
Evolutionary Multitask Optimisation for Dynamic Job
Shop Scheduling using Niched Genetic Programming

John Park1, Yi Mei1, Su Nguyen1,2, Gang Chen1, Mengjie Zhang1

1Evolutionary Computation Research Group, Victoria University of Wellington, PO Box 600,
Wellington, New Zealand

2La Trobe University, Melbourne, Australia
1{John.Park,Yi.Mei,Aaron.Chen,Mengjie.Zhang}@ecs.vuw.ac.nz

2p.nguyen4@latrobe.edu.au

Abstract. Dynamic job shop scheduling (DJSS) problems are combinatorial op-
timisation problems where dynamic events occur during processing that prevent
scheduling algorithms from being able to predict the optimal solutions in ad-
vance. DJSS problems have been studied extensively due to the difficulty of the
problem and their applicability to real-world scenarios. This paper deals with a
DJSS problem with dynamic job arrivals and machine breakdowns. A standard
genetic programming (GP) approach that evolves dispatching rules, which is ef-
fective for DJSS problems with dynamic job arrivals, have difficulty generalising
over problem instances with different machine breakdown scenarios. This paper
proposes a niched GP approach that incorporates multitasking to simultaneously
evolve multiple rules that can effectively cope with different machine breakdown
scenarios. The results show that the niched GP approach can evolve rules for
the different machine breakdown scenarios faster than the combined computation
times of the benchmark GP approach and significantly outperform the bench-
mark GP’s evolved rules. The analysis shows that the specialist rules effective for
DJSS problem instances with zero machine breakdown have different behaviours
to the rules effective for DJSS problem instances with machine breakdown and
the generalist rules, but there are also large variance in the behaviours of the zero
machine breakdown specialist rules.

1 Introduction

Job shop scheduling (JSS) problems [1] are combinatorial optimisation problems with
significant importance in operation research and artificial intelligence [2]. JSS also has
applications to real-world manufacturing environments and production scheduling [3].
Because of this, JSS problems have been extensively studied over the past 60 years by
both academics and industry experts [4]. A JSS problem instance consists of a shop
floor with a limited number of machine resources that is used to process incoming jobs
[1]. To process a job, a job’s operations need to be processed in a specific sequence,
and each operation require a specific machine to process the operation. In addition, a
machine can only process one operation at a time. The goal of JSS is to make intel-
ligent decisions during processing to optimise a given objective function. Finally, in
a real-world scenario, there are unforeseen events that can occur which can affect the

properties of the shop floor [5]. JSS problems with unforeseen events are called dynamic
JSS (DJSS) problems, and have been studied extensively in the literature [5].

For this paper, we deal with a DJSS problem with the mean weighted tardiness
(MWT) objective [1], dynamic job arrivals and machine breakdowns [3, 5]. This means
that the jobs’ properties are unknown they reach the shop floor, and unforeseen break-
downs of machines occur during processing where the machines need to be repaired for
durations of times before they are available to process the jobs’ operations. The most
prominent method of handling DJSS problems with dynamic job arrivals is to evolve
effective dispatching rules using evolutionary computation (EC) techniques such as ge-
netic programming (GP) [3, 2]. In general, the rules evolved by the EC techniques gen-
erally outperform the man-made dispatching rules [3] given that the training set used
to evolve the GP rules is appropriate for the DJSS problem that the rules are applied to
[6]. On the other hand, predictive-reactive approaches are extensively applied to DJSS
problems with machine breakdowns [5], and attempt to generate schedule that are ro-
bust as possible to disruptions caused by machine breakdowns. They often focus on
small DJSS problem instances with fixed number of job arrivals (e.g. up to 80 jobs
[7]). Both dynamic job arrivals and machine breakdowns have been studied extensively
in the literature, but there has only been a limited number of GP approaches to DJSS
problems with both dynamic job arrivals and machine breakdowns [8].

By investigating the two types of dynamic events simultaneously, it is likely that we
can extend the scope of research into DJSS problems, and better emulate real-world
scenarios where a large numbers of unforeseeable events are likely to occur. How-
ever, preliminary investigation by Park et al. [8] showed that it is too difficult for the
evolved rules to generalise effectively over the different machine breakdown scenarios,
and showed that the GP rules evolved using instances from all machine breakdown sce-
narios (i.e. “generalist” rules) were more biased towards the DJSS problem instances
with no machine breakdowns than problem instances with machine breakdowns. There-
fore, a GP approach that handles the DJSS problem by allowing the GP individuals to
focus on the different machine breakdown scenarios as much as possible may be more
effective than a standard GP approach. By focusing on specific machine breakdown
scenarios, useful features can be discovered by the GP that can be shared during the GP
process to improve the overall qualities of the output rules [9]. The idea of decomposing
a problem to smaller subproblems has parallels to multitask learning [9], where mul-
tiple tasks are solved simultaneously. Evolutionary multitasking techniques [10] have
been effectively applied to solve multiple optimisation problems concurrently [11], but
they have not been applied to DJSS problems.

