems in the literature.

2.1 Problem Definition

In a dynamic JSS problem instance, an arriving job j has a sequence of operations
σ1j , . . . , σNjj . The operations must be processed sequentially (e.g. σ1j must be pro-
cessed before σ2j) and need to be processed on specific machinesm(σ1j), . . . ,m(σNjj).
An operation σij needs to be processed on machinem(σij) for time pij (which is called
the processing time), and a machine can only process one job at a time. The time that
a job arrives at the machine for an operation σij is denoted as rij , and the time that
the job arrives on the shop floor (r1j) is called the job arrival time rj . For this pa-
per, the objective is to minimise total weighted tardiness (MWT). MWT objective has
been studied extensively in the literature [1], and tardiness related objectives have been
shown to be quite sensitive to machine breakdown events [9, 10]. In a MWT objective,
an arriving job has a due date dj and a weight wj . If job j’s completion time Cj (the
time when the last operation of job j completes) is below due date dj , i.e., Cj ≤ dj ,
then no penalty is incurred. Otherwise, job j is considered tardy, and has tardiness
Tj = dj − Cj [11]. After all N arriving jobs are completed, the MWT of the schedule
is given by 1

N

∑N
j=1 wjTj .

The two types of dynamic events that occur during processing are dynamic job ar-
rivals and machine breakdowns. With a dynamic job arrival, the information about a
job j, including its properties, are not known in advance until the job arrives at time
rj . With a machine breakdown event, a machine m breaks down at time bm and the
machine needs to be repaired for time rm. During the repair time, the machine is un-
available to process any operations. If a job’s operation is currently being processed
at the machine at the time of breakdown, then the job’s operation is resumed from the
time it was interrupted after the machine is repaired. This means that if a job j’s oper-
ation σij is started at time st and is interrupted by machine m’s breakdown, then the

3



operation completes at time st + pij + rm. A job operation resuming from the point
of interruption is consistent with the machine breakdown definition in the literature [8,
9] to handle dynamic JSS problems with machine breakdown. In addition, a common
assumption in the literature is that machine breakdowns events are unforeseeable [2].
However, for this paper we simplify the problem by allowing the shop floor to know
when the machine breakdown occurs in advance. This is because GP approaches that
handle both dynamic job arrivals and machine breakdowns have not yet been proposed
in the literature. By doing this, we can carry out a preliminary investigation of machine
breakdown terminals that incorporate informations about future machine breakdowns
(described in Section 3.2). After analysing these terminals that take full information
about future machine breakdowns into account, it may be possible to develop machine
breakdown terminals in the future that can cope effectively even when the machine
breakdown events are unforeseen events.

2.2 GP for Dynamic JSS Problems

GP approaches have been extensively applied to dynamic JSS problems to evolve dis-
patching rules [5, 6]. Many GP approaches use single arithmetic function trees as prior-
ity dispatching rules [5, 6]. Geiger et al. [12] showed that GP can evolve optimal priority
dispatching rules for static JSS problems that are not NP-hard. They also showed that
priority dispatching rules evolved for NP-hard static JSS problems and dynamic JSS
problems perform better than benchmark man-made dispatching rules. Hildebrandt et
al. [3] provided a GP approach for a dynamic JSS problem with the flowtime min-
imisation objective, and showed that the GP evolved rules outperform state-of-the-art
man-made dispatching rules. Branke et al. [5] and Nguyen et al. [6] both carry out ex-
tensive survey of GP-HH approaches to scheduling problems in the literature. Nguyen
et al. [13] also provide a unified framework for GP-HH to scheduling problems and
categorises existing GP approaches using the framework.

The following are GP approaches that evolve scheduling rules for dynamic JSS
problems with machine breakdowns. Yin et al. [8] proposed a two-tree GP approach
for a single machine JSS problem. The first tree acts as a dispatching rule, and the
second tree is used to calculate the idle time to add in between processing different
jobs on a machine. They showed that the evolved rules outperform the benchmark man-
made heuristics designed for JSS problems with machine breakdowns. Park et al. [10]
carried out an investigation on the generality of GP over a JSS problem with different
frequencies and durations of machine breakdowns, and found that the proportion of
time the machines are being repaired is a significant factor in the qualities of the evolved
rules. In addition, they showed that GP is not general enough to cover for all different
scenarios effectively, and that it is likely that machine breakdown specific information
is required to improve the generality of GP.

3 Machine Breakdown GP for the Dynamic JSS Problem

As machine breakdown GP approach for DJSS-MB have not been proposed, this pa-
per proposes simple but novel machine breakdown terminals which are incorporated

4



to a GP approach. This allows GP to evolve dispatching rules that may make better
decisions during decision situations, potentially leading to better performance than GP
evolved rules which do not incorporate machine breakdowns. First, we describe the
GP representation, the benchmark terminal and function sets. This is followed by the
descriptions and justifications for the machine breakdown GP terminals. The first ap-
proach replaces existing terminals related to operation processing times and add repair
time of machines if necessary. This approach is denoted as “augmented” approach, as it
attempts to improve certain benchmark terminals by incorporating machine breakdown
information. The second approach adds new machine breakdown terminals, which “re-
act” to the machine breakdowns happening on the shop floor, to the existing set of GP
terminals.

