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Abstract. Recent research shows that incorporating semantic knowl-
edge into the genetic programming (GP) evolutionary process can im-
prove its performance. This work proposes an angle-aware mating scheme
for geometric semantic crossover in GP for symbolic regression. The
angle-awareness guides the crossover operating on parents which have a
large angle between their relative semantics to the target semantics. The
proposed idea of angle-awareness has been incorporated into one state-
of-the-art geometric crossover, the locally geometric semantic crossover.
The experimental results show that, compared with locally geometric
semantic crossover and the regular GP crossover, the locally geometric
crossover with angle-awareness not only has a significantly better learn-
ing performance but also has a notable generalisation gain on unseen test
data. Further analysis has been conducted to see the difference between
the angle distribution of crossovers with and without angle-awareness,
which confirms that the angle-awareness changes the original distribu-
tion of angles by decreasing the number of parents with zero degree while
increasing their counterparts with large angles, leading to better perfor-
mance.

1 Introduction

In recent years, semantic genetic programming (GP) [11, 18], which incorporates
the semantic knowledge in the evolutionary process to improve the efficacy of
search, attracts increasing attention and becomes a hot research topic in GP
[6]. One popular form of semantic methods, geometric semantic GP (GSGP),
has been proposed recently [12]. GSGP searches directly in the semantic space
of GP individuals. The geometric crossover and mutation operators generate
offspring that lies within the bounds defined by the semantics of the parent(s) in
the semantic space. The fitness landscape that these geometric operators explore
has a conic shape, which contains no local optimal and is easier to search. In
previous research, GSGP presents a notable learning gain over standard GP
[19,17]. For the generalisation improvement, GSGP shows some positive effect.
However, while the geometric mutation is remarked to be critical in bringing the
generalisation benefit, the geometric crossover is criticised to have a weak effect
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on promoting generalisation for some regression tasks [5]. One possible reason
is that of the target output on the test set is beyond the scope of the convex
combination of the parents for crossover [13] in the test semantic space. Another
possible reason is that crossover might operate on similar parents standing in
a compact volume of the semantic space, which leads to generating offspring
having duplicate semantics with their parents. In this case, the population has
difficulty to converge to the target output, no matter the target semantic is
in or out of the covered range. Thus, the offspring produced by the geometric
crossover is difficult to generalise well. Therefore, in this work, we are interested
in improving the geometric crossover by addressing this issue.

The overall goal of this work is to propose a new angle-aware mating scheme
to select for geometric semantic crossover to improve the generalisation of GP for
symbolic regression. An important property of the geometric semantic crossover
operator is that it generates offspring that stands in the segment defined by the
two parent points in the semantic space. Therefore, the quality of the offspring
is highly dependent on the positions of the two parents in the semantic space.
However, such impact of the parents on the effectiveness of geometric semantic
crossover has been overlooked. In this paper, we propose a new mating scheme
to geometric crossover to make it operats on parents that are not only good at
fitness but also have large angle in terms of their relative positions to the target
point in the semantic space. Our goal is to study the effect of the newly proposed
mating scheme to geometric crossover operator. Specific research objectives are
as follows:

— to investigate whether the geometric crossover with angle-awareness can im-
prove the learning performance of GSGP,

— to study whether the geometric crossover with angle-awareness can improve
the generalisation ability of GSGP, and

— to investigate how the geometric crossover with angle-awareness influences
the computational cost and the program size of the models evolved by GSGP.

2 Background

This section introduces geometric semantic GP in brief and reviews some state-
of-the-art related work on geometric crossovers.

2.1 Geometric Semantic GP

Before introducing geometric semantic GP, a formal concept of individual seman-
tics in GP needs to be given. A widely used definition of semantics in regression
domain is as follows: the semantics of a GP individual is a vector, the elements
of which are the outputs produced by the individual corresponding to the given
instances. Accordingly, the semantics of an individual can be interpreted as a
point in a n dimension semantic space, where n is the number of elements in the
vector [9, 11].
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Geometric semantic GP is a relatively new branch in semantic GP. It searches
directly in the semantic space, which is a notable difference from the other non-
direct semantic methods, such as [2] and [16]. Searching in the semantic space
is accomplished by its exact geometric semantic crossover and mutation. The
definition of the geometric semantic crossover (GSX) is given below [12]:

