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Abstract—Automatic design of dispatching rules with Genetic
Programming (GP) in job shop scheduling has become more
prevalent in recent years. When evolving dispatching rules,
choosing a proper terminal set is an important issue. There
are a large number of attributes in the job shop that can be
taken into account as terminals. However, not all of them are
useful to be included. It is not a trivial task to identify the
most important attributes out of the entire attribute pool. On
the other hand, including all the attributes in the terminal set
leads to a huge search space for GP, and makes it hard to
find the promising regions of the search space. In this paper,
we first demonstrate the differences in importance of attributes
by frequency analysis. Then, we propose a terminal weighting
algorithm to learn the importance of the terminals on-the-fly, and
an adaptive mutation scheme to guide the search to concentrate
on the more important terminals. The experimental studies
show that the proposed algorithm outperformed its counterpart
without terminal weighting and adaptive mutation, in the tested
dynamic job shop scheduling, while optimising the mean weighted
tardiness. This verifies that focusing on the important terminals
will help to search inside more promising regions and lead to
better solutions.

I. INTRODUCTION

Job Shop Scheduling (JSS) [1] is an important problem
with many real-world applications in cloud computing and
manufacturing. It has been investigated intensively in the past
decades, and both mathematical programming [2] and meta-
heuristics [3]–[6] have been proposed for solving it.

Traditionally scheduling was determined by algorithms that
would consider the whole set of available jobs and generate
a schedule. This becomes computationally expensive and is
increasingly infeasible as the size of scheduling problems
increases. In addition, the practical environment is usually
dynamic, and there are unpredictable events (e.g. new job ar-
rivals and machine breakdown) happening during the decision
horizon. Therefore, it is improper, if not impossible, to use
the traditional optimisation methods to adapt to the chang-
ing environment due to their slow speed, and computational
expense.

To address these issues, dispatching rules have become more
commonly used as they can be implemented locally and scale
well. Furthermore, dispatching rules can be used in a job shop
configuration where the future jobs are not known. Dispatching

rules work well in dynamic and stochastic environments. Due
to this dispatching rules are found to be more relevant to
the demands of highly flexible and responsive production
scheduling environments. So far, there have been numerous
dispatching rules designed for different job shop scenarios [7]–
[11]. However, these manually designed dispatching rules are
not good enough, and their performances can vary a lot from
one job shop scenario to another.

In recent years, automatic design of dispatching rules us-
ing hyper-heuristics [12] has become more prevalent. Briefly
speaking, hyper-heuristics are a set of methods that search for
heuristics instead of solutions, so that the obtained heuristics
can be applied to a series of problem instances rather than a
particular one. In the context of JSS, a dispatching rule can be
considered a priority function, which is used to decide which
waiting job is to be processed next at each decision point.

Optimising the priority function can be seen as a symbolic
regression [13], which can be solved by Genetic Programming
(GP) [14]. So far, there have been a number of studies trying to
design GP Hyper-Heuristics (GP-HH) for evolving dispatching
rules to do job shop scheduling [15]–[19].

An important issue in evolving dispatching rules with GP-
HH is the selection of the terminal set. There are a large
number of attributes (e.g. the job-related, machine-related, job-
floor-related, and “less myopic” ones) that can be selected as
the terminals. Branke et. al have a summary of attributes that
are commonly used in job shop scheduling problems [20].
However, different attributes may be suitable for different job
shop scenarios, and the importance of the attributes also varies.
For example, the due date attribute is often useless when
minimising the flowtime-related objectives [15].

It is not trivial to identify the most important terminals
before designing a dispatching rule. On the other hand, im-
mediately including all the attributes in the terminal set leads
to a huge search space, making it hard for GP to focus on
the promising areas. Therefore, it is beneficial to estimate the
importance of the terminals and choose them adaptively based
on their discovered importance during the GP search process.

The goal of this paper is to develop an approach to learn
the importance of the terminals, and guide the search to focus
on the important terminals. The resultant algorithm can have



a stronger exploitation capability, and is more likely to find
better dispatching rules in the promising regions of the search
space. The detailed objectives are listed below:

1) Frequency analysis is conducted to demonstrate that
the attributes have different importance/contribution to
the dispatching rules. This motivates us to learn such
importance and guide the search accordingly.