3.1 GP Representation, Terminal Set and Function Set

For this paper, we use a tree-based GP representation [14]. The GP individuals represent
arithmetic function trees that calculate the priorities of jobs during decision situations.
Arithmetic GP representation has been used prominently in the literature to evolve ef-
fective priority dispatching rules for JSS problems [5]. A GP terminal corresponds to a
job, machine and shop floor attribute value at a decision situation, or combines multiple
base level shop floor attributes as a part of the terminal. For example, the RT terminal re-
turns the sum remaining total processing times of job j waiting at a machine to process
operation σij , i.e., RT(j) =

∑Nj

k=i pkj . The GP terminals and the arithemtic operators
used by the benchmark GP approach are listed in Table 1, which is based off existing
terminal and function sets used by GP approaches to dynamic JSS problems in the liter-
ature [7, 10]. The function set consists of the arithmetic operators +, −, ×, protected /,
binary operators max, min and a ternary operator if. The protected / returns one if the
denominator is zero, and carries out the standard division operator otherwise. max and
min returns the maximum and the minimum value of the two arguments respectively.
if returns the value of the second argument if the value of the first argument is greater
than or equal to zero, or returns the value of the third argument otherwise.

A GP individual ω is evaluated over a set of dynamic JSS training instances to
calculate its fitness as follows. GP individual ω is applied to a JSS problem instance γ
as a non-delay dispatching rule [11]. During a simulation when a machine m becomes
available, the jobs that are currently waiting at machine m are assigned priority values
by the dispatching rule. The job that has the highest priority value is selected to be
processed at machine m. This continues until the termination criteria for the simulation
has been reached (e.g. after a certain number of jobs have been completed), at which
point the objective function value Obj(ω, γ) is calculated from the solution generated
by individual ω. The individual ω is applied to all problem instances in the training sets,
obtaining objective values Obj(ω, γ1), . . . , Obj(ω, γTtrain).

After the GP individual ω is applied to the problem instances in the training set,
the objective values obtained are normalised to reduce the likelihood that the GP indi-
viduals are biased towards specific instances [3, 15]. In other words, an objective value
Obj(ω, γ) for a solution generated by individual ω for instance γ is normalised using
reference objective value Obj(R, γ) as shown in Equation (1). The reference objective
value Obj(R, γ) is calculated from the solution generated by applying a reference rule

5



Table 1: Terminal set for GP, where a job j is waiting at the available machine m at a
decision situation.

Terminal Description
RJ operation ready time of job j
PT operation processing time of job j
RO remaining number of operations of job j
RT remaining total processing times of job j
RM machine m’s ready time
WINQ work in next queue for job j
DD job’s due date dj
SL slack of job j
W job’s weight wj

NPT next operation processing time of job j
NNQ number of idle jobs waiting at the next machine
NQW average waiting time of last 5 jobs at the next machine
AQW average waiting time of last 5 jobs at all machines

R to the problem instance γ. The reference rule used is the weighted apparent tardiness
cost (wATC) rule [16], a man-made dispatching rule effective for weighted tardiness re-
lated objectives. This was also used by Park et al. [10] in the fitness function to evolve
GP rules for the DJSS-MB.

Obj′(ω, γ) =
Obj(ω, γ)

Obj(R, γ)
(1)

3.2 Augmented GP Terminals

The following terminals in the original GP terminal set (as described in Table 1) are
replaced by terminals that add repair times of the machines: job’s operation processing
time (PT), job’s next operation processing time (NPT) and work in next queue (WINQ).
The replaced GP terminals return the original value if the job’s operation is not inter-
rupted by a machine breakdown, and adds the repair time of the machine otherwise.
The terminals that incorporate the machine breakdown information is denoted with the
prefix ‘MB-’ (e.g. MBPT for machine breakdown adjusted processing time). The GP
approach that incorporates the MBPT, MBNPT and MBWINQ terminals is denoted as
GP-Aug.

Machine breakdown adjusted processing time (MBPT): The machine breakdown
adjusted processing time terminal (MBPT) replaces the processing time terminal (PT) in
Table 1. Given that the current time during the decision situation is t and the processing
time of job’s current operation j is pij , MBPT terminal returns the actual duration
of time required to process the job’s operation by factoring the machine breakdown
interruption into account. In other words, if the job is not interrupted by a machine
breakdown, i.e., if the operation completes earlier than the breakdown time bmt of the
current machine m, then the job’s actual processing time p′ij is equal to the expected
processing time pij . Otherwise, the actual processing time is the sum of the processing

6



time and the machine repair time rmt required to get the machine back up and running
before the operation is resumed. The value returned by MBPT(j) = p′ij , where the
calculation for p′ij is shown in Equation (2).

p′ij =

{
pij if t+ pij < bmt
pij + rmt otherwise (2)

Machine breakdown adjusted next processing time (MBNPT): The machine break-
down adjusted next processing time terminal (MBNPT) replaces the next processing
time terminal (NPT) in Table 1. MBNPT terminal returns zero if the job j’s current
operation σij is the last operation before job j’s completion. Otherwise, given that the
next operation σ(i+1)j is processed on machinem′, the repair time ofm′ is added to the
next processing time p(i+1)j if it is expected to be interrupted by a breakdown at ma-
chine m′ at operation σ(i+1)j earliest possible completion at machine m′. The earliest
possible time that job j can be completed is if operation σij is selected immediately by
machine m, and then the successive operation σ(i+1)j is then processed by machine m′

as soon as operation σij is completed. The time when operation σij completes is given
by the current time t and the actual processing time p′ij , which depends on whether
the operation is interrupted by machine breakdown (Equation (2)). In other words, the
earliest time operation σ(i+1)j can be processed at machine m′ is at t+ p′ij after oper-
ation σij is expected to complete. Therefore, if machine m′ breaks down before time
t+p′ij+p(i+1)j , then repair time rm

′

t of machinem′ is added to the operation σ(i+1)j’s
processing time p(i+1)j as shown in Equation (3).

