
Evolving Time-Invariant Dispatching Rules in
Job Shop Scheduling with Genetic Programming

No Author Given

No Institute Given

Abstract. Genetic Programming (GP) has achieved success in evolv-
ing dispatching rules for job shop scheduling problems, particularly in
dynamic environment. However, there is still great potential to improv-
ing the performance of GP. One challenge that is yet to be addressed
is the huge search space. In this paper, we propose a simple yet effec-
tive approach to improve the effectiveness and efficiency of GP. The new
approach is based on a newly defined time-invariance property of dis-
patching rules, which is derived from the idea of translational invariance
from machine learning. Then, we develop a new terminal selection scheme
to guarantee the time-invariance throughout the GP process. The exper-
imental studies show that by considering the time-invariance, GP can
achieve much better rules in a much shorter time.

1 Introduction

Job Shop Scheduling (JSS) [20] is an important optimisation problem with a
wide range of real-world applications in domains such as manufacturing [3, 13],
project scheduling [24] and cloud computing. Given a set of machines and jobs,
JSS is to process the jobs with the machines subject to certain constraints (e.g.
each job must follow a specific routing among the machines, and each machine
can process only one job at a time) and optimise some criteria such as makespan,
flowtime and tardiness.

JSS can be either static or dynamic. In static JSS, all the jobs are available
at the beginning of the scheduling horizon, and all the information is known
in advance. In dynamic JSS, unpredicted job arrivals can occur in real time,
and can affect the subsequent scheduling decisions. In this study, we focus on
dynamic JSS, since it is closer to reality and more challenging than static JSS.

Dispatching rules (DRs) are promising decision making heuristics for solv-
ing dynamic JSS due to their low complexity, scalability and flexibility. Briefly
speaking, a DR is a priority function of the job shop attributes such as the
operation processing time and job due date. In each decision situation (e.g. a
machine becomes idle and its queue is not empty), the DR is used to calculate
the priority for each job/operation waiting in the queue, and the one with the
best priority is selected to be processed next.

Recently, automatically designing/evolving DRs using Genetic Programming
(GP) has achieved some success [2]. The DRs evolved by GP have shown to be
much more effective than the DRs designed by human experts. However, a major

challenge for evolving DRs with GP is the huge search space caused by the large
number of possible combinations involving the function and terminal sets. It
is highly desired to develop intelligent guidances for the GP search process to
achieve better effectiveness and efficiency.

1.1 Goals

In this paper, we propose a new simple yet effective method to improve the
effectiveness of GP. The proposed method is based on a newly defined property
called time-invariance. A DR is time-invariant if it generates the same schedule
for the same JSS pattern (defined as a time window in the scheduling horizon,
details in Section 3) regardless of when such pattern occurs. By restricting the
search to only the time-invariant DRs, we expect to reduce the search space
and improve the efficiency of the search. The goal of this paper is to investigate
the effectiveness of considering time-invariance in GP. Specifically, we have the
following objectives:

– Formally define the concept of time-invariance;
– Show that GP may generate DRs that are not time-invariant;
– Develop a new selection scheme of terminals so that GP always generates

time-invariant DRs;
– Compare the resultant time-invariance-aware GP with the baseline GP to

verify the proposed method.

1.2 Organisation

The rest of the paper is organised as follows: Section 2 gives the background
introduction. Then, the concept of time-invariance is defined in Section 3. The
new selection scheme of terminal set is developed in Section 4. Experimental
studies are carried out in Section 5. Finally, Section 6 gives the conclusions and
future work.

2 Background

2.1 Job Shop Scheduling

In JSS, a set of jobs J = {J1, . . . , Jn} and machines M = {M1, . . . ,Mm} are
given. Each job Jj has an arrival time t0(Jj) and a due date ρ(Jj). It consists
of a sequence of operations [O1j → · · · → Oljj]. Each operation Oij must be
processed by machine πij ∈ M, and its processing time is δij . Thus, it can be
represented as a tuple Oij = 〈πij , δij〉. An operation cannot be processed before
the completion before its precedent operations. Each machine can process at
most one operation at a time. Then, JSS is to find a feasible schedule to optimise
some objective(s). The commonly considered JSS objectives include minimising
the makespan (Cmax), total flowtime (

∑
Cj), total weighted tardiness (

∑
wjTj),

number of tardy jobs, etc [20].

2.2 Automatic Design of Dispatching Rules

In dynamic JSS, unpredicted job arrivals occur in real time, and thus the schedul-
ing process can be seen as a discrete event simulation. Once a machine becomes
idle and its queue is not empty, a dispatching rule (DR) [1] is used to prioritise
the operations waiting in the queue, and the most prior operation is processed
next. For example, the Shortest Processing Time (SPT) rule selects the operation
with the shortest processing time to be processed next.

So far, there have been a large number of DRs designed by human experts
(e.g. [23, 8, 11, 21]), by considering a variety of job shop attributes such as op-
eration processing time, job due date, work remaining and slack. However, the
existing manually designed DRs are normally not effective enough, and restricted
to the particular job shop scenario they are designed for.