1.1 Goal

The goal of this paper is to develop a multitask GP approach that is able to cope with a
DJSS problem with dynamic job arrivals and various severity of machine breakdowns
that occur during processing. To do this, we propose a niched GP approach that evolves
two types of rules: “generalist” rules that are effective over the entire DJSS problem and
“specialist” rules that specifically handle the designated machine breakdown scenario
that they are specialised for. Specialist rules are useful when the overall machine break-
down properties of the problems (e.g. the distribution of repair times [12]) are known in

2

advance, and the generalist rules are useful otherwise. Compared to a standard GP ap-
proach that evolves GP rules for the different machine breakdown scenarios separately,
a niched GP approach that evolves rules simultaneously has the potential to improve
on the effectiveness of the evolved rules by sharing useful properties of rules effective
on other machine breakdown scenarios, and have better performances overall than the
standard GP approach. In addition, by analysing the rules evolved by the niched GP ap-
proach, e.g., by determining the behaviours of different specialist rules, we can observe
the overlap between the machine breakdown scenarios based on the behaviours of the
evolved specialist rules.

2 Niched GP Approach to Handling DJSS Problems with Machine
Breakdown

This section covers the niched GP approach that is used to evolve a generalist rule and
specialist rules for the different machine breakdown scenarios simultaneously. First, we
give the framework of the niched GP process, then provide the details on the niched
GP’s representation, the terminal and the function sets.

2.1 Overall Framework

The niched GP approach in this paper is extended from a niched GP approach proposed
by Mei et al. [13] used to evolve a diverse set of rules. The niched GP keeps track
of the GP individuals that are the best for the different machine breakdown scenarios
during training. By doing this, GP may be able to retain useful features from rules
which may not have the best overall performance which can then be shared with other
GP individuals.

For the niched GP process, the GP individuals are first randomly initialised and the
set of specialist rule S is empty. For each generation when a GP individual p is being
evaluated, the individual is first evaluated to the “general” training set T to calculate its
fitness f(p). The problem instances in training set T consist of N machine breakdown
scenarios. If an individual p has the best performance for problem instances in niche n
(i.e. under a specific machine breakdown scenario) in the training set T , then current
generation niche individual tI for niche n is updated to individual p. After all GP in-
dividuals in the current population have been evaluated, the current generation niched
individuals t1, . . . , tN are then compared against the overall niched individuals s1, . . . ,
sN . To compare the current generation niched individuals tn to overall niched indi-
vidual sn, the individuals are evaluated on a niched training set Vn, separate from the
general training set T , that only consists of problem instances with the specific machine
breakdown scenario (i.e. the niched training sets are validation sets specifically for the
niched individuals). If the f ′(tn) of the current generation niched individual tn is better
than the fitness f ′(sn) of the overall niched individual sn over the niched training set
Vn, then sn is updated to the current generation’s niche individual tn. Otherwise, the
individual tn is kept the same.

After the set of niched individuals has been updated, the clearing algorithm (denoted
as Clearing(P,S, σ, κ)) is carried out before the individuals undergo the standard

3

Algorithm 1 S ← NichedGP(G)

Output:The set of specialist rules S and the generalist rule g.
Initialise GP population P;
Initialise specialist rule set S ← {s1, . . . , sN} for the N niches;
for gen← 1 to G do

Set t1, . . . , tN ← ∅ and f1, . . . , f|P| ← 0;
for each individual p in GP population P do

for each problem instance I in the training set T do
Apply individual p to I to calculate normalised objective Obj′(p, I);

end
Update f(p) and g;
Update tn if p is better on problem instances in niche n;

end
for tn in t1, . . . , tN do

Apply tn to problem instances in niched training set Vn and calculate the
performance f ′(tn) over the niched training set;
Update sn ← tn if f ′(tn) < f ′(sn);

end
P ′ ← Clearing(P,S, σ, κ);
Apply the breeding procedure using P ′ and update the population P;

end
Output the set of specialist GP rules S and the best overall GP rule g;

tournament selection procedure. The clearing algorithm is modified from the algorithm
used by Mei et al. [13]. However, unlike Mei et al.’s clearing procedure, where all GP
individuals have a niche radius, only the specialist GP rule from the rule set S (i.e.,
niched individuals that perform the best on the different machine breakdown scenarios)
and the best individual found so far are used as the niches in our niched GP approach.
Afterwards, the individuals with poor performances within distance σ from the best
niched individuals are removed from the GP population if the niche has reached its
capacity κ. This continues until the maximum number of generations has been reached.
Finally, the algorithm reports the best overall rule as the generalist rule g and the set of
specialist rules S. The pseudocode that summarises the niched GP process is shown in
Algorithm 1.