MBNPT(j) =
{
p(i+1)j if t+ p′ij + p(i+1)j < bm

′

t

p(i+1)j + rm
′

t otherwise
(3)

Machine breakdown adjusted work in next queue (MBWINQ): The machine break-
down adjusted work in next queue terminal (MBWINQ) replaces the work in next queue
terminal (WINQ) in Table 1. Both WINQ and MBWINQ terminals return zero if the
job j’s current operation σij is the last operation before job j’s completion. Otherwise,
given that machine m′ is required by operation σ(i+1)j , the standard WINQ terminal
returns the sum processing times of the jobs that are currently waiting at machine m′

plus the remaining time required to process the operation currently being processed by
machinem′, i.e., the work remaining. MBWINQ modifies the work remaining time cal-
culated by WINQ, and adds the machine m′’s repair time if the work is interrupted by
machine breakdown at time bm

′

t . In other words, MBWINQ(j) = wr′m′,j′ +
∑Nm′

i=1 pji ,
where pj1 , . . . , pjN

m′
are the processing times of jobs waiting at machine m′, wr′m′j′

is the actual work remaining required on j′ being processed on machine m′ before it
becomes available. The calculation for actual work remaining wr′m′j′ is given in Equa-
tion (4), where sj′ denotes the time when j′ started, pj′ is the processing time required
by j′ at machine m′ and t is the current time.

7



wr′m′j′ =

{
sj′ + pj′ − t if sj′ + pj′ < bm

′

t

sj′ + pj′ − t+ rm
′

t otherwise
(4)

In summary, the augmented GP approach replaces three existing terminals (PT,
NPT and WINQ) with equivalent terminals that incorporate information about future
machine breakdowns. The existing terminals are related to the processing times of the
jobs waiting on the shop floor, where repair times need to be added onto the processing
times if we expect the jobs to be interrupted by machine breakdowns. By doing this, we
expect the GP rule to be able to use the “actual” processing times of the jobs to make
better decisions on what job should be processed next by a machines during decision
situations.

3.3 Reactive GP Terminals

Reactive machine breakdown terminals are added to the GP terminal set described in
Table 1 and incorporate information about current machine status. As the two terminals
incorporate informations about the potential wait time of a job waiting at a machine for
the next machine it visits, they are investigated separately. The two terminals being in-
vestigated are the repair time remaining next machine terminal (RTR) and the minimum
wait time next machine terminal (WT). The two reactive GP terminals may allow rules
to make better decisions by prioritising jobs with low expected wait time compared to
jobs with high expected wait time. This may lead to jobs spending less time waiting
at busy machines, and the evolved rules may generate higher quality schedules. The
GP approach that incorporates the RTR terminal is denoted as GP-RTR, and the GP
approach that incorporates the WT terminal is denoted as GP-WT.

Repair Time Remaining Next Machine (RTR): The repair time remaining next ma-
chine RTR returns zero if a job j waiting at a machine at time t is currently on its last
operation or the next machine m′ visited by j is currently not broken down. Otherwise,
given that machine m′ broke down at time bm

′

t and the repair time is rm
′

t , the value
given by RTR = bm

′

t + rm
′

t − t.

Minimum Wait Time Next Machine (WT): The minimum wait time next machine
WT returns the earliest time that the machine to be visited by job j next becomes avail-
able. If the current operation of j is the last operation before completion, then WT
returns zero. In addition, if the next machine m′ that job j visits is currently not busy
and is not broken down, i.e., is completely available, then WT returns zero. Otherwise,
the WT returns the duration of time required for machinem′ to be available. If machine
m′ is currently processing a job j′ or is broken down with an interrupted job, then it
returns the actual work remaining wr′m′j′ which is given in Equation (4). Otherwise, if
the m′ is broken down and a job was not interrupted by the machine breakdown, WT
returns the remaining repair time of machine m′ as given by the terminal RTR.

8



4 Experimental Design

This section describes the setup used to evaluate the different GP approaches to tackle
the DJSS-MB. To evaluate the machine breakdown GP approaches, a simulation model
that is slightly modified from existing simulation models in the literature [9, 10] is used
to both evolve and evaluate the evolved rules. Afterwards, we provide the parameter
used by the GP approaches.