Definition 1. Geometric Semantic Crossover: Given two parent individuals py
and p2, a geometric semantic crossover is an operator that gemerates offspring
pi(i € (1,2)) having semantics s(p}) in the segment between the semantics of

their parents, i.c., [|s(pr), s(p2) || = [ls(p1), s(p) || + [ls(pf), s(p2)l

Another important concept related to geometric crossover is the convex hull.
It is a concept from geometry, which is the set of all convex combinations of a
set of points. In geometric semantic GP, the convex hull can be viewed as the
widest volume that the offspring generated by geometric crossover can cover.

Various geometric crossover operators [12,9] have been developed to satisfy
the semantic constraint in Definition 1 in different ways. Locally geometric se-
mantic crossover [9] (LGX) is a typical one with good performance.

2.2 Locally Geometric Semantic Crossover

Krawiec et al. [8] develop the locally geometric semantic crossover(LGX), which
attempts to produce offspring that satisfies the semantic constraint in Definition
(1) at the subtree level. A library L consisting of a set of small size trees needs to
be generated before applying the LGX. Trees in the library L have a maximum
depth limitation M, and generally, each tree has unique semantics. Then given
two parents p; and py, LGX tries to find their homologous subtree, which is
the largest structurally common subtree of the two parents. Two correspond-
ing crossover points are selected within the homologous subtree. Then the two
subtrees p.; and p.o that root in these two crossover points are replaced by a
tree p, selected from L. p,. is randomly selected from a number of K programs
which are the closest neighbour to the semantics of midpoint of p.; and p.s, i.e.,
S(p,) =~ w, where S(p) represents the semantics of p. The advan-
tage of LGX is that it can satisfy the semantic constraint by retrieving small
subtrees in the library but without bringing exponential growth in the size of
the offspring. The application shows that LGX brings notable improvement to
the performance of GP [9)].

2.3 Related Work

GSX performs a convex combination of the two parents. It generates offspring
that lies in the segment defined by the parent points in the semantic space.
Consequently, under Euclidean metric, the offspring can not be worse than the
worse parent.

Moraglio et al. [12] develop the exact geometric crossover which is a trans-
formations on the solution space that can satisfy the semantic constraint at the
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level of whole tree, i.e., Pyo = P1 - F;. + Py - (1 — F,.) where P; are parents for
crossover, F, is a random real functions that outputs values in the range of [0, 1].
Despite the potential success of exact geometric crossover, it is criticised by lead-
ing the size of offspring to an exponential growth. Vanneschi et al. [17] propose
an implementation of geometric operators to overcome the drawback of the un-
manageable size of offspring. They aim to obtain the semantic of the offspring
without generating the new generation in structure. The new implementation
makes GSX can be applied to real-world high-dimensional problems. However,
the evolved models are still hard to show and interpret.

During the evolutionary process if the target output is outside the convex
hull, then surely GSX is impossible to find the optimal solution. Oliveira et
al. [13] proposed a dispersion operator for GSX to address this issue. They
proposed a geometric dispersion operator to move individuals to less dense areas
around the target output in the semantic space. By spreading the population,
the new operator increases the probability that the convex hull of the population
will cover the target. Significant improvement is achieved on the learning and
generalisation performance on most of the examined datasets.

However, even if the convex hull of the population covers the target, GSX may
still fail and the population may still converge to a small volume far away from
the target if the parents of GSX are not properly selected. It is known that due
to the convexity of the squared Euclidean distance metric, the offspring cannot
be worse than both parents. However, at the level of the whole population, there
is still a high probability that this progress does not have much effect on guiding
the population toward the target output in the semantic space, especially when
a large proportion of crossovers perform on very similar parents in the semantic
space. In this work, we propose a new mating scheme to geometric semantic
crossover to prevent this trend and promote the exploration ability of the GSX.

3 Angle-aware Geometric Semantic Crossover (AGSX)

In this work, tree based GP is employed, and we propose a new angle-aware mat-
ing scheme for Geometric Semantic Crossover (AGSX). This section describes
the main idea, the detailed process, the characteristics of AGSX, and the fitness
function of the GP algorithm.