Genetic Programming (GP) has been demonstrated to be powerful for auto-
matically designing/evolving DRs in job shop scheduling. So far, there have been
extensive studies [6, 10, 15, 7, 19, 9]) in this direction and successfully achieved
much better results than the previously man-made rules. A comprehensive re-
view can be found in [2].

For evolving DRs using GP, a major challenge is how to search effectively and
efficiently in the huge search space. For example, in the conventional tree-based
GP, an individual is represented as a GP tree. Then, the size of the search space
depends on the maximal tree depth/size, the function set and the terminal set.
The performance of GP can be dramatically improved by incorporating domain
knowledge about job shop scheduling. Several works have been done to improve
the search efficiency from different perspectives. For example, Nguyen et al. [15]
investigated different representations and proposed a grammar-based represen-
tation to constrain the search space. Mei et al. [14] proposed to identify a subset
of relevant features and remove the other redundant features from the terminal
set to reduce the search space. They demonstrated that the more compact termi-
nal set can lead to significantly better rules. Riley et al. [22] proposed a similar
terminal selection idea. Durasević et al. [4] developed a dimensionally aware
GP that considers the compatibility between the dimensions (e.g. time, weight,
counting number) of the terminals and design initialisation and evolutionary op-
erators in such a way that no semantically incorrect rule (e.g. adding time to
weight) is generated. This way, the search is focused on only the semantically
correct rules.

In this paper, we investigate a new way of incorporating domain knowledge
by borrowing the idea of invariant features in machine learning.

3 Time-Invariant Dispatching Rule

Invariance is an important property that has been extensively studied in machine
learning, particularly classification (e.g. [18]). Using invariant features tends to
improve the generalisability and robustness of the classifier.

Evolving DRs using GP is similar to the training process of a classifier.
In the GP process, the fitness of a DR is evaluated on a set of training JSS

instances/simulations. By providing a sufficient number of diversely distributed
decision situations [5] in the training set, the learned DRs can make proper
decisions for the decision situations in both the training instances and the unseen
test instances.

As introduced in [5], a decision situation is represented as a feature table,
where each row stands for an operation in the queue, and each column indicates a
feature that may be considered by the DR. Therefore, how to select the features
in the decision situation is an important issue. If there are too few features,
some important information may be missed. If there are too many features, the
limited training set may not be able to cover all the possible feature values, and
the evolved DRs may not generalise well on the unseen test set which can be
quite different from the training set. To achieve a good tradeoff between the loss
of information and generalisation, we define a new property of time-invariance.

It is natural to assume that JSS instances contain some key patterns that are
invariant under translation, i.e. shift on the time horizon. Here, a JSS pattern is
defined as a time window of the entire scheduling horizon, including the initial
job shop state (next idle time of each machine and the uncompleted jobs) when
the time window starts and the new job arrivals during the time window.

Definition 1 (JSS pattern). A JSS pattern for a window [t1, t2] is defined
as a tuple ϑ[t1,t2] = 〈tidleϑ ,J init

ϑ ,J new
ϑ 〉, where tidleϑ is the vector of the next idle

time of the machines at t1, J init
ϑ is the set of uncompleted jobs, and J new

ϑ is a
sequence of new job arrivals.

An example of a JSS pattern ϑ[0,8] is given in Table 1 (top half). In this pattern,
the two machines are both idle at time 0, and there is no uncompleted job. During
the time window [0, 8], there are two new job arrivals. The first job arrives at
time 0 with a due date of 18, and the second arrives at time 2 with a due date of
20. Both jobs have two operations, as shown in the table. The job and operation
ids are ignored.

Table 1. An example of a JSS pattern ϑ[0,8] and the shifted pattern h(ϑ[0,8], 10). The
pattern contains two jobs, each with two operations.

J new

tidle J init t0 ρ sequence of operations

ϑ[0,8] (0, 0) ∅ 0 18 [〈M1, 2〉 → 〈M2, 4〉]
2 20 [〈M2, 2〉 → 〈M1, 4〉]

h(ϑ[0,8], 10) (10,10) ∅ 10 28 [〈M1, 2〉 → 〈M2, 4〉]
12 30 [〈M2, 2〉 → 〈M1, 4〉]

Obviously, a decision situation ϑdst = ϑ[t,t] is a special instantaneous JSS pat-
tern. Then, we define the time-shift transformation for JSS patterns as follows.

Definition 2 (Time-shift transformation for JSS patterns). Given a JSS
pattern ϑ and a shift value ∆t, the time-shift transformation h(·) generates a
new pattern h(ϑ,∆t) by increasing the next idle times of the machines, and

the arrival times and due dates of all the jobs by ∆t, i.e. tidleϑ → tidleϑ + ∆t,
t0(J)→ t0(J) +∆t, ρ(J)→ ρ(J) +∆t, ∀J ∈ J init

ϑ ∪ J new
ϑ .

Table 1 gives an example of a shifted pattern h(ϑ[0,8], 10) at the bottom. The
changed parts are highlighted in bold.