4.1 Dynamic Simulation Model with Machine Breakdown

Discrete-event simulations are the most prominent method of generating dynamic JSS
problem instances [5, 6]. In a discrete-event simulation, the dynamic events such as
the job arrivals and the machine breakdowns are stochastically generated from a set of
parameters. A simulation configuration is the set of parameters required, along with a
seed value, to generate a dynamic JSS problem instance. In a dynamic JSS problem
instance, there are M = 10 machines on the shop floor. The problem instance has a
“warm-up” period of 500 jobs, where the first 500 jobs completed do not contribute
towards the objective. The simulation is terminated after 2500 jobs are completed, and
the objective function value is calculated from the 2000 jobs completed after the warm-
up phase. The job arrivals times follow a Poisson process with arrival rate λ = ρ ×
µ × pM . In the equation, ρ is the utilisation rate, µ the mean processing time, and pM
the mean number of job operations to machine ratio. Utilisation rate (ρ) is the expected
proportion of time the machines are spent processing job operations, and ρ = 80% for
all problem instances. If the utilisation rate plus the machine breakdown level is too
high, it is very likely that the shop will be unstable [11], i.e., job arrival rate is greater
than the rate at which the shop floor can process them. Therefore, 80% utilisation rate
is used instead of higher utilisation rates used in the literature (e.g. 90% or 95% [9, 4])
to accommodate for the high level of machine breakdown used by the simulation model
(described below). The mean processing time (µ) is used in a uniform distribution with
the interval [1, 2µ−1] that the jobs’ processing times follow, and µ = 25 for all problem
instances. The mean number of job operations to machine ratio (pM ) is the expected
number of machines that a job will visit divided by the total number of machines. The
number of operations a job has follows a uniform distribution in the interval [2, 10], i.e.,
the minimum and the maximum number of operations that a job can have is 2 and 10
respectively. Therefore, the expected number of operations is 6 for a job arriving on the
shop floor and pM = 0.6 for all problem instances. In addition, a job’s weight has the
value of 1, 2 or 4 with 20%, 60% or 20% probabilities respectively. Given a job j’s
arrival time rj , total processing time

∑Nj

i=1 pij and the due date tightness simulation
parameter h, the due date of job j is dj = rj + h×

∑Nj

i=1 pij .
For generating machine breakdown events, the inter-breakdown times of the ma-

chines follow an exponential distribution, and the expected breakdown rate is given by
η = rt/π − rt. In the equation, π is the breakdown level and rt is the machine repair
time. The breakdown level is the expected proportion of time for the machine to be
broken down over the course of the simulation, and varies between the different sim-
ulation configurations used to generate the problem instances. For a problem instance
the machine repair time is the same across all machines for a problem instance.

9



Table 2: Dynamic JSS Parameter Settings
Simulation Model Parameter Value
Number of machines (M ) 10
Utilisation rate (ρ) 80%
Mean processing time (µ) 25
Weight/Probability ((w, p)) {(1, 20%), (2, 60%), (4, 20%)}
Due date tightness (h) 3 or 5
Machine breakdown level (π) 0%, 2.5%, 5%, 10% or 15%
Repair time (rt) 37.5, 137.5 or 262.5

Table 3: GP Parameter Settings
GP Parameter Value
Population size 1024
Number of generations 51
Crossover rate 80%
Mutation rate 10%
Reproduction rate 10%
Max initial depth 2
Max depth 8

Initialisation method Ramped half-and-half
Selection method Tournament selection
Selection size 2

The dataset parameters for generating job arrivals and machine breakdowns are
shown in Table 2. First, the simulation configurations have the possible breakdown
levels π = 0%, 2.5%, 5%, 10%, or 15% for a simulation configuration. Second, fixed
repair times for the machine breakdowns are either rt = 37.5, 137.5, or 262.5 for a
simulation configuration. These parameters were selected after running the benchmark
GP approach on different breakdown levels and durations of repair times as part of a
preliminary experiment. The simulation configuration consists of a combination of the
dataset parameters, which means that there are 3×5×2 = 30 different simulation con-
figurations available in the dataset. We use the simulation configuration with π = 15%,
rt = 262.5 and h = 3 to generate the training problem instances. In addition, a dif-
ferent seed is used with the training simulation configuration every generation during
the GP process, resulting in different dynamic JSS problem instances being used every
generation.

4.2 GP Parameters

The GP parameters are used by the GP approaches are shown in Table 3. The GP pa-
rameters are the same as the parameters that are same as the ones used by Park et al.
[10] in their investigation into GP approaches for a DJSS-MB, which allows our bench-
mark GP approach to be consistent with the GP approach that was used during their
investigation.

10



5 Experimental Results

In this investigation, we first carry out a performance evaluation of the GP approaches.
The performance evaluation first compares the GP approaches and how consistently
they can evolve high quality dispatching rules for the dynamic JSS problem, i.e., mea-
sures the effectiveness of the GP approaches. This is done by evolving a set of rules
for each approach and applying them over the dynamic JSS simulation model. After-
wards, the best rules are extracted from the sets of evolved rules for the GP approaches
and compared individually to determine whether an individual machine breakdown rule
can outperform an evolved rule generated by the benchmark GP approach. Finally, we
carry out a structural analysis of the best rules evolved by the machine breakdown GP
approaches to find out the useful properties from the evolve rules.

5.1 Performance Evaluation

For the performance evaluation, each GP approach is applied to a training set (described
in Section 4.1) thirty times to evolve thirty independent rules. Afterwards, each of the
rule is applied to the dynamic JSS simulation model as follows.

Performance Measure: First, an evolved rule ω is run multiple times over each simu-
lation configuration in the simulation model. A single run consists of a seed value and a
simulation configuration, which are used to generate a dynamic JSS problem instance.
The rule is then applied to the problem instance and generates a schedule, which has
a MWT objective value. Afterwards, the subsequent runs over the simulation config-
uration use unique seeds so that new problem instances are generated from the same
simulation configuration. In other words, given a simulation configuration sim and rule
ω, schedules with MWT values Obj(ω, γ(sim)1), . . . , Obj(ω, γ(sim)30) are generated
by the rule for the given simulation configuration. These are used slightly differently
for the rule set evaluation and best rule evaluation, which are described below.