2) A new GP-HH algorithm is proposed with terminal
weighting and adaptive mutation for the job shop at-
tributes. The terminal weighting is used to learn the
importance of different attributes, and the task of adap-
tive mutation is to guide the search using the terminal
weights.

3) The new algorithm is compared with its counterpart
without terminal weighting and adaptive mutation to
show the efficacy of the proposed algorithm.

The remainder of the paper is organised as follows: Sec-
tion II introduces the background, including the problem
description and related works. Then, Section III describes the
proposed GP with terminal weighting and adaptive mutation.
Section IV carries out the experimental studies, comparing the
proposed GP with its traditional counterpart to demonstrate
the efficacy of the adaptive mutation. Finally, Section V gives
conclusions and directions for future work.

II. BACKGROUND

A. Job Shop Scheduling Problem

JSS problem can be formally defined by the following: given
a set of machinesM = {M1, . . . ,Mm} and a set of jobs J =
{J1, . . . , Jn}, each job Jj consists of several operations Oj =
(O1j , . . . , Omj). Each operation Oij has a processing time
tij and a specific machine πij that it needs to be completed
on. Jobs will only visit each machine once, and may not be
processed at more than one machine at a time. Each operation
in a job must be completed sequentially. Machines are not
allowed to be pre-empted, i.e. a job can not be removed from
a machine once it has started. In a dynamic environment, each
job Jj has a release date aj ≥ 0 and a due date dj ≥ aj +∑m
i=1 tij . The job cannot be processed until its released, and

there will be a penalty induced if a job is finished after its due
date.

Given the above conditions, the aim of the JSS problem is
to make a schedule to finish all the jobs, so that a predefined
objective is optimised. The commonly considered objectives
include the makespan Cmax, total flowtime

∑
Cj and total

weighted tardiness
∑
wjTj .

When applying a dispatching rule to a JSS instance, a
schedule is generated through simulation, which is an iterative
schedule construction framework. Starting from time zero
and an empty schedule, whenever there are idle machines
at present and there are available jobs waiting in the queue,
the rule calculates the priority of each waiting job using its
priority function, and selects the job with the highest priority
to be processed. For example, in the well-known SPT rule, the
priority function is −PT, where PT is the processing time of

the imminent operation. Such a process is continued until all
the jobs have been processed.

B. GP for Evolving Dispatching Rules

There have been a number of studies in designing GP for
evolving dispatching rules. Geiger et al. [16] proposed a GP for
a batch processor scheduling problem. Jakobovic and Budin
[21] proposed a hybrid GP called GP-3, which evolves a
decision tree together with two scheduling trees, one for the
bottleneck machines, and the second for the other machines.
The algorithm detects the bottleneck machines by the decision
tree, and then applies the two scheduling trees accordingly.

Pickardt et al. [22] proposed a two-stage hyper-heuristic.
First, a composite rule is obtained by GP. Then, a pool of
dispatching rules is constructed with the GP-evolved rule and
some other manually designed rules. In the second stage, an
EA approach is adopted to select a rule from the pool for
each machine. Nguyen et al. [18] considered different repre-
sentations of dispatching rules, and designed a new GP tree
structure that is comprised of decision trees and scheduling
trees with both job shop attributes and manually designed
rules.

Hildebrandt [15] proposed the dynamic job shop simulation,
and suggested using a different random seed in each generation
to avoid overfitting. A lookahead scheme was also proposed
to allow idle machines to wait so that more flexible schedules
can be generated.

Tan and Ho used GP to evolve dispatching rules to solve
multi-objective flexible job shop scheduling problem [23]
[24]. New terminals were designed to deal with the flexible
assignment of the operations to a set of machines.

C. Adaptive Feature Ranking and Selection

Friedlander et al. [25] proposed a terminal weighting
scheme and an adaptive mutation based on the terminal
weights. Terminal weights are updated generation by genera-
tion based on frequency in the individual and the fitness of the
individual. The adaptive mutation differs from the traditional
mutation in that when sampling the terminals of the newly
generated sub-tree, the probabilities of the terminals are set
proportional to their weights (i.e. the roulette wheel sampling)
rather than equal to each other. Ok et al. [26] proposed the
same terminal weighting scheme, and added another phase
of categorising the terminals into the relevant terminals and
irrelevant terminals. Then, all the terminals of the mutated
individual are replaced by only sampling from the relevant
terminals.