Two patterns ϑ1 and ϑ2 are said to be equivalent under time-shift if there
exists a shift value ∆t, so that ϑ1 = h(ϑ2, ∆t).

By applying a DR to a pattern, the output is a schedule, which can be repre-
sented as sequences of operations, each for a machine. For example, a schedule
Φ (shown in Fig. 1) for the pattern ϑ given in Table 1 can be represented as
follows:

Φ =

[
M1 : O11 → O22

M2 : O12 → O21

]
(1)

where Oij stands for the ith operation of the job in the jth row in the pattern.
Note that the starting times of the operations are ignored. Since no delay is
allowed, each operation will start as soon as it becomes ready (all its precedent
operations in the same job and the same machine have been completed, and the
machine is idle).

Fig. 1. A schedule for the JSS instance ϑ given in Table 1.

Then, the time-invariance property for DRs is defined as follows.

Definition 3 (Time-invariant dispatching rule). A rule Υ is time-invariant
if its generated schedule is invariant under the time-shift transformation, i.e.
Φ(Υ, ϑ) = Φ(Υ, g(ϑ,∆t)),∀ϑ,∆t ∈ R.

For example, the SPT (shortest processing time) rule is time-invariant, as its
decision making does not dependent on time.

Time-invariant DRs have the following promising properties.

– Time-invariant DRs generate the same schedule for the patterns that are
equivalent under time-shift. Thus, they tend to show repetitive behaviours
throughout the simulation horizon, which are also likely to generalise to the
same patterns occur in the unseen test instances no matter when the patterns
occur. Therefore, time-invariant DRs tend to have better generalisability.

– Time-invariant DRs are good at dealing with periodic job arrivals, e.g. the
same order arrivals for weekly scheduling periods. In this case, time-invariant
DRs generate the same schedule for each period (equivalent patterns under
time-shift) without explicitly splitting the scheduling horizon into periods.
This is particularly useful when the periodic pattern is not obvious.

3.1 An Example: Time-Invariance v.s. Time-Dependence

In a JSS instance, the same pattern may occur at different times. An example of
a JSS instance is given in Table 2. When applying the SPT rule to this instance,
the schedule for the first 6 jobs is shown in Fig. 2. Obviously, the two patterns
ϑ[0,8] and ϑ[16,24] (described in Table 3) are equivalent under time-shift. It can
be seen that ϑ[16,24] = h(ϑ[0,8], 16). As a result, the time-invariant SPT rule
generates the same schedule in the two time windows.

Table 2. An example of a JSS instance.

j t0(Jj) ρ(Jj) sequence of operations

1 0 18 [〈M1, 2〉 → 〈M2, 4〉]
2 2 20 [〈M2, 2〉 → 〈M1, 4〉]
3 9 21 [〈M1, 2〉 → 〈M2, 2〉]
4 10 28 [〈M2, 4〉 → 〈M1, 2〉]
5 16 34 [〈M1, 2〉 → 〈M2, 4〉]
6 18 36 [〈M2, 2〉 → 〈M1, 4〉]

. . .

Fig. 2. A schedule obtained by the SPT rule for the JSS instance given in Table 2.

Table 3. The patterns occurring in time windows [0, 8] and [16, 24] of the instance
shown in Table 2.

J new

Pattern tidle J init t0 ρ sequence of operations

ϑ[0,8] (0, 0) ∅ 0 18 [〈M1, 2〉 → 〈M2, 4〉]
2 20 [〈M2, 2〉 → 〈M1, 4〉]

ϑ[16,24] (16, 16) ∅ 16 34 [〈M1, 2〉 → 〈M2, 4〉]
18 36 [〈M2, 2〉 → 〈M1, 4〉]

However, GP cannot guarantee to always generate time-invariant DRs. For
example, GP may generate a rule PT × (DD/t − PT) during the evolutionary
process. To show that the above rule is not time-invariant (or time-dependent),
we examine its behaviour in the two decision situations at time 2 and time 18.
In the former decision situation, O12 and O21 are waiting in the queue of M2.
In the latter one, O16 and O25 are waiting in the queue of M2.

Decision situation 1. priority(O12) = 2× (20/2− 2) = 16,
priority(O21) = 4× (18/2− 4) = 20, select O12;

Decision situation 2. priority(O16) = 2× (36/18− 2) = 0,
priority(O25) = 4× (34/18− 4) = −8.44, select O25.

As a result, the schedule obtained by the rule PT × (DD/t − PT) is shown in
Fig. 3. It can be seen that although the patterns ϑ[0,8] and ϑ[16,24] are equivalent
under time-shift, i.e. ϑ[16,24] = h(ϑ[0,8], 16), the rule PT×(DD/t−PT) generates
different schedules in the two time windows.

Fig. 3. A schedule obtained by the rule PT× (DD/t−PT) for the JSS instance given
in Table 2. It generates different schedules

3.2 Relationship Between Existing Rule Classifications

In [20], the DRs are classified into static and dynamic rules, or local and global
rules. Static rules are time-independent, i.e. the priority values do not depend on
time. In dynamic rules, the priority of jobs/operations change over time. Local
rules only uses the local information pertaining to either the queue where the
job is waiting or to the machine where the job is queued. Global rules may use
information of other machines such as the work in the next queue.