Given that the same training set T is used, the niched GP approach will likely have
a greater computation time than a standard GP approach that uses a single population
because it further evaluates the niched individuals on the niched training sets on top of
the standard evaluation procedure. When evolving dispatching rules for DJSS problems
using GP, the evaluation procedure and the application of the individuals on the training
instances is the most computationally intensive step of the GP process [2]. As the niched
GP approach will have additional # of niches × niched training sets sizes simulation
runs, the niched GP approach requires a total of |P| × |T |+N × |V| simulation runs.
However, the niched GP approach will still have significantly shorter computation time
compared to evolving generalist and specialist rules using a standard GP separately,

4

Table 1: Terminal set for GP, where a job j is waiting at the available machine m at a
decision situation.

Terminal Description
RJ operation ready time of job j
PT operation processing time of

job j
RO remaining number of opera-

tions of job j
RT remaining total processing

times of job j
RM machine m’s ready time
WINQ work in next queue for job j
DD job’s due date dj

Terminal Description
SL slack of job j
W job’s weight wj

NPT next operation processing time
of job j

NNQ number of idle jobs waiting at
the next machine

NQW average waiting time of last 5
jobs at the next machine

AQW average waiting time of last 5
jobs at all machines

which requires 2 × |P| × |T | simulation runs to evaluate all the GP individuals per
generation.

2.2 GP Representation, Terminal Set and Function Set

The GP representation, terminals and function sets are adapted from the GP approach
used by Park et al. [8] to investigate the DJSS problem with dynamic job arrivals and
machine breakdowns. For the niched GP approach, the GP individuals are arithmetic
function trees that are used to calculate the priorities of jobs waiting at an available
machine m∗ during a decision situation [3]. The terminals listed in Table 1 for a GP
individual’s tree correspond to job, machine and shop floor attributes. The non-terminals
consist of arithmetic operators +, −, ×, protected /, binary operators max, min and
a ternary operator if. Protected / returns 1 if the denominator is zero, and returns
the output of a standard division operator otherwise. if operator returns the value of
the second child branch (representing the “then” condition) if the first child branch
(representing the input into the “if” condition) is greater than or equal to zero, but
returns the value of the third child branch (representing the “else” condition) otherwise.

2.3 Evaluation Procedure

The GP individual p is applied to the DJSS problem instances in the training sets as
a non-delay [1] dispatching rule. The individual p is applied to a problem instance I
to generate a schedule. Afterwards, the MWT value Obj(p, I) of the schedule is nor-
malised using a reference rule to reduce bias towards specific DJSS problem instances
[14]. The reference rule R, which is the weighted apparent tardiness cost (wATC) rule
[1], is applied to problem instance I to generate a schedule withObj(R, I). Afterwards,
the normalised MWT value is calculated as Obj′(p, I) = Obj(p,I)

Obj(R,I) . From the nor-
malised objective values, the fitness of individual p is given by f(p) = 1

|T |
∑

I∈T Obj
′(p, I)

after the individual has been applied to all problem instances in the training set T .

5

Table 2: The parameters used for simulating a DJSS problem instance.
Parameters Value

Shop floor parameters

Number of machines 10
Warm up jobs 500
completed jobs before simula-
tion termination

2500

Utilisation rate 90%
Job arrival rate (λ) λ ∼ Poisson(13.5)
Operation processing times (oij) oij ∼ Unif [1, 49]
operations per job (Nj) Nj ∼ Unif [2, 10]
Job weight Random from 1, 2, 4 with prob-

abilities 20%, 60%, 20%
Due date tightness 3.0 or 5.0

Machine breakdown
parameters

Breakdown level 0%, 2.5% or 5%
Mean repair time 25, 125 or 250

3 Experimental Design

This section describes the simulation model used to evaluate the specialised rules for
the niched GP approach, followed by a description of benchmark GP used for compar-
ison during evaluation. Afterwards, detailed parameter settings for GP and niching are
provided.