III. TERMINAL WEIGHTING AND ADAPTIVE MUTATION

A. Motivation

After noticing how some human-designed rules (from [7])
could achieve good performance while utilising only a few
features we want to confirm that some job shop attributes have
more value to dispatching rule construction. In order to verify
that some attributes are indeed more important than others, we
conducted frequency analysis on the best dispatching rules for



dynamic JSS using mean weighted tardiness as the objective
function. Thirty independent experiments were run. It should
be noted that there are many parameters that could have
influenced the relative importance of the attributes, such as
objective function and utilisation level. We have carried out
experiments on different scenarios (e.g. different objective
functions and utilisation levels), and discovered the same
pattern. That is, a small number of attributes appeared much
more frequently than others. Fig. (1) shows the representative
result for shop utilisation level of 0.9 and due date factor of
1.3, with lowest scoring attributes removed.
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Attribute ranking by frequency

Fig. 1. The frequencies of the attributes in the best dispatching rules of
30 independent runs for the dynamic JSS that minimises the mean weighted
tardiness. The utilisation level is 0.9.

This figure confirms that some attributes are more important
than others. After the evolutionary process high performing
dispatching rules are more likely to contain W and PT than
all the rest. These attributes appear to be critical in achieving
the highest performance in the run.

Given that some attributes are more important than others,
we can do better than utilising the attributes with uniform
probability. As the number of attributes increases so does the
complexity of the search space. While each new attribute may
have a small contribution to make to the performance of the
dispatching rule, its contribution might only be useful when
combined with other sets of attributes, or the contribution
could be very small. Consequently, the search space becomes
vast, with huge regions unlikely to have promising results. In
this case, better performance can be achieved by focusing on
promising areas of the search space. For example, each time
an unimportant attribute is included in the dispatching rule
it will hinder the GP’s search. However, there are potential
improvements to be made to the speed of the search, by
focusing on the more important attributes and allowing the
less important attributes to be ignored, we can search in an
informed manner. We want to do this as the evolutionary
search proceeds, without making any prior assumptions. This
will allow the evolutionary system to reactively prioritise
attributes and respond to different JSS problem instances.

On the other hand, when considering the importance of
attributes, even the less important attributes have a small
contribution to make to the dispatching rule. It might not be

sensible to completely ignore this contribution. The optimal
dispatching rule could be beyond the ability of the evolution-
ary system to generate if it prematurely excludes significant
attributes.

Due to this tension a balance needs to be found where less
important attributes are given a lower priority while highly
relevant attributes are readily available to the dispatching rules.
This motivates us to propose a better balance in selecting
attributes for inclusion in dispatching rules. It is also beneficial
to do this in a reactive way without making assumptions before
the evolution begins. Based on this motivation, we propose
a terminal weighting scheme, which is described in Section
III-B.

B. Terminal Weighting

To determine the importance of the attributes, we maintain
an attribute weight vector w = (w1, w2, ..., wn) throughout
the GP search process, where wi stands for the weight of
the ith attribute. The vector represents the importance of the
attributes, and a larger value indicates a higher importance. On
initialisation, all the wi’s are set equally to 1/n, where n is the
number of attributes. Then, after each generation’s evaluation
is completed the weight vector is updated. The weight vector
in subsequent generations is determined by the formula that
is derived in [25] and [26]:

wi(t)← wi(t− 1) +

P∑
j=1

count(j, i)× fitnessj∑n
k=1 count(j, k)

, (1)

where P is the population size count(j, i) is the count of
ith attribute in the jth dispatching rule in the population.
fitnessj is the standardised fitness of the jth dispatching rule,
which is always to be maximised. That is, a larger fitness
value indicates a better dispatching rule. Based on Eq. (1), an
attribute will be assigned a larger weight if it appears more
frequently in dispatching rules with better fitness values. As
the search continues, attributes that appear many times in high-
fitness individuals will have bigger increase in weight. This
allows us to build an increasingly accurate picture of what
attributes are important during the search process.