3.1 Main Idea

How the crossover points spread in the semantic space is critical to the perfor-
mance of GSGP. A better convergence to the target point can be achieved if
the convex combinations cover a larger volume when the convex hull is given.
AGSX should be applied to the parents that the target output is around the in-
termediate region of their semantics. Given that the semantics of the generated
offspring tend to lie in the segment of the semantics of the parents as well, AGSX
is expected to generate offspring that is close to the target output. To promote
the convex combinations to cover a larger volume, the two parents should have
a larger distance in the semantics space.
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The semantic distance between the parents can be used here, but it often
leads to a quick loss of semantic diversity in the population and then results
in a premature solution. Therefore, we utilise the angle between the relative
semantics of the parents to the target output to measure their distance in the
semantic space. Specifically, suppose the target output is T', and the semantics
of the two parents are S; and S5, the angle o between the relative semantics of
the two parents to the target output is defined as follows:

o = arccos < (1)

(SlT)'(SQT))
1S1 =T -[IS2: =T

Where (SlfT)(ngT) = Z?zl(sli*ti)'(SQi*ti) and HS*T” = Z;;l(si — ti)2.
1 stands for the ith dimension in the n—dimensional semantic space. s1;, S2;, and
t; are the values of Sy, So and T in the ith dimension, respectively.

Fig.1. AGSX in two Dimension Euclidean Semantic Space.

Fig.1 illustrates the mechanism of AGSX in a two-dimensional Euclidean
space, which can be scaled to any n-dimensional space. Each point represents
the semantics of one individual in GP. As shown in the figure, there are four
individuals p1, po, p3 and p4, which can be selected as the parents of AGSX.
Assume p; (in blue colour) has been selected as one parent and the mate, i.e.
the other parent, needs to be selected from po, p3 and p4 to perform AGSX. a;,
ag, and a3 show the angles in the three pairs of parents, i.e. (p1,p2), (p1,p4)
and (p1, ps), respectively. The three green points, S(01), S(02), and S(03), show
the three corresponding offspring of the three pairs of parents, and the green
lines indicates their distances to the target point. It can be seen from the figure
that the pair of parents (pj,ps) has a larger angle, i.e. a3, and the generated
offspring S(o03) is closer to the target output. In the ideal case where the yellow
point S(bps) is the second parent, the generated offspring is very likely to be
the target point. In other words, if the parents have a larger angle between their
relative semantics to the target output, the generated offspring tends to be closer
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Algorithm 1: Pseudo-code of AGSX
Input : WaitingSetlii, iz, ..., im] consists of m individuals on which will
perform crossover. T is the target semantics point.
Output: The generated offspring

1 while WaitingSet is not empty do
2 p1 = is the first individual in WaitingSet;
3 remove p; = from WaitingSet;
4 mazxangle = 0; /* i.e. the mazimum angle that has been found */
5 top is an empty list;
6 for each individual p in WaitingSet do
7 calculate the angle between the relative semantics of S(p1), S(p) to T'
according to Equation (1);
if angle is equal to 180, i.e. p is the optimal mate for p; then
9 | top=p;
10 else
11 if angle is larger than mazrangle then
12 mazxangle = angle;
13 ‘ top=p;
14 else
15 if angle is equal to the mazxangle then
16 L L add p to top;
17 randomly select an individual, p2, from top;
18 perform geometric crossover on p; and pa;
19 remove p; and p2 from WaitingSet.

to the target output. Therefore, we need to select parents with a large angle in
their relative semantics to the target output.

To achieve this, we develop a new mating scheme to select parents with
a large angle in their relative semantics to the target output. First, a list of
candidate parents called the WaitingSet is generated by repetitively applying
a selection operator (e.g. tournament selection) to the current population. The
size of WaitingSet is determined by the population size N and the crossover
rate Rx, i.e. lwaitingset| = N - Rx. Then, the parents for each AGSX operation
are selected from WaitingSet without replacement so that the angles between
the relative semantics of the selected parents can be maximised. The detailed
process of AGSX is given in Section 3.2.

3.2 The AGSX Process

The pseudo-code of AGSX is shown in Algorithm 1. The procedure of finding
the mate having the largest relative angle for a given parent p; is shown in Lines
3 — 18. The angles are calculated according to Equation (1), as shown in Line 6.