Rule Set Results: In the rule set evaluation, the MWT values Obj(ω, γ(sim)1), . . . ,
Obj(ω, γ(sim)30) generated by a rule ω for a simulation configuration sim is averaged
out to obtain the “performance” Perf of the rule over the simulation configuration, i.e.,
Perf(ω) = 1

30

∑30
i=1Obj(ω, γ(sim)i). The rule performances are then used to compare

between the different sets of rules evolved by the GP approaches.
The results of the performance evaluation is shown in Table 4. In the table, 〈π, rt, h〉

denotes that the simulation configuration has the respective breakdown level π, repair
time rt, and due date tightness h. In addition, each entry µ±σ is the mean (µ) and stan-
dard deviation (σ) of the performance Perf of the rules for the simulation configuration
respectively. If a set of GP evolved rules that use the machine breakdown terminals is
significantly better than the set of benchmark GP rules for a simulation configuration
by satisfying the two sided Student’s t-test at p = 0.05, then the particular entry is
highlighted.

Although the differences are not significant, the results show that the three machine
breakdown approaches (GP-Aug, GP-WT and GP-RTR) have slightly better perfor-
mances than the benchmark GP for some simulation configurations. In particular, the

11



Table 4: Comparison of the rule sets evolved by the GP approaches over the simulation
configurations. Rules are evolved from 〈0.15, 262.5, 3〉.

MBModel Subset GP-Aug GP-WT GP-RTR GP

MWT
(×102)

〈0, 37.5, 5〉 0.74 ± 0.17 0.66 ± 0.07 0.67 ± 0.13 0.67 ± 0.16
〈0, 37.5, 3〉 1.12 ± 0.16 1.05 ± 0.07 1.06 ± 0.12 1.07 ± 0.15
〈0, 137.5, 5〉 0.60 ± 0.16 0.53 ± 0.06 0.53 ± 0.11 0.53 ± 0.14
〈0, 137.5, 3〉 1.31 ± 0.18 1.24 ± 0.07 1.24 ± 0.12 1.26 ± 0.16
〈0, 262.5, 5〉 0.74 ± 0.17 0.66 ± 0.07 0.66 ± 0.13 0.66 ± 0.16
〈0, 262.5, 3〉 1.36 ± 0.19 1.28 ± 0.08 1.29 ± 0.13 1.30 ± 0.16
〈0.025, 37.5, 5〉 1.60 ± 0.89 1.54 ± 0.52 1.55 ± 0.75 1.59 ± 0.69
〈0.025, 37.5, 3〉 2.92 ± 0.98 2.78 ± 0.52 2.86 ± 0.76 2.95 ± 0.88
〈0.025, 137.5, 5〉 38.39 ± 11.90 36.07 ± 11.10 38.91 ± 10.38 39.20 ± 12.65
〈0.025, 137.5, 3〉 42.53 ± 12.23 40.49 ± 11.10 42.96 ± 10.87 43.23 ± 12.89
〈0.025, 262.5, 5〉 88.51 ± 25.15 89.94 ± 23.00 92.91 ± 23.63 94.43 ± 27.18
〈0.025, 262.5, 3〉 92.11 ± 24.34 93.81 ± 21.81 96.36 ± 22.91 98.17 ± 26.54
〈0.05, 37.5, 5〉 1.64 ± 0.44 1.53 ± 0.20 1.57 ± 0.35 1.58 ± 0.36
〈0.05, 37.5, 3〉 2.76 ± 0.57 2.68 ± 0.30 2.74 ± 0.52 2.78 ± 0.50
〈0.05, 137.5, 5〉 9.04 ± 2.17 8.29 ± 2.03 8.91 ± 1.89 9.05 ± 2.42
〈0.05, 137.5, 3〉 11.14 ± 2.18 10.65 ± 1.87 11.04 ± 1.97 11.28 ± 2.29
〈0.05, 262.5, 5〉 36.43 ± 11.35 34.32 ± 10.75 37.00 ± 10.13 37.38 ± 12.40
〈0.05, 262.5, 3〉 36.56 ± 11.29 34.33 ± 10.20 36.74 ± 9.61 37.27 ± 12.09
〈0.1, 37.5, 5〉 3.69 ± 0.61 3.53 ± 0.27 3.60 ± 0.50 3.63 ± 0.60
〈0.1, 37.5, 3〉 4.60 ± 0.54 4.51 ± 0.26 4.57 ± 0.44 4.63 ± 0.51
〈0.1, 137.5, 5〉 6.11 ± 1.21 5.79 ± 0.35 5.89 ± 0.81 6.07 ± 1.26
〈0.1, 137.5, 3〉 8.15 ± 1.28 7.91 ± 0.44 8.02 ± 0.86 8.29 ± 1.39
〈0.1, 262.5, 5〉 11.72 ± 1.95 11.07 ± 1.56 11.43 ± 1.56 11.74 ± 2.22
〈0.1, 262.5, 3〉 13.14 ± 1.50 12.61 ± 1.52 13.08 ± 1.21 13.29 ± 1.76
〈0.15, 37.5, 5〉 6.20 ± 0.67 5.89 ± 0.21 6.07 ± 0.50 6.06 ± 0.80
〈0.15, 37.5, 3〉 7.73 ± 0.63 7.52 ± 0.18 7.66 ± 0.50 7.74 ± 0.82
〈0.15, 137.5, 5〉 9.02 ± 0.94 8.53 ± 0.59 8.69 ± 0.64 8.81 ± 1.17
〈0.15, 137.5, 3〉 11.73 ± 0.81 11.38 ± 0.42 11.55 ± 0.58 11.71 ± 1.10
〈0.15, 262.5, 5〉 12.55 ± 1.23 12.01 ± 1.29 12.31 ± 0.95 12.48 ± 1.44
〈0.15, 262.5, 3〉 16.60 ± 1.27 16.08 ± 1.33 16.37 ± 0.97 16.59 ± 1.50