Note that the frequency can be misleading, since there can
be many redundant occurrences of irrelevant attributes in a
good dispatching rule. For example, if a rule has a priority
function of PT + WINQ + min(RT,RT)/max(RT,RT), the
most important attributes are PT and WINQ, while RT is
irrelevant. However, from the frequency, RT seems to be the
most important attribute since it appears 4 times. Such a
phenomenon is particularly more obvious in the early stage
of the search due to the random initialisation. Therefore, the
weight vector can fluctuate and contain inaccuracy in the early
stages of the search. Using the inaccurate weight vector can
have a negative effect on the subsequent search and influence it
towards unpromising areas. To mitigate this risk and increase
the confidence when using the weight vector, we allow 15
generations for the weight vector to stabilise before it is used
to guide the search.



After the weights have settled they can be used to guide the
search in a way that is sensitive to attribute importance. The
result is that the more important attributes are frequently seen
and utilized in the resultant dispatching rules. To make use of
the attribute weight vector we use adaptive mutation.

C. Adaptive Mutation

There are two components for utilising the weight vector
constructed in the previous step to influence the search. First,
the weight vector is transformed into a probability vector
where each entry represents the chance of an attribute being
selected when a new sub-tree is constructed to replace the
sub-tree selected for mutation. Second, when the sub-tree is
generated during the mutation process, it uses the probability
vector to determine how often attributes will be included in
the newly generated sub-tree.

In the typical case of genetic programming, the individual
will randomly generate a sub-tree to replace one of its exist-
ing sub-trees. This new sub-tree typically contains attributes
selected from a uniform distribution of all available attributes.
When making use of the weights vector, the newly generated
sub-tree will contain attributes sampled from a probability
distribution that depends on the weight vector. We include
a tunable parameter λ ∈ [0,∞) to control the bias to the
more important attributes. The transformation formula from
the weight vector to the probability vector is given as follows.

pi =
wλi∑k
1 w

λ
k

, (2)

where pi is the probability to choose the ith attribute. When
λ = 0, all the attributes are uniformly selected, and the
adaptive mutation is reduced to the traditional mutation. When
λ → ∞, the adaptive mutation tends to always select the
attribute with the largest weight. Thus, increasing λ will
enhance the bias towards the attributes with larger weights.

As mentioned in Section III-B, the adaptive mutation is
not employed until 15 generations have passed. After this the
weight vector tends to have stabilised. That is, λ is set to 0
for the first 15 generations.

This technique of attribute weighting is derived from the
previous relevant works [26] and [25]. However, it is different
from the existing studies in the following aspects.

• Unlike the technique in [26], which categorised the fea-
tures, and completely removed the irrelevant features, we
have a smoother terminal selection scheme by adopting
the roulette wheel selection scheme. This way, the weakly
relevant attributes still have chance to be included, and
to help the search jump out of the local optimum.

• The adaptive mutation in [25] starts from generation 10.
We allow a larger stabilising period of 15 generations to
avoid misleading information in the early stage of the
search.

• We introduced an extra tunable parameter λ while trans-
forming the weight vector to the probability vector. This
way, we have more control of the bias towards the heavily
weighted attributes.

D. Tuning the Mutation Rate

In traditional GP, mutation is usually used for introduc-
ing new genetic materials and increasing diversity [27]. The
mutation rate is normally set to a small value (e.g. 10%) to
keep a good balance between exploration and exploitation. The
existing studies have shown that a small mutation rate works
well for many problems.

However, in adaptive mutation, the mutation is not only
for increasing diversity, but also to introduce more bias to
the important terminals. If the mutation rate is too small, then
such a guidance will become almost invisible, and the adaptive
mutation will be very close to the traditional mutation. To
enhance the effect of adaptive mutation, and increase the
frequency of the more important attributes, the mutation rate
is increased. This will be examined further in the experimental
studies.