3.3 Main Characteristics of AGSX

Compared with GSX, AGSX has three major advantages. Firstly, AGSX em-
ploys an angle-aware scheme, which is flexible and independent of the crossover
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process itself and can be applied to any form of the geometric semantic opera-
tor. Secondly, AGSX operates on distinct individuals in the semantic space. This
way, the generated offspring are less likely to be identical with their parents in
the semantic space. That is, AGSX can reduce semantic duplicates. Thirdly, by
operating on parents with large angles between their relative semantics to the
target output, AGSX is more likely to generate offspring that are closer to the
target output.

3.4 Fitness Function of the algorithm

The Minkowski metric Ly (X,Y) = ¥>r, o — vi|*, which calculates the distance
between two points, is used to evaluate the performance of individuals. Typically,
two kinds of Minkowski distance between the individual and the target could be
used. They are Manhattan distance (L; by setting & = 1 in Li(X,Y)) and
Euclidean distance (Lg). According to previous research [1], Euclidean distance
is a good choice and is used in this work. The definition is as follows:

DX, T) = || 3l — ]2 )

where X is the semantics of the individual and T is the target semantics.

4 Experiments Setup

To investigate the effect of AGSX in improving the performance of GP, a GP
method implements the angle-awareness into one recent approximate geometric
crossover, the locally geometric semantic crossover has been proposed and named
GPALGX. A comparison between GPALGX and GP with locally geometric se-
mantic crossover (GPLGX) has been conducted. We have a brief introduction
of LGX in Section 2.2. For more details of the GPLGX, readers are referred to
[9]. Standard GP is used as a baseline for comparison as well. All the compared
methods are implemented under the GP framework provided by Distributed
Evolutionary Algorithms in Python (DEAP)[4].

4.1 Benchmark Problems

Six commonly used symbolic regression problems are used to examine the per-
formance of the three GP methods. The details of the target functions and the
sampling strategy of the training data and the test data are shown in Table 1.
The first two problems are the recommended benchmarks in [10]. The middle
three are used in [14]. The last one is from [3] which is a modified version of the
commonly used Quartic function. These six datasets are used since they have
been widely used in recent research on geometric semantic GP [14, 15]. The no-
tation rndfa,b] denotes that the variable is randomly sampled from the interval
[a, bJ, while the notation mesh(/[start:step:stop]) defines the set is sampled using
regular intervals. Since we are more interested in the generalisation ability of the
proposed crossover operator, the test points are drawn from ranges which are
slightly wider than that of the training points.



8 Geometric Semantic Crossover with Angle-aware Mating Scheme

Table 1. Target Functions and Sampling Strategies.

Benchmark [Targct Function [Training [Tcst

Keijzerl 0.3zsin(2wx) 20 ponits 1000 ponits
Koza2 (z® — 227 + X) z=mesh((-1:0.1:1]) [z=Rnd[-1.1,1.1]
Nonic 29:1 z*

R1 (x 4+ 1)°/(z? —x +1) |20 ponits 1000 ponits

R2 (z® — 3z° + 1)/(x? + 1)|z=mesh((-2:0.2:2]) |z=Rnd[-2.2,2.2]
Mod_quartic|4z® + 32% + 227 + =

Table 2. Parameter Settings

Parameter Values Parameter Values
Population Size 512 Generations 100
Crossover Rate 0.9 Reproduction Rate 0.1
#Elitism 10 Maximum Tree Depth 17
Initialisation Ramped-Half&Half||Initial Depth range(2,6)
Maximum tree depth in Library-M |3 Neighbourhood Number-K |8
Function Set +, —, %, protected %, log, sin, cos, exp
Fitness function Root Mean Squared Error (RMSE) in standard GP
Euclidean distance in GPLGX and GPALGX

4.2 Parameter Settings

The parameter settings can be found in Table 2. For standard GP, the fitness
function is different from that of GPLGX and GPALGX. Since the primary
interest of this work is the comparison of the generalisation ability of the various
crossover operators, all the three GP methods only have crossover operators. No
mutation operator has taken apart. The values of the two key parameters M
and K in implementing LGX, which represent for the maximum depth of the
small size tree in the library and the number of the closest neighbouring trees
respectively, are following the recommendation in [9].