GP-WT rules have slightly better performances for all simulation configurations than
the benchmark GP rules. In addition, the GP-RTR rules have slightly better performance
than the benchmark GP rules for most simulation configurations except configurations
〈0, 37.5, 5〉and 〈0.15, 37.5, 5〉. Finally, the results of the comparison between the GP-
Aug rules and the benchmark GP rules is most mixed, where GP-Aug rules are slightly
better or worse than the benchmark rules on roughly the equal number of simulation
configurations. However, due to the lack of statistical significance, no significant con-
clusions can be drawn on whether the machine breakdown GP approaches is more con-
sistent in evolving higher quality dispatching rules than the benchmark GP approach.
However, by analysing the rules further, it may be possible to gain a better understand-
ing of how GP can be applied effectively to the machine breakdown problem.

Best Rule Results: The best rule from each GP approach are compared against each
other after the performances of the rules are compared. The best rule is defined to be
the rule that has the lowest average performance values over all the simulation config-
urations out of the evolved rules. The best rules are then compared on each simulation
configuration by the MWT values from the generated schedules. In other words, best
rule comparison uses the results Obj(ω, γ(sim)1), . . . , Obj(ω, γ(sim)30) from the rules
being applied to the 30 problem instances generated by each simulation configuration
sim. The results of the best rules being applied to each simulation configuration is

12



Table 5: Comparison of the best rules over the simulation configurations.
MBData Subset GP-Aug GP-WT GP-RTR GP

MWT
(×102)

〈0, 37.5, 5〉 0.69 ± 0.31 0.63 ± 0.36 0.63 ± 0.31 0.63 ± 0.29
〈0, 37.5, 3〉 1.06 ± 0.27 1.01 ± 0.28 1.01 ± 0.27 1.01 ± 0.25
〈0, 137.5, 5〉 0.55 ± 0.17 0.47 ± 0.16 0.49 ± 0.14 0.50 ± 0.15
〈0, 137.5, 3〉 1.24 ± 0.34 1.21 ± 0.39 1.23 ± 0.37 1.18 ± 0.33
〈0, 262.5, 5〉 0.67 ± 0.32 0.60 ± 0.30 0.61 ± 0.27 0.63 ± 0.29
〈0, 262.5, 3〉 1.30 ± 0.46 1.25 ± 0.46 1.27 ± 0.43 1.24 ± 0.41
〈0.025, 37.5, 5〉 1.42 ± 0.96 1.72 ± 1.49 1.13 ± 0.70 1.19 ± 0.56
〈0.025, 37.5, 3〉 2.47 ± 2.17 2.54 ± 2.14 2.15 ± 2.04 2.33 ± 2.48
〈0.025, 137.5, 5〉 15.84 ± 9.08 16.73 ± 10.11 15.46 ± 8.12 17.85 ± 7.83
〈0.025, 137.5, 3〉 19.36 ± 11.74 21.39 ± 12.86 18.30 ± 12.22 21.28 ± 11.67
〈0.025, 262.5, 5〉 44.44 ± 24.05 51.07 ± 23.93 48.60 ± 26.00 46.87 ± 24.62
〈0.025, 262.5, 3〉 50.49 ± 35.66 56.92 ± 37.17 54.08 ± 37.06 52.61 ± 35.43
〈0.05, 37.5, 5〉 1.59 ± 0.63 1.63 ± 0.79 1.41 ± 0.53 1.42 ± 0.49
〈0.05, 37.5, 3〉 2.92 ± 1.16 2.89 ± 1.25 2.54 ± 0.94 2.55 ± 0.88
〈0.05, 137.5, 5〉 4.59 ± 2.45 4.44 ± 2.91 4.61 ± 2.41 5.62 ± 2.84
〈0.05, 137.5, 3〉 7.00 ± 3.67 7.06 ± 4.24 7.01 ± 3.47 8.03 ± 3.90
〈0.05, 262.5, 5〉 14.29 ± 7.32 15.76 ± 8.02 14.78 ± 7.12 16.50 ± 6.88
〈0.05, 262.5, 3〉 14.30 ± 5.66 14.56 ± 6.10 14.97 ± 4.69 16.87 ± 4.78
〈0.1, 37.5, 5〉 3.83 ± 1.34 3.83 ± 1.26 3.29 ± 1.10 3.40 ± 1.24
〈0.1, 37.5, 3〉 4.96 ± 1.64 4.84 ± 1.42 4.45 ± 1.23 4.38 ± 1.18
〈0.1, 137.5, 5〉 5.65 ± 1.13 5.41 ± 1.45 5.23 ± 1.12 5.58 ± 1.28
〈0.1, 137.5, 3〉 7.71 ± 1.41 7.62 ± 1.60 7.16 ± 1.50 7.64 ± 1.69
〈0.1, 262.5, 5〉 8.39 ± 2.58 7.56 ± 3.37 8.18 ± 2.77 9.28 ± 2.95
〈0.1, 262.5, 3〉 10.12 ± 1.38 9.27 ± 1.59 10.44 ± 1.52 11.12 ± 1.48
〈0.15, 37.5, 5〉 5.89 ± 1.48 5.52 ± 1.59 5.60 ± 1.31 5.56 ± 1.16
〈0.15, 37.5, 3〉 7.70 ± 1.33 7.52 ± 1.27 7.37 ± 1.26 7.07 ± 0.99
〈0.15, 137.5, 5〉 7.66 ± 1.27 6.79 ± 1.30 7.55 ± 1.15 7.90 ± 1.16
〈0.15, 137.5, 3〉 10.97 ± 1.56 10.62 ± 1.88 10.51 ± 1.34 10.74 ± 1.11
〈0.15, 262.5, 5〉 10.27 ± 1.25 8.85 ± 1.04 9.89 ± 1.11 10.91 ± 1.03
〈0.15, 262.5, 3〉 13.76 ± 1.99 13.10 ± 2.15 13.90 ± 1.75 14.81 ± 1.67