IV. EXPERIMENTAL STUDIES

A. Experiment Design

A dynamic job shop is used to evaluate the dispatching
rules generated by the GP process. This section details which
parameters are used. During training each dispatching rule is
simulated in 4 different job shop configurations, which is the
same as that used in [15]. Parameters for the training and
test instances are specified in Table I. The training instances
are taken from the highest and lowest of the test instances.
For each test configuration, 20 replications were randomly
generated with different seeds. This allows the test instances
to gain a much more trustworthy indication of a particular
dispatching rule’s performance. The GP process was run on
the ECJ [28] system, and the simulation was conducted using
the JASIMA simulation environment [15].

Job weights were selected from {1, 2, 4} with probabilities
(0.2, 0.6, 0.2) respectively. Each job is assigned a weight as
it arrives at the job shop. Such a weight setting was inspired
by the research in [29].

We used the objective function of mean weighted tardiness
to determine the fitness of the dispatching rules, which is
calculated as

MWT =
1

N

N∑
i=1

wiTi,

where wi is the weight of job i, and Ti is the tardiness of job
i, which is defined as Ti = max(Ci − di, 0). Here, Ci and
di are the completion time and due date of job i. N is the
number of jobs.

Due to the stochastic nature of the simulations being ini-
tialised with different random seeds absolute fitness values
would exhibit jitter. A reference rule was employed to provide
a consistent measuring point regardless of the natural variation
in the stochastic simulation process. We selected Weighted
Shortest Processing Time (WSPT) as our reference rule.
Fitness scores were determined by the formula:

fitnessj =
1

4

∑ MWT(Rj)
MWT(WSPT)

,



where fitnessj is the fitness of individual j, and Rj is the
dispatching rule individual j represents.

TABLE I
JOBSHOP PARAMETERS

Training
utilization levels 0.8, 0.95
min/max operations (2,10) missing operations

(10,10) full operations
due date factor 1.3
time units per operation uniform distribution [0-49]
job routing random, no machine visited twice or simul-

taneously
job arrival interval Poisson distribution to achieve desired shop

utilization level
warm-up job count 500
end simulation after 2500 jobs completed
data collection post-warmup 2000 jobs
Testing
utilization levels 0.8, 0.85, 0.9, 0.95
min/max operations (2,10) missing operations

(10,10) full operations
due date factor 1.3
time units per operation uniform distribution [0-49]
job routing random, no machine visited twice or simul-

taneously
replication count 20
warm-up jobs count 1000
end simulation after 5000 jobs completed
data collection post-warmup 4000 jobs

B. Parameter Settings

Table II gives an overview of evolutionary parameters. The
function set includes: +, −, ∗, %, min, max, ifte, among
which +, −, ∗ are the standard arithmetic operators. The
protective division % returns 1 if the denominator is 0. The
min and max functions take two arguments and return the
minimum and maximum respectively. The ifte operator takes
three arguments, returns the second argument if the first
argument is positive, and the third argument otherwise.

TABLE II
THE PARAMETER SETTING OF GP.

Evolution Parameters
populations size 1024
max tree depth 8
generations 51
function set +, −, ∗, %, min, max, ifte
terminal set (see Table III)
crossover rate 0.8
mutation rate 0.1
reproduction rate 0.1

The terminal set is shown in Table III, which consists of 24
attributes. Note that xMRT, xNPT, QIxQ, WIxQ stand for a
series of attributes (depending on the range of x) instead of
a single one. The crossover, mutation and reproduction rates
are set for the baseline GP. As discussed in Section III-D,
when adopting the adaptive mutation, a larger mutation rate is
tested as well. Specifically, in additional to the values given in
Table II, the GP with adaptive mutation is also tested with the
crossover rate of 0.65, mutation rate of 0.3, and reproduction

TABLE III
THE TERMINAL SET USED IN GP.