Overall, the three GP methods are examined on six benchmarks. Each method
has 100 independent runs performed on each benchmark problem.

5 Results and Discussions

The experiment results of GP, GPLGX and GPALGX are presented and dis-
cussed in this section. The results will be presented in terms of comparisons
of RMSEs of the 100 best models on the training sets and their corresponding
test RMSEs. The fitness values of models in GPLGX and GPALGX are calcu-
lated using Euclidean distance. However, for comparison purpose, the Root Mean
Squared Error (RMSE) of models are also recorded. The major comparison is
presented between GPLGX and GPALGX. Thus, we also compare the angle
distribution of GPLGX and GPALGX. The computational time and program
size are also discussed. The non-parametric Wilcoxon test is used to evaluate
the statistical significance of the difference on the RMSEs on both the training
sets and the test sets. The significance level is set to be 0.05.

5.1 Overall Results

The results on the six benchmarks are shown in Fig.2, which displays the distri-
bution of RMSEs of the 100 best-of-the-run individuals on the training sets and
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Fig. 2. Distribution of Training RMSE and the Corresponding Test RMSE of the 100
best-of-run individuals.

the test sets. As it shows, on all the six benchmarks, GPALGX has the best train-
ing performance among the three GP methods. For every benchmark, GPALGX
has a better training performance than GPLGX and GP, by the smaller median
value of the 100 best training errors and the much shorter boxplot. This indicates
the training performance of GPALGX is superior to the other two methods in a
notable and stable way. The results of statistical significance test confirm that
the advantage of GPALGX over GPLGX and GP are all significant on the six
training sets.

The overall pattern on the test sets is the same as the training set, which is
GPALGX achieves the best generalisation performance on all the benchmarks.
On each benchmark, the pattern in the distribution of the 100 test errors is also
the same as that on the training set. GPALGX has the shortest boxplot which
indicates the more consist generalisation error among the 100 runs. GPLGX
has a larger distribution than GPALGX, which is still much shorter than stan-
dard GP. A significant difference can be found on the six benchmarks between
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Fig. 3. Evolutionary plot on the training set.

GPALGX, GPLGX and GP, i.e. GPALGX generalises significantly better than
GPLGX, while the two geometric methods are significantly superior to GP. The
generalisation advance of LGX and ALGX over standard crossover is consistent
with the previous research on LGX. In [9], the generalisation gain of LGX has
been investigated and confirmed. This generalisation gain has been justified to
own to the library generating process which helps reduce the semantic dupli-
cates. The further generalisation gain of ALGX over LGX might lie in the fact
that the angle-awareness helps extend the segment connecting each pair of par-
ents for crossover, thus can reduce the semantic duplicates more intensively, and
enhance the exploration ability of LGX to find better generalised solutions.

5.2 Analysis on the Learning Performance

The evolutionary plots on the training sets are provided in Fig.3. To analysis the
effect of ALGX on improving the learning performance of GP. These evolutionary
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plots are drawn using the mean RMSEs of the best-of-generation individuals over
the 100 runs.

As expected, GP with ALGX achieves the best learning performance. It is
superior to the other two GP methods from the early stage of the evolutionary
process, which is generally within the first ten generations. The advances of
the two geometric GP methods over standard GP on the learning performance
confirms that searching in the geometric space is generally much easier, since the
semantic space is unimodal and has no local optimal. The comparison between
the two geometric GP methods indicates ALGX is able to generate offspring
which is much closer to the target point in the semantic space from the very
beginning of the searching process. On all the six benchmarks, GPALGX not
only has significantly smaller training RMSEs but also has higher average fitness
gain from generation to generation. On Kozas and R, the two geometric GP
methods can find models which are excellent approximations (the RMSE of
which is smaller than 0.001), and GPALGX converges to the target semantics
much faster than GPLGX. This might be because ALGX performs crossover on
individuals having larger angles than GPLX, thus produces offspring closer to the
target in the semantic space in an effective way. In this way, it will increase the
exploitation ability of LGX and find the target more quickly. For the other four
benchmarks, although none of the two geometric GP methods finds the optimal
solution, on three of them, the increasingly larger difference between the two
methods along with the increase of generations indicates the improvement that
ALGX brings is increasing over generations. One of the possible reasons is that,
over generations, compared with LGX, ALGX will perform on individuals having
smaller relative semantic distance with target output in larger angle pairs, which
will generate even better offspring.