The classification of time-invariant and time-dependent rules is different from
both rule classifications in the following aspects.

– Static rules are time-invariant since they make time-independent decisions.
Some dynamic rules can be time-invariant as well. For example, the dynamic
minimum slack rule SL = max{DD−WKR−t, 0} (WKR is the work remain-
ing) is time-invariant, since SL do not change under the time-shift transfor-
mation. For any operation O and decision situation ϑds, SL(O|h(ϑds, ∆t)) =
max{DD(O|ϑds) +∆t−WKR(O|ϑds)− (t+∆t), 0} = SL(O|ϑds).

– Both local and global rules can be time-invariant. For example, the global
rule PT+WINQ is time-invariant, since both PT and WINQ do not depend
on time.

4 Selection of Terminals for Time-Invariance

In Section 3.1, we have shown that GP cannot guarantee to evolve time-invariant
DRs. In this section, we propose a new selection scheme for terminals so that
GP can always generate time-invariant DRs. Recalling that a decision situation

is special instantaneous JSS pattern. Therefore, the time-shift transformation of
decision situations is the same as that of JSS patterns.

Then, we define a new concept called time-invariant feature as follows.

Definition 4 (Time-invariant feature). A feature α is time-invariant if given
any decision situation ϑds and any operation O waiting in the queue, the value
a(O) is invariant under the time-shift transformation on ϑds. That is,

α(O|ϑds) = α(O|h(ϑds, ∆t)),∀∆t ∈ R, (2)

where α(O|ϑds) is the value of feature α of operation O in ϑds.

Based on the definition of the time-shift transformation (Definition 2), it is
obvious that all the features that are independent of the idle time of the machine,
the arrival time and due date of the jobs will be time-invariant. In addition, as a
feature, the current time is obviously not time-invariant since its value changes
along with the time-shift transformation.

Theorem 1. If GP uses a terminal set consisting of only time-invariant fea-
tures, then GP always generates time-invariant DRs.

Proof. Given a terminal set T , any DR Υ generated by GP is a priority function
f(T (·)) of the terminals. For any decision situation ϑds and operation O, the
priority value of O is f(T (O|ϑds)). Since all the terminals are time-invariant
features, we have

α(O|ϑds) = α(O|h(ϑds, ∆t)),∀α ∈ T , ∆t ∈ R.

Therefore, f(T (O|ϑds)) = f(T (O|h(ϑds, ∆t)),∀∆t ∈ R. That is, the priority
values calculated by Υ do not change under the time-shift transformation. In
other words, Υ is a time-invariant DR.

Based on Theorem 1, we can guarantee the time-invariance of the GP-evolved
rules simply by only including time-invariant features in the terminal set. To
this end, we examined the time-invariance of the commonly used features in
literature [14, 17], using the definition of the features and Definitions 2 and 4.
If a feature is not time-invariant, then it is either removed from the terminal
set, or replaced by a time-invariant counterpart. The detail is given in Table 4.
It is easy to ensure the time-invariance of the time-invariant counterparts. For
example, for any decision situation ϑds and operation O, TIS(O|h(ϑds, ∆t)) =
(t+∆t)− (AT(O|ϑds) +∆t) = TIS(O|ϑds).

5 Experimental Studies

To evaluate the effectiveness of considering time-invariance, we compare between
the baseline GP (BaselinGP) with the original terminals (the left part of Table
4) and the time-invariant GP (TivGP) with the time-invariant terminals (right
part of Table 4).

Table 4. The terminals used in [14] and [17], and the time-invariant counterpart.

Original Time-invariant counterpart

Notation Description Notation Description

t Current time - -
NIQ Number of operations In Queue same same
WIQ Work In Queue same same
MRT Machine Ready Time MWT (t-MRT) Machine Waiting Time
PT Processing Time same same
NPT Next Processing Time same same
ORT Operation Ready Time OWT (t-ORT) Operation Waiting Time
NRT Next Machine Ready Time NWT (NRT-t) Next Machine Waiting Time
WKR Work Remaining same same
NOR Number of Operations Remaining same same
WINQ Work In Next Queue. same same
NINQ Number of operations In Next Queue same same
FDD Flow Due Date rFDD (FDD-t) Relative FDD
DD Due Date rDD (DD-t) Relative DD
W Weight same same
AT Arrival Time TIS (t-AT) Time In System
SL Slack same same

In the experiments, we consider three objectives: (1) the maximal tardiness
(Tmax), (2) the mean tardiness (Tmean) and (3) the total weighted tardiness
(TWT). For each objective, we consider utilisation levels of 0.85 and 0.95. There-
fore, the experiments consist of 3×2 = 6 different job shop scenarios. The config-
uration parameters of the simulation model are given in Table 5. This simulation
configuration has been used in previous studies [16, 5].

Table 5. The Dynamic JSS simulation system configuration.