Attribute Description
NOW Current simulation time

W Weight of job
PT Processing time of current operation
RO Remaining operations in job
RT Remaining time in job
DD Due date of job
TIQ Time in current queue
TIS Time in system
NPT Next operation’s processing time

WINQ Work in job’s next queue
OINQ Number of operations in job’s next queue
NQW Average wait time of last 5 jobs completed at the next machine
AQW Average wait time of last 5 jobs completed anywhere in the shop
QV Ratio of shortest to longest job in current queue

NQV Ratio of shortest to longest job in next queue
xMRT [1 ≤ x ≤ 3] Ready time of machine x steps ahead
xNPT [2 ≤ x ≤ 3] Processing time of operation x steps ahead
OIxQ [2 ≤ x ≤ 3] Operation in queue x steps ahead
WIxQ [2 ≤ x ≤ 3] Work in queue x steps ahead

rate of 0.05. For the sake of convenience, the original GP is
referred to as “Baseline”, while the GP with adaptive mutation
is denoted as AM-GP. It has two parameters, λ and Pm, where
λ is the power coefficient used in Eq. (2), and Pm is the
mutation rate.

C. Results and Discussions

Table IV shows the mean and standard deviation (in paren-
thesis) of the test performance of the compared algorithms in
different test sets. From the table, we can see a trend where
every rule designed by GP can perform better than WPST.
This margin increases as the utilization level of the job shop
increases.

The standard deviation also increases as the utilization
level increases. Since the problem becomes harder when the
utilization rate increases, the results show that tougher job
shop conditions reduce the stability of results. Across all the
λ values, a larger mutation rate tends to lead to a better result.
This demonstrates the importance of increasing the mutation
rate while using the adaptive mutation. It can be seen that
the AM-GP with λ = 1 and Pm = 0.3 obtained the best
average test performance in 5 out of the 8 test sets, followed
by (λ, Pm) = (5, 0.3). The parameters (2, 0.3) performed the
best on the remaining one test set, whose test performance
is very close to that of (1, 0.3). The AM-GP with λ = 10
achieved the worst results among all the parameter settings.
This shows that setting λ to 10 makes the search too greedy,
and the population loses its diversity.

Wilcoxon’s rank sum test was conducted between each AM-
GP and the baseline GP, and the p-value of the test results are
shown in Table V. Unfortunately, the p-values do not show
much significance on the differences, p-values less than 0.05
were only found in (0.95, miss) and (0.95, full) of AM-GP with
(5, 0.3). When taking a closer look at Table IV, we found that
the reason is that the standard deviation is usually very large
compared to the difference (about 0.02 for the difference of
at most 0.01 in most cases). To understand the distribution of



TABLE IV
THE MEAN AND STANDARD DEVIATION (IN PARANTHESIS) OF THE TEST PERFORMANCE OF THE COMPARED ALGORITHMS IN DIFFERENT TEST SETS. THE

BEST MEAN RESULTS ARE MARKED IN BOLD.

(util, ops) Baseline (λ, Pm) for AM-GP

(1,0.1) (1,0.3) (2,0.1) (2,0.3) (5,0.1) (5,0.3) (10,0.1) (10,0.3)

(0.8, miss) 0.978 (0.014) 0.978 (0.014) 0.972 (0.011) 0.980 (0.013) 0.973 (0.013) 0.982 (0.019) 0.977 (0.012) 0.982 (0.013) 0.978 (0.015)
(0.8, full) 0.977 (0.015) 0.977 (0.015) 0.972 (0.012) 0.979 (0.015) 0.972 (0.014) 0.981 (0.020) 0.977 (0.013) 0.981 (0.015) 0.976 (0.016)

(0.85, miss) 0.978 (0.017) 0.979 (0.016) 0.972 (0.014) 0.983 (0.017) 0.972 (0.016) 0.983 (0.021) 0.973 (0.016) 0.983 (0.015) 0.976 (0.016)
(0.85, full) 0.972 (0.019) 0.972 (0.018) 0.966 (0.016) 0.976 (0.019) 0.965 (0.016) 0.976 (0.022) 0.971 (0.017) 0.977 (0.018) 0.971 (0.018)
(0.9, miss) 0.961 (0.023) 0.962 (0.023) 0.953 (0.018) 0.967 (0.022) 0.954 (0.021) 0.965 (0.022) 0.953 (0.021) 0.968 (0.020) 0.959 (0.021)
(0.9, full) 0.958 (0.025) 0.960 (0.023) 0.951 (0.017) 0.964 (0.024) 0.952 (0.021) 0.963 (0.024) 0.956 (0.021) 0.966 (0.022) 0.957 (0.022)