5.3 Analysis of the Evolution of Generalisation Performance

Compared with the training performance, we are more interested in the general-
isation performance of GP with ALGX. Therefore, further analysis on the gen-
eralisation ability of GPALGX and a more comprehensive comparison between
the generalisation of the three methods is carried out. In Fig.4, the evolution-
ary plots on the test sets are reported along generations for each benchmark
on the three GP methods. These plots are based on the mean RMSEs of the
corresponding test errors obtained by the best-of-generation models over 100
runs. (On each generation, the test performance of the best-of-generation model
obtained from the training data has been recorded, but the test sets never take
apart in the evolutionary training process)

The evolution plots confirm that GPALGX has a better generalisation gain
than the other two methods on all the test sets of the considered benchmarks,
which is notable. On all the six benchmarks, GPALGX can generalise quite well,
while its two counterparts suffer from the overfitting problems on some datasets.
On the six problems, GP overfits the training sets. The test RMSEs increase af-
ter decreasing over a small number of generations at the beginning. Also, GP
generally has a very fluctuate mean RMSE on most test sets. It indicates that
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Fig. 4. Evolutionary plot on the test set.

training the models on a small number of points (20 points), while testing the
models on a larger number of points (1000 points) distributed over a slightly
larger region is difficult for GP. GPLGX can generalise much better than GP
but still encounters overfitting problems on three benchmarks, i.e., on Keijzerl,
Nonic and Mod_quartic. On these three datasets, GPLGX has an increasing
RMSEs on the last ten generations. On other three datasets, GPLGX gener-
alises well. Overall, GPALGX generalises better than GPLGX and GP, shown
as obtaining lower generalisation errors and having a smaller difference with its
training errors.

The excellent generalisation ability of geometric crossover can be explained
by the fact that the geometric properties of this operator are independent of the
data to which the individual is exposed. Specifically, the offspring produced by
LGX and ALGX lie (approximately) in the segments of parents also hold in the
semantic space of the test data. Since this property holds for every set of data,
no matter where the test data distributes in, the fitness of the offspring can never
be worse than the worse parent. In the population level, this property can not
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Fig. 5. Distribution of Angles of the Parents for Crossover.

guarantee to improve the test error on every generation for every benchmark
(in fact, we can find on the last several generations, LGX has an increasing
test error on three benchmarks), but during the process it surely has a high
probability of generalisation gain on the test set and only a few times of getting
worse generalisation over generations. That is why LGX has the ability to control
overfitting and generalise better than the regular crossover.

This interpretation has a direct relationship on why ALGX is less likely to
overfitting and generalises better than LGX on the test sets. In other words,
ALGX puts more effect on selecting parents which consequently limits the prob-
ability of having not good enough parents to crossover, so it can lead to a large
number of offspring with better generalisation at the population level. AIGX
shares the same benefit with LGX, which is the geometric property leading to
offspring never worse than parents on the test set. More importantly, the angle-
awareness in ALGX makes the large angle between the parents also holds in the
test semantic space. This leads to a higher probability to have a good process on
the test data at the population level. The details of the angle distribution will
be discussed in the next subsection.

5.4 Analysis of the Angles

To investigate and confirm the influence of ALGX to the distribution of angles
of the parents, the angles between each pair of parents which performs crossover
have been recorded in both GPLGX and GPALGX. In Fig.5, the density plots
show the distribution of the angles in the two GP methods. The green one is for
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GPLGX, and the one in orange colour is for GPALGX. The density plots are
based on around 2,250, 000(a 225 * 100 x 100) values of angles in each method.
While the x-axis represents the degree of angles, the y-axis is the percentage of
the corresponding degree in the 2,250, 000 recorded values.

From Fig.5 we can see that the distribution of angles of parents in GPALGX
is different from GPLGX in two aspects. On the one hand, it has a much smaller
number of angles which are zero degrees. While in GPLGX, the peak of the
distribution is at the zero degrees on all the six datasets, in GPALGX, the angle-
awareness can stop the pairs of individuals with zero degrees from performing
crossover. The direct consequence of this trend is the elimination of semantic
duplicates, and the higher possibility of generating better offspring.