Parameter Value

#machines 10
#jobs 5000

#warmup jobs 1000
#operations per job Random from 2 to 10
Job arrival process Poisson process

Utilisation level {0.85, 0.95}
Due date 4×total processing time

Eligible machine Uniform discrete distribution
Processing time Uniform discrete distribution between 1 and 99

For each scenario, we use the standard GP process to train DRs. The param-
eter setting of the GP is given in Table 6. Note that the only difference between
BaselineGP and TivGP is the terminal set. This way, one can analyse how the
use of time-invariant terminals affects the performance of GP.

During the training process, an individual is evaluated using a randomly gen-
erated simulation. To improve generalisation, the random seed for generating the
training simulation changes per generation. In addition, the fitness is normalised

Table 6. The parameter setting of GP.

Parameter Value

Terminal set The original ones in Table 4 for BaselineGP
The time-invariant ones in Table 4 for TivGP

Function set {+,−, ∗, /,min,max}
Population size 1024
Maximal depth 8
Crossover rate 80%
Mutation rate 15%

Reproduction rate 5%
Parent selection Tournament selection with size 7

Elitism 10 best individuals
Number of generations 51

by the objective value of the reference rule. The reference rule is set to EDD,
ATC and WATC for Tmax, Tmean and TWT, respectively. Finally, the best
individual in the last generation is selected as the best individual of the GP run.

For testing, a test set of 50 simulation replications is randomly generated for
each scenario. The test fitness of a rule x is defined as the normalised total ob-
jective value over the test replications, i.e. Γ (x,Π, F) =

∑
π∈Π F (x,π)∑

π∈Π F (RefRule(Obj),π) ,

where F ∈ {Tmax,Tmean,TWT}.
In the experiments, both BaselineGP and TivGP were implemented in Java

using the ECJ library [12]. The experiments were run on desktops with Intel(R)
Core(TM) i7 CPU @3.60GHz. Both algorithms were run 30 times independently
for each scenario.

5.1 Results and Discussions

Fig. 4 shows the curves of the test fitness of the compared algorithms in 30
runs. The ribbon around each curve is the standard error of the mean. From the
figure, one can see that TivGP significantly outperformed BaselinGP in scenarios
〈Tmax, 0.85, 4〉, 〈Tmax, 0.95, 4〉 and 〈TWT, 0.95, 4〉. For the two scenarios with
objective Tmean, the two algorithms performed almost the same. TivGP was
defeated by BaselineGP in only the scenario 〈TWT, 0.85, 4〉. Overall, TivGP
performed much better than BaselineGP (3 wins, 2 draws and 1 lose) over the
6 tested scenarios.

From Fig. 4, it can also be seen that in general, the curves of the test fitness is
smoothly improving as the search continues. This indicates that it is reasonable
to simply select the best rule in the last generation as the best rule of the run.

In addition to the test fitness, we investigate the growth of the tree size
(number of nodes) of the best rules during the GP runs, which is shown in Fig.
5. From the figure, it is clear that TivGP led to significantly smaller tree sizes
than BaselineGP in most of the scenarios. This implies that using the time-

●
●

●
●

●

●

●●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●

●

●

●●

●●●●
●

●●

●

●

●●

●

●

●
●

●

●●

●●

●
●●

●●
●●●

●●
●●

●
●

●

●●
●●●●●●●●●●

●●●
●●●●●●●●●●●

●

●

●

●

●

●●

●
●●●

●●
●●

●●
●●●

●
●

●

●

●●
●●●

●
●●●●●

●●●●
●●●●●●●●●●●

●
●●

●
●

●

●

●●

●●

●●

●

●
●●

●
●

●
●●

●
●

●

●
●●

●

●
●●

●
●

●

●
●

●

●

●
●

●
●●

●●
●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●
●●

●●●
●●●●

●
●●●●●

●●●●
●●●

●

●
●●●●●●

●
●●●●

●

●

●

●

●
●

●

●

●●
●

●●●

●●
●

●●●●●
●●●●

●●●●●
●●●●●●

●

●●●●●●●●●
●●●

<Tmax, 0.85, 4> <Tmean, 0.85, 4> <TWT, 0.85, 4>

<Tmax, 0.95, 4> <Tmean, 0.95, 4> <TWT, 0.95, 4>

0.50

0.55

0.60

0.65

0.6

0.8

1.0

1.2

0.50

0.75

1.00

1.25

1.50

1.75

0.7

0.8

0.9

1.0

0.70

0.75

0.80

0.85

0.90

0.8

1.0

1.2

1.4

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Generation

Te
st

 F
itn

es
s

● BaselineGP TivGP

Fig. 4. The curves of the test fitness of the 30 runs of BaselineGP and TivGP.

invariant features in the terminal set can help evolving smaller (and possibly
simpler) rules.

In order to analyse the usefulness of the terminals in GP, we investigate the
growth of the number of unique terminals used in the GP tree over generations,
which is shown in Fig. 6. From the figure, one can clearly see that TivGP uses
significantly fewer unique terminals than BaselineGP. On average, the number
of unique terminals in TivGP is one or two smaller than that in BaselineGP.
This is partially because TivGP has a smaller terminal set than BaselineGP
(the terminal t is included in BaselineGP but not in TivGP). This shows that
the current time t can be safely removed from the terminal set, if all the other
terminals are time-invariant features.