shown in Table 5, where each entry µ ± σ is the mean (µ) and standard deviation (σ)
of the MWT values generated by the best rule after being applied to 30 independent
problem instances generated from the simulation configuration.

The best rules from the machine breakdown GP approaches show greater difference
in the performance to the best rule from the benchmark GP approach. The best ma-
chine breakdown GP rules are significantly better than the best benchmark GP rule for
certain simulation configurations, e.g., all three machine breakdown GP rules perform
better than the GP rule for the 〈0.15, 262.5, 3〉simulation configuration. Therefore, it is
likely for GP approaches with the machine breakdown terminals to evolve high quality
individual rules than the benchmark GP approach.

5.2 Rule Analysis

The evolved machine breakdown GP rules are analysed further by carrying out a qual-
itative analysis based on the structures of the evolved rules. First, the best rules are
simplified to remove any redundant branches (e.g. if an if will only return the “if”
sub branch, then the if operator is replaced with the “if” branch) before analysing the
structures of the rules. The simplified best rules for GP-Aug, GP-WT, and GP-RTR are
shown in Fig. 1a, 1b, and 1c respectively.

An important observation from the best rules evolved by GP-WT and GP-RTR is
the lack of machine breakdown terminals that make up the best rules. The best rule from

13



*

Max *

- * / -

* MBWINQ DD /

DD W * RM

/ -

DD MBPT - /

DD DD DD MBPT

DD MBPT - -

- - RM DD

- - RM DD

DD * RM DD

RT MBPT

(a) Best GP-Aug rule

*

* RJ

* *

+ / * *

- Min DD PT

/ RM RJ DD

RM +

RO W

W DD / *

DD PT * /

W DD DD PT

(b) Best GP-WT rule

*

* *

Max * * Max

* DD / /

* *

DD * DD *

- /

DD NNQ W PT

Max -

RJ SL DD NNQ

W RT + PT

PT DD

Max + * +

PT Max + +

RJ SL DD + - -

DD -

PT RM

DD NNQ PT RM

W / / -

DD PT DD PT DD *

RM RTR

(c) Best GP-RTR rule

Fig. 1: The structures of the best rules found by the GP approaches.

GP-WT has no occurrence of the WT terminal that is incorporated into the terminal set,
and the best rule from GP-RTR has one occurrence of the RTR terminal. Therefore,
it may be the case that the machine breakdown terminals do not directly contribute
towards the qualities of the final evolved rules. Instead, the machine breakdown ter-
minals may facilitate the evolution of good GP rules, and are discarded from the best
GP individuals near the end of the GP process. This may explain the lack of machine
breakdown terminals in best GP-WT and GP-RTR rules, but why the best rules gener-
ally perform better than the best benchmark rule In addition, it may also explain why
GP-WT and GP-RTR rules also perform slightly better than the benchmark GP rules.

For the best rules from the GP approaches, the method in which the non-machine
breakdown related terminals are combined may also be a factor in the effectiveness of
the rules. These include the frequent occurrence of important terminals such as the job’s
weights and processing time in the best evolved rules. Intuitively, important jobs with
short processing time should be prioritised out of the jobs waiting at the available ma-
chine. However, in all three machine breakdown GP rules (and the best benchmark GP
rule), there are many segments of the tree that form DD/PT, which indicates that the
best rules prioritise jobs with high due date and low processing time. This is contrary
to the expectation that jobs with low due date (i.e. jobs that are more urgent) should
be prioritised first. A possible explanation is that the due date terminal is time variant,

14



i.e., expected due dates of jobs steady increases with the duration of the simulation.
On the other hand, the processing time terminal is time invariant, i.e., the expected
processing times of jobs remains relatively the same over the whole duration of the
simulation. Therefore, the relative differences in the due date between an urgent job
and a non-urgent job waiting on a machine late in the simulation may not be as big
as the differences in their processing time, due to the large due date values of both the
urgent and non-urgent jobs. This may result in the due date of a job for long simulations
being used as an arbitrary large value that can be combined with the processing time
terminal using the protected / operator to form a composite that prioritises short pro-
cessing times. Further experiments can be carried out to determine whether the same
phenomenon occurs by replacing the processing time terminal with 1/PT terminal in
future GP approaches.