On the other hand, GPALGX has a larger number of larger angles. Most of
its angles are over 90 degrees. The peak of the distribution is all around 120
degrees on the six datasets, specifically on the last four datasets. At the first
several generations, the larger angles with similar (or the same) vectors will lead
to better offspring, which is represented by a shorter vector. At the last several
generations, larger angles along with the shorter vectors will lead to a population
of even better offspring. This can explain why the distance between the training
error and test error of GPLGX and GPALGX increases over generations on most
of the benchmarks.

Table 3. Computational Time and Program Size.

Time(in second)|Program size (Node)|Significant Test
Benchmarks | Method Mcan(:tStd ) Mcagn:I:Std ( ) (oi program size)
Keijzerl GPLGX [523+83.8 90.52+28.72 _
GPALGX|14004+317 87.74+£23.85
Koza2 GPLGX [560+105 72.66+29.93 N
GPALGX 13304232 93.82+24.18
R1 GPLGX [523+84.5 88.82+£27.07 _
GPALGX|[12504+253 92.18+31.71
R2 GPLGX [524+83.9 89.62+27.41 _
GPALGX|[12504+218 83.84+28.6
Nonic GPLGX [571£112 84.5+32.62 +
GPALGX|[12504+212 101.54+39.33
Mod_quartic GPLGX [554+105 99.98+38.25 _
GPALGX 14204369 105.38+37.29

5.5 Comparison on Computational Time and Program Size

The comparison between the computational cost and program size of the evolved
models have been performed between the two geometric methods. Table 3 shows
the computational time in terms of the average training time for one GP run in
each benchmark. The average program size represented by the number of nodes
in the best_of run models in each benchmark is also provided. The statistical
significance results on the program size are also listed in the table. While “-”
means the program size of the evolved model in GPALGX is significantly smaller
than GPLGX, “+” indicates the significant larger program size of GPALGX. “="
represents no significant difference can be found.

As shown in Table 3, on all the six benchmarks, the average computational
time for one run in GPALGX is much higher than GPLGX, which is generally
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around two times as that of GPLGX. This is not surprising since GPALGX needs
more effort to identify the most suitable pairs of parents during the crossover
process. The longer computational time can be decreased by reducing the pop-
ulation size in GPALGX. Moreover, the computational time for each GP run
in both methods is short, which is hundreds to two thousand second. Thus, the
additional computational cost of GPALGX is affordable.

In term of the program size, on four benchmarks, i.e., Keijzerl, R1, R2, and
Mod_quartic, the two methods have a similar program size and no significant
difference has been found. On the other two datasets, ALGX produces offspring
which are significantly larger than LGX. However, it is interesting to note that
these much more complex models in term of program size still can generalise
better than its simpler counterparts on the two test sets, while the simpler
model of GPLGX slightly overfits on the Nonic problem.

6 Conclusions and Future work

This work proposes an angle-aware mating scheme to select parents for geometric
semantic crossover, which employs the angle between the relative semantics of
the parents to the target output to choose parents. The proposed ALGX performs
on parents having a large angle so that the segment connecting the parents is
close to the target output. Thus, ALGX can generate offspring that have better
performance. To investigate and confirm the efficiency of the proposed ALGX,
we run GP employed ALGX on six widely used symbolic regression benchmark
problems and compare its performance with GPLGX and GP. The experimental
results confirm that GPALGX has not only better training performance but
also significantly better generalisation ability than GPLGX and GP on all the
examined benchmarks.

Despite the improvement ALGX brings on performance, it generally is com-
putational more expensive than GPLGX. In the future, we aim to improve the
angle detecting process. Instead of using the deterministic method to calculate
the angle between two individuals iteratively, we can introduce some heuristic
search methods to find the best parent pairs to reduce the computational cost.
We also would like to explore a further application of ALGX, for example, to
introduce the angle-awareness to other forms of geometric crossover, such as the
exact geometric semantic crossover [12] and Approximate geometric crossover [7],
to investigate their effectiveness. In addition, this work involves solely crossover
and no mutation. The effect of angle-awareness to mutation and using both
crossover and mutation are also interesting topics to work on.
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