Fig. 7 shows the generational running time of the compared algorithms. One
can clearly see that TivGP is much faster than BaselineGP in all the 6 scenar-
ios. Since the computational effort of fitness evaluation largely depends on the
tree size of the individuals, Fig. 7 indicates that the individuals in TivGP are
generally much smaller than the individuals in BaselineGP.

5.2 Further Analysis

Since the test fitness depends on both the training fitness and generalisation, it
is interesting to know the relationship between the training and test fitnesses to
show the generalisation of the rules. To this end, we show the scatter plot of the
training and test fitnesses of the best rules obtained by BaselineGP and TivGP
for all the scenarios in Fig. 8.

●

●

●
●

●

●●

●
●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●●
●

●

●●●

●

●

●●

●

●

●
●●

●●
●

●
●●

●

●
●●

●●●

●

●

●

●
●

●
●

●

●
●

●
●

●

●●●

●
●

●●
●●

●●●
●●●

●●
●

●

●

●

●●●
●●●●

●●
●

●

●

●

●

●

●●
●

●●
●

●

●●
●

●●

●●●
●

●

●

●●●●

●
●●●

●
●

●

●
●

●
●●

●
●

●●●●●
●●

●

●
●●●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●●●
●

●

●

●●

●

●

●

●

●●

●●
●

●
●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●●
●●

●●●
●

●
●●

●

●●

●

●●
●

●●
●

●

●
●●

●

●

●

●
●

●
●

●
●

●●
●

●
●

●
●

●●

●●
●

●

●
●●●

●●
●

●

●

●●
●

●
●

●
●

●
●

●●

●
●●●

●
●

●
●●●

●●
●

●
●●●

●
●

●
●

●

●
●

<Tmax, 0.85, 4> <Tmean, 0.85, 4> <TWT, 0.85, 4>

<Tmax, 0.95, 4> <Tmean, 0.95, 4> <TWT, 0.95, 4>

20

30

40

50

60

20

40

60

20

40

60

20

30

40

50

60

20

40

60

20

40

60

80

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Generation

Tr
ee

 s
iz

e

● BaselineGP TivGP

Fig. 5. The curves of the program size of the 30 runs of BaselineGP and TivGP.

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●
●●

●
●●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●●

●●●●
●

●
●●

●
●

●●
●

●●

●
●

●●●
●

●
●

●

●

●

●

●

●●
●

●
●

●●●●●
●

●
●

●
●●

●
●

●
●

●
●

●
●●●

●●

●

●
●

●
●●

●
●●

●

●

●

●
●

●

●
●●●●

●

●
●

●

●
●

●●
●

●

●●●

●

●

●●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●●

●

●

●●

●

●
●●

●

●●

●●●●
●

●
●

●●●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●●●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●●

●
●

●

●●
●

●●

●
●●

●●
●●●

●●●

●●
●●●

●●●
●

●●
●

●

●
●

●●
●

●

●
●

<Tmax, 0.85, 4> <Tmean, 0.85, 4> <TWT, 0.85, 4>

<Tmax, 0.95, 4> <Tmean, 0.95, 4> <TWT, 0.95, 4>

6

8

10

7

9

11

5

7

9

11

6

8

10

6

8

10

12

4

6

8

10

12

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Generation

N
o.

 U
ni

qu
e

Te
rm

in
al

s

● BaselineGP TivGP

Fig. 6. The curves of the number of unique terminals of the 30 runs of BaselineGP
and TivGP.

From the figure, one can see that the two algorithms have similar gener-
alisations in all the scenarios. Briefly speaking, the training and test fitnesses

●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●

●
●

●●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●

●●●●●●●●●●●●●●●●●●
●●●

●●●
●●

●
●

●
●●

●
●

●●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●

●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●
●●●

●●
●●●●●●

●●●
●●●●

●
●●●

●
●●●●

●
●●●

●
●

●
●

●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●

●
●

●●
●

●
●●

●●
●

●
●

●
●

●
●

●
●●

●
●

●

●●●●●●●●●●
●●●

●●
●●●●●●

●●●
●●

●
●

●
●●

●
●

●●●●
●

●
●

●
●

●
●

●
●●

●
●

●

<Tmax, 0.85, 4> <Tmean, 0.85, 4> <TWT, 0.85, 4>

<Tmax, 0.95, 4> <Tmean, 0.95, 4> <TWT, 0.95, 4>

0

500

1000

1500

2000

2500

0

1000

2000

0

500

1000

1500

2000

0

2000

4000

6000

0

1000

2000

3000

4000

5000

0

1000

2000

3000

4000

5000

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Generation

R
un

 T
im

e
(s

ec
on

d)

● BaselineGP TivGP

Fig. 7. The generational running time of the 30 runs of BaselineGP and TivGP.