6 Conclusions and Future Work

This paper is a very first piece of work that develops new machine breakdown GP ter-
minals to improve the qualities of GP evolved rules for a DJSS-MB. The first set of
GP terminals (called “augmented terminals”) replace existing processing time related
terminals (PT, NPT and WINQ) with equivalent terminals that take potential machine
breakdown into account. The second set of GP approaches (called “reactive terminals”)
add new terminals (RTR and WT) that gives information on current state of the shop
floor. The machine breakdown GP approach does not evolve significantly better rules
overall, but the best rules evolved by the machine breakdown GP significantly outper-
form the best rule evolved by the benchmark GP. The analysis shows very interesting
results and insights, where the machine breakdown terminals appear infrequently in the
best rules for GP-WT and GP-RTR. Hypotheses have been raised to explain why this is
the case, and further work will be needed in this direction. We hope that this work can
attract more people to start their work in this direction in the near future.

For the future work, further analysis based on the behaviours of the evolved rules
will be carried out. Analysis of evolved rule behaviours in JSS problems have been car-
ried out in the literature [17, 18], and further investigation into the behaviours of rules
evolved for DJSS-MB may allow better machine breakdown specific approaches to be
developed. In addition, the relation between the utilisation rate of job shop schedul-
ing problems and the machine breakdown level will be explored further by analysing
rule behaviours in different shop environments. For example, a rule evolved for shop
with low utilisation rate and high machine breakdown will be compared against a rule
evolved for shop with high utilisation rate and low machine breakdown. This relation
may help us develop further insight into machine breakdowns and how the properties
of the shop changes with such disruptions.

References

1. Potts, C.N., Strusevich, V.A.: Fifty years of scheduling: a survey of milestones. Journal of
the Operational Research Society 60(1) (2009) S41–S68

15



2. Ouelhadj, D., Petrovic, S.: A survey of dynamic scheduling in manufacturing systems. Jour-
nal of Scheduling 12(4) (2009) 417–431

3. Hildebrandt, T., Heger, J., Scholz-Reiter, B.: Towards improved dispatching rules for com-
plex shop floor scenarios: A genetic programming approach. In: Proceedings of Genetic and
Evolutionary Computation Conference (GECCO 2010), New York, NY, USA, ACM (2010)
257–264

4. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: A computational study of representations
in genetic programming to evolve dispatching rules for the job shop scheduling problem.
IEEE Transactions on Evolutionary Computation 17(5) (2013) 621–639

5. Branke, J., Nguyen, S., Pickardt, C.W., Zhang, M.: Automated design of production schedul-
ing heuristics: A review. IEEE Transactions on Evolutionary Computation 20(1) (2016)
110–124

6. Nguyen, S., Mei, Y., Ma, H., Chen, A., Zhang, M.: Evolutionary scheduling and combina-
torial optimisation: Applications, challenges, and future directions. In: Proceedings of IEEE
Congress on Evolutionary Computation (CEC 2016). (2016) 3053–3060

7. Hunt, R., Johnston, M., Zhang, M.: Evolving “less-myopic” scheduling rules for dynamic
job shop scheduling with genetic programming. In: Proceedings of Genetic and Evolutionary
Computation Conference (GECCO 2014), New York, NY, USA, ACM (2014) 927–934

8. Yin, W.J., Liu, M., Wu, C.: Learning single-machine scheduling heuristics subject to machine
breakdowns with genetic programming. In: CEC ’03: Proceedings of IEEE Congress on
Evolutionary Computation. (2003) 1050–1055

9. Holthaus, O.: Scheduling in job shops with machine breakdowns: an experimental study.
Computers & Industrial Engineering 36(1) (1999) 137–162

10. Park, J., Mei, Y., Chen, A., Zhang, M.: Investigating the generality of genetic programming
based hyper-heuristic approach to dynamic job shop scheduling with machine breakdown.
In: Proceedings of the 2017 Australasian Conference on Artificial Life and Computational
Intelligence, Cham, Springer International Publishing (2017) 301–313 (to appear).

11. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. 4 edn. SpringerUS (2012)
12. Geiger, C.D., Uzsoy, R., Aytu, H.: Rapid modeling and discovery of priority dispatching

rules: An autonomous learning approach. Journal of Scheduling 9(1) (2006) 7–34
13. Nguyen, S., Mei, Y., Zhang, M.: Genetic programming for production scheduling: a survey

with a unified framework. Complex & Intelligent Systems 3(1) (2017) 41–66
14. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural

Selection. MIT Press (1992)
15. Mei, Y., Zhang, M., Nguyen, S.: Feature selection in evolving job shop dispatching rules with

genetic programming. In: Proceedings of the 2016 Conference on Genetic and Evolutionary
Computation. (2016) 365–372

16. Vepsalainen, A.P.J., Morton, T.E.: Priority rules for job shops with weighted tardiness costs.
Management Science 33(8) (1987) 1035–1047

17. Hildebrandt, T., Branke, J.: On using surrogates with genetic programming. Evolutionary
Computation 23(3) (2015) 343–367

18. Hart, E., Sim, K.: A hyper-heuristic ensemble method for static job-shop scheduling. Evo-
lutionary Computation 24(4) (2016) 609–635

16