(0.95, miss) 0.956 (0.027) 0.957 (0.023) 0.944 (0.018) 0.960 (0.023) 0.950 (0.023) 0.956 (0.025) 0.935 (0.028) 0.963 (0.022) 0.954 (0.022)
(0.95, full) 0.954 (0.028) 0.957 (0.025) 0.944 (0.019) 0.961 (0.025) 0.947 (0.024) 0.954 (0.027) 0.939 (0.028) 0.960 (0.024) 0.951 (0.023)

TABLE V
THE p-VALUES OF THE WILCOXON’S RANK SUM TEST BETWEEN EACH

AM-GP AND THE BASELINE GP. THE ONES SMALLER THAN THE
SIGNIFICANCE LEVEL OF 0.05 IS MARKED IN BOLD.

(util, ops) (1,0.1) (1,0.3) (2,0.1) (2,0.3) (5,0.1) (5,0.3) (10,0.1) (10,0.3)

(0.8, miss) 0.58 0.07 0.90 0.06 0.77 0.65 0.40 0.79
(0.8, full) 0.74 0.14 0.76 0.11 0.79 0.84 0.40 0.68

(0.85, miss) 1.00 0.06 0.57 0.06 0.46 0.10 0.25 0.38
(0.85, full) 0.92 0.19 0.46 0.07 0.74 0.81 0.23 0.90
(0.9, miss) 0.89 0.10 0.36 0.18 0.54 0.18 0.14 0.82
(0.9, full) 0.65 0.34 0.31 0.43 0.40 0.98 0.11 0.89

(0.95, miss) 0.95 0.05 0.65 0.41 0.76 0.00 0.28 0.69
(0.95, full) 0.66 0.10 0.33 0.30 0.86 0.00 0.30 0.68

the results better, we made the boxplots of all the algorithms
on the test sets, which is shown in Fig. 2.

From the boxplots, we can see clearly that all the algorithms
have a very large variance. This may be due to the large
number of attributes included in the terminal set of GP. In our
experiments, there are 24 attributes in the terminal set, which
can lead to a huge search space. In such a huge search space,
it is difficult to consistently identify the promising regions of
the search space and obtain high-quality solutions.

Additionally, it is observed that when Pm = 0.3 and λ ≥ 2,
there are many outliers in most cases. In other words, although
the adaptive mutation can help GP find better solutions most
of the time, its behaviour is still unstable. It is known that the
frequency may not be accurate enough, since the irrelevant
attributes can have many redundant occurrences. This can in-
crease the risk of emphasizing irrelevant attributes by mistake,
and consequently reduce the stability. Despite the outliers,
when comparing the boxplots of Baseline (the first one) and
(1, 0.3) (the third one), we can see that the distribution of
(1, 0.3) is always below that of Baseline. However, (1, 0.3)
still suffered from an outlier, which is shown as the dot for
(0.85, miss), (0.85, full), (0.9, miss), (0.9, full), (0.95, miss)
and (0.95, full).

To understand why the outlier occurred, we plot the curve of
the weights of the attributes throughout the corresponding run.
The result is shown in Fig. 3. It can be seen that the weights
of PT and W, which are the two most important attributes
as shown in Fig. 1, are not substantially distinguished from
the other attributes (e.g. AQW and WI2Q). This means that
the adaptive mutation was not properly guided by the weight

vector, which has not emphasized PT and W enough. Fig. 4
shows the weight curves of the runs of Baseline and (1, 0.3)
that produce the rules with high test performance. It can be
seen that in these two runs, the weights of W and PT are
much higher than that in Fig. 3. This observation is consistent
with our intuition, which shows that the test performance of
the GP-evolved rules largely depends on whether the search
successfully identifies the correct direction and focuses on the
more important attributes (W and PT in this case).

Table VI shows the best test performance obtained by
the algorithms on the test sets. It can be seen that (5, 0.3)
performed the best, outperforming the baseline GP in 6 out of
the 8 test sets. This demonstrates that the adaptive mutation
can enhance the strength of the search in the best case.

In summary, we have the following observations and dis-
cussions from the results.

• Using adaptive mutation tends to lead to better test
performance, although the difference is not significant in
most cases.