are strongly correlated. If a rule has a better training fitness, then it is very
likely to have a better test fitness, no matter which algorithm it is from. For
the three scenarios where TivGP outperformed BaselineGP (〈Tmax, 0.85, 4〉,
〈Tmax, 0.95, 4〉 and 〈TWT, 0.95, 4〉), the rules obtained by TivGP tend to have
both better training and test fitnesses (more towards the bottom-left corner). In
the scenario 〈Tmean, 0.85, 4〉, the two algorithms have similar distributions. In
the scenario 〈Tmax, 0.95, 4〉, TivGP tends to have better generalisation (better
test fitness for the same training fitness), but suffered from the two outliers in the
top-right corner. In the scenario 〈TWT, 0.85, 4〉 where TivGP was outperformed
by BaselineGP, the two algorithms seem to have very similar train-vs-test dis-
tributions. The only difference is that BaselineGP has more points towards the
bottom-left corner (around the region (0.42, 0.45)).

5.3 Time-Invariance of the Evolved Rules

Obviously, all the rules evolved by TivGP are time-invariant. Then, we are in-
terested in examining the time-invariance of the rules evolved by BaselineGP.
To this end, we conduct a case study on the best rule obtained by BaselineGP
for the scenario 〈TWT, 0.85, 4〉, where BaselineGP showed better performance
than TivGP. The rule is shown below:

((B1 +B2)×B3 + WIQ)×B4 ×min{PT,MRT}/B5,

where B1 = max{NINQ,SL} ×W/(WKR−NIQ),

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

● ●
●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

<Tmax, 0.85, 4> <Tmean, 0.85, 4> <TWT, 0.85, 4>

<Tmax, 0.95, 4> <Tmean, 0.95, 4> <TWT, 0.95, 4>

0.475

0.500

0.525

0.550

0.5

0.6

0.7

0.5

0.6

0.7

0.8

0.70

0.75

0.80

0.85

0.64

0.68

0.72

0.76

0.75

0.80

0.85

0.90

0.40 0.45 0.50 0.40 0.45 0.50 0.55 0.60 0.65 0.4 0.5 0.6 0.7 0.8

0.650 0.675 0.700 0.725 0.750 0.775 0.675 0.700 0.725 0.70 0.75 0.80 0.85 0.90
TrainFitness

Te
st

F
itn

es
s

● BaselineGP TivGP

Fig. 8. The generational running time of the 30 runs of BaselineGP and TivGP.

B2 = max{NINQ,SL}+ NRT/PT,

B3 = (t/AT)×WINQ× PT/NRT,

B4 = max{(WKR−NIQ)/W,SL},
B5 = WKR− (WKR−NIQ)× PT/NRT.

The rule consists of four features that are not time-invariant, i.e. NRT, t, AT
and MRT. NRT occurs in the sub-trees NRT/PT and PT/NRT, which occur in
three places. t and AT occur together as a pattern t/AT. MRT occurs in only
one pattern min{PT,MRT}. Therefore, the rule is not time-invariant.

However, based on the feature definitions, we know that the values of these
features increase as the simulation continues, and thus tend to be large in most
time of the simulation. Therefore, we can transform the above rule into a time-
invariant rule as follows:

– Replace NRT with a large value (1000000 in this case);
– Replace t/AT with 1, which is the converged value when both t and AT

approach infinity.
– Replace min{PT,MRT} with PT, since PT is almost always smaller than

MRT.

After the transformation, we compare the test fitness of the resultant time-
invariant rule to that of the original rule, and found that their test fitnesses are
very close (0.476 versus 0.448).

We have examined several other rules evolved by BaselineGP, and found
that they are either time-invariant, or can be easily transformed to time-variant
rules with very close test fitnesses. This also validates the motivation of evolving
time-invariant rules.

In summary, we have the following findings from the experimental studies:

– By using the time-invariant features as terminals, TivGP outperformed the
BaselineGP counterpart in terms of test fitness, program size and efficiency.

– BaselineGP and TivGP have similar generalisability, and the test fitnesses
of the evolved rules are strongly correlated with their training fitnesses.

– Although the rules evolved by BaselineGP are not necessarily time-invariant,
they can be transformed into time-invariant rules with similar test perfor-
mances.

6 Conclusions and Future Work

In this paper, to improve the effectiveness and efficiency of GP to search in the
huge space, we proposed to consider only time-invariant DRs during the search
process. The concept of time-invariance is borrowed from the translational in-
variance in machine learning. To this end, we defined the concepts of JSS pattern,
which is a time window of the scheduling horizon, and the time-shift transfor-
mation for JSS patterns. To guarantee that GP always generates time-invariant
DRs, we proposed to select only the time-invariant features in the terminal set,
and the resultant GP is called the time-invariant GP (TivGP). The experimental
studies showed that TivGP can achieve DRs with significantly better test perfor-
mances and smaller sizes than the rules obtained by the baseline GP. TivGP also
has a faster convergence than the baseline GP. Furthermore, although the base-
line GP sometimes outperform TivGP, the resultant time-dependent DRs can
be transformed into time-invariant DRs with similar performance. This demon-
strates the efficacy of considering time-invariant DRs.

In the future, we will investigate more schemes that take the time-invariance
into account, such as developing new fitness functions and search operators for
GP.

References

1. J. H. Blackstone, D. T. Phillips, and G. L. Hogg. A state-of-the-art survey of
dispatching rules for manufacturing job shop operations. The International Journal
of Production Research, 20(1):27–45, 1982.

2. J. Branke, S. Nguyen, C. Pickardt, and M. Zhang. Automated design of production
scheduling heuristics: A review. IEEE Transactions on Evolutionary Computation,
20(1):110–124, 2016.

3. J. Ceberio, E. Irurozki, A. Mendiburu, and J. A. Lozano. A distance-based ranking
model estimation of distribution algorithm for the flowshop scheduling problem.
IEEE Transactions on Evolutionary Computation, 18(2):286–300, 2014.

4. M. Durasević, D. Jakobović, and K. Knežević. Adaptive scheduling on unrelated
machines with genetic programming. Applied Soft Computing, 48:419–430, 2016.

5. T. Hildebrandt and J. Branke. On using surrogates with genetic programming.
Evolutionary computation, 23(3):343–367, 2015.

6. T. Hildebrandt, J. Heger, and B. Scholz-Reiter. Towards improved dispatching
rules for complex shop floor scenarios: a genetic programming approach. In Pro-
ceedings of Genetic and Evolutionary Computation Conference, pages 257–264.
ACM, 2010.

7. N. Ho and J. Tay. Evolving dispatching rules for solving the flexible job-shop
problem. In IEEE Congress on Evolutionary Computation, volume 3, pages 2848–
2855. IEEE, 2005.

8. O. Holthaus and C. Rajendran. Efficient dispatching rules for scheduling in a job
shop. International Journal of Production Economics, 48(1):87–105, 1997.

9. R. Hunt, M. Johnston, and M. Zhang. Evolving less-myopic scheduling rules for
dynamic job shop scheduling with genetic programming. In Proceedings of the 2014
conference on Genetic and evolutionary computation, pages 927–934. ACM, 2014.

10. D. Jakobović and L. Budin. Dynamic scheduling with genetic programming. In
Genetic Programming, pages 73–84. Springer, 2006.

11. M. Jayamohan and C. Rajendran. New dispatching rules for shop scheduling: a
step forward. International Journal of Production Research, 38(3):563–586, 2000.

12. S. Luke et al. A java-based evolutionary computation research system. https:

//cs.gmu.edu/~eclab/projects/ecj/.
13. M. K. Marichelvam, T. Prabaharan, and X. S. Yang. A discrete firefly algorithm

for the multi-objective hybrid flowshop scheduling problems. IEEE transactions
on evolutionary computation, 18(2):301–305, 2014.

14. Y. Mei, M. Zhang, and S. Nyugen. Feature selection in evolving job shop dispatch-
ing rules with genetic programming. In Proceedings of Genetic and Evolutionary
Computation Conference, pages 365–372. ACM, 2016.

15. S. Nguyen, M. Zhang, M. Johnston, and K. Tan. A computational study of rep-
resentations in genetic programming to evolve dispatching rules for the job shop
scheduling problem. IEEE Transactions on Evolutionary Computation, 17(5):621–
639, 2013.

16. S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan. Dynamic multi-objective job
shop scheduling: A genetic programming approach. In Automated Scheduling and
Planning, pages 251–282. Springer, 2013.

17. S. Nguyen, M. Zhang, and K. C. Tan. Surrogate-assisted genetic programming with
simplified models for automated design of dispatching rules. IEEE Transactions
on Cybernetics, pages 1–15, DOI: 10.1109/TCYB.2016.2562674, 2016.

18. T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. IEEE Transactions on
pattern analysis and machine intelligence, 24(7):971–987, 2002.

19. C. Pickardt, T. Hildebrandt, J. Branke, J. Heger, and B. Scholz-Reiter. Evolution-
ary generation of dispatching rule sets for complex dynamic scheduling problems.
International Journal of Production Economics, 145(1):67–77, 2013.

20. M. L. Pinedo. Scheduling: theory, algorithms, and systems. Springer Science &
Business Media, 2012.

21. C. Rajendran and O. Holthaus. A comparative study of dispatching rules in
dynamic flowshops and jobshops. European Journal of Operational Research,
116(1):156–170, 1999.

22. M. Riley, Y. Mei, and M. Zhang. Feature selection in evolving job shop dispatching
rules with genetic programming. In IEEE Congress on Evolutionary Computation.
IEEE, 2016.

23. V. Sels, N. Gheysen, and M. Vanhoucke. A comparison of priority rules for the job
shop scheduling problem under different flow time-and tardiness-related objective
functions. International Journal of Production Research, 50(15):4255–4270, 2012.

24. J. Xiong, J. Liu, Y. Chen, and H. A. Abbass. A knowledge-based evolutionary mul-
tiobjective approach for stochastic extended resource investment project scheduling
problems. IEEE Transactions on Evolutionary Computation, 18(5):742–763, 2014.