• The variation of the test performance of all the algorithms
is relatively high. This may be due to the large number
of terminals (24 in the experiment), which led to a huge
search space.

• In such a huge search space, it is hard to identify im-
portant attributes, either by uniform sampling or adaptive
mutation. As a result, we see outliers for AM-GP.

• The formula to update the weights can also be problem-
atic. First, the frequency can be misleading, since the less
relevant attributes can have many redundant occurrences
in the priority function. Second, in Eq. (1), the fitness
and frequency are of different magnitude. The scale of
frequency is much larger than that of the fitness. This
will enhance the misleading effect of frequency.

D. Further Analysis

Fig. 5 shows the detail of the priority function obtained
by the outlier point of (1, 0.3). One can see that the first
argument of the ifte operator is min(W/T,AQW + WI2Q),
which is positive most of the time. Then, the rule can be
mostly simplified to min(W/T,OINQ+AQW), which is very
close to W/PT. Therefore scheduling decisions made by this
rule will match those made by WSPT in the vast majority of
cases. This explains why the test performance of this outlier
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Fig. 2. Boxplots of the algorithms for all the test sets.

TABLE VI
THE BEST TEST PERFORMANCE FOUND BY ALL THE ALGORITHMS ON THE TEST SETS. THE BEST VALUES ARE MARKED IN BOLD.

(util, ops) Baseline (1,0.1) (1,0.3) (2,0.1) (2,0.3) (5,0.1) (5,0.3) (10,0.1) (10,0.3)

(0.8, miss) 0.9568 0.9576 0.9546 0.9588 0.9562 0.9577 0.9598 0.9595 0.9545
(0.8, full) 0.9582 0.9543 0.9536 0.9559 0.9547 0.9544 0.9581 0.9595 0.9538
(0.85, miss) 0.9542 0.9558 0.9548 0.9606 0.9542 0.9551 0.9498 0.9567 0.9523
(0.85, full) 0.9528 0.9454 0.9420 0.9504 0.9433 0.9467 0.9446 0.9487 0.9423
(0.9, miss) 0.9283 0.9305 0.9280 0.9359 0.9301 0.9320 0.9218 0.9342 0.9318
(0.9, full) 0.9268 0.9282 0.9316 0.9321 0.9224 0.9293 0.9273 0.9285 0.9300
(0.95, miss) 0.9131 0.9200 0.9187 0.9240 0.9141 0.9194 0.8976 0.9244 0.9244
(0.95, full) 0.9135 0.9188 0.9211 0.9277 0.9046 0.9129 0.9068 0.9150 0.9206

Weight Curve of Outlier
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Fig. 3. The weight curves of the run that produced the outlier for AM-GP-
(1, 0.3).

is around 1.0. In other words, in this case, GP failed to find
better rules than the reference rule.

a) using adaptive mutation
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Fig. 4. Example weight curves of high performance dispatching rules as
evolution progresses.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated using GP to evolve dispatching
rules for dynamic JSS. Specifically, we studied the importance
of different terminals in GP to evolve high-quality rules, and
proposed a terminal weighting scheme to learn the importance



(ifte (min (% W PT) (+ AQW WI2Q))
(min (% W PT) (+ OINQ AQW))
(min (% (% W PT) PT) (% W PT)))

Fig. 5. Outlier dispatching rule

of different terminals using an adaptive mutation to guide the
search, based on the terminal weights. The experimental re-
sults showed that the terminal weighting and adaptive mutation
schemes can improve the test performance of the GP-evolved
rules. This demonstrates the efficacy of treating the terminals
differently based on their contribution rather than randomly
selecting them.

The proposed algorithm still has some drawbacks. Its be-
haviour is unstable, and this resulted in many outliers. This
is due to the large number of attributes and the use of
frequency in the terminal weighting, which is not accurate
enough and may mislead the search to focus on the irrelevant
attributes with many redundant occurrences in the individuals.
To overcome the drawbacks, we will design a more accurate
terminal weighting scheme that can truly reflect the importance
of attributes, and improve the adaptive mutation by increasing
the influence of the terminal weighting in a proper way. In
addition, other job shop scenarios will be examined to verify
the generality of the proposed algorithm.
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