3.1 DJSS Simulation Model

Discrete-event simulations are the standard method of simulating job shop schedul-
ing problem instances [3]. A discrete-event simulation stochastically generates the dy-
namic events, i.e., the job arrivals and the machine breakdowns. The simulation model
is adapted from the simulation model used by Park et al. [8], which is a modification
of Holthaus’s [12] simulation model. In the simulations, machine breakdown level (the
proportion of simulation duration the machines are broken down [12]) and mean ma-
chine repair time parameters are used to stochastically generate machine breakdowns
[12]. There are three different parameter values for machine breakdown level, three dif-
ferent values for mean times required to repair the machines, and two different values
for the due date tightness. Due date tightness is a simulation parameter used to deter-
mine how the due date is generated for a job arrival [12]. Since the repair times are not a
factor when the breakdown level is zero, i.e., there is no machine breakdown, the DJSS
problem instances can be generated from 2 × 3 × 3 = 14 different scenarios. There is
no re-entry for the arriving jobs, i.e., a job has at most one operation on a machine [1].
These parameters are listed below in Table 2.

At each generation, the training set T simulates a DJSS problem instance from each
simulation configuration scenarios (i.e. different combinations of due date tightness,
breakdown level and mean repair time), resulting in a GP individual being applied to 14
DJSS problem instances. The simulations used in training set T are grouped up into the
seven groups of two problem instances based on their breakdown level and mean repair
time, e.g., a group with breakdown level of 2.5% and mean repair time of 25 is denoted

6

as 〈2.5%, 25〉. The group with no machine breakdowns (i.e. has a breakdown level of
0%) is simply denoted as 〈0〉. In other words, the seven groups are the “niches” that are
filled up by GP individuals that perform the best for the different machine breakdown
level and mean repair time parameter values (i.e. N = 7). The seed used to simulate
the problem instances from the simulation configurations are rotated every generation
to help improve the generalisation ability of the evolved rules [13].

After the current generation niched individuals have been found, they are further
evaluated on the niched training sets to update the set of specialist GP rules S. A niched
individual t〈b,r〉 from the current generation for the scenario 〈b, r〉 is applied to the
niched training set V〈b,r〉. The niched training set V〈b,r〉 has the configurations with due
date tightness of 3.0 or 5.0. In other words, further two simulation runs are used per
niched individuals. Finally, to ensure that the comparisons between the rules between
different generations are kept consistent, the niched training sets are fixed over every
generation for the niched GP.

3.2 GP Benchmarks

To evaluate the niched GP’s evolved rules, we use a standard single-tree GP representa-
tion [3, 2] with the same terminal and function set used by the niched GP for consistency
(Table 1). Afterwards, the benchmark GP is applied to the machine breakdown scenar-
ios independently to evolve the generalist and the specialist rules. The entire training set
T is used to evolve the generalist rules from the benchmark GP approach. To evolve the
specialist rules, instead of using the entire training set T described above, the bench-
mark GP only uses specific machine breakdown scenarios to evolve dispatching rules,
e.g., a GP process is run with training instances being generated from 〈2.5%, 25〉. Since
there are two possible due date tightness parameters, an individual in the benchmark GP
process is applied to two training problem instances during the evaluation procedure.
The best individual of the last generation before maximum number of generations is
reached is the output dispatching rule for the benchmark GP process.

3.3 GP and Niching Parameters

The niched and the benchmark GP approaches follow parameters used by existing GP
approaches for DJSS problems [8]. The GP population size is 1024, and the number
of generations is 51. The crossover, mutation and reproduction rates are 80%, 10% and
10% respectively. The maximum depth of the individuals during initialisation is 4, and
8 across all generations of the GP process. Tournament selection of size 7 for both
the two GP approaches. For the clearing algorithm Clearing(P,S, σ, κ) used by the
niched GP approach, the two parameters niche radius σ and niche capacity κ are kept
consistent as the parameters used by Mei et al. [13], i.e., σ = 1 and κ = 1. Finally,
k = 3.0 is used for the wATC reference rule used for the fitness calculation (Section
2.3).

7

Table 3: Comparison of the computation time required to evolve the rules for the GP
approaches (in seconds).

Computation Time (×104 s)
Approach

GP NGP
Generalist 2.17 ± 0.35 −

Specialist

〈0%, 0〉 0.20 ± 0.02 −
〈2.5%, 25〉 0.25 ± 0.03 −
〈2.5%, 125〉 0.30 ± 0.05 −
〈2.5%, 250〉 0.26 ± 0.04 −
〈5%, 25〉 0.31 ± 0.05 −
〈5%, 125〉 0.42 ± 0.07 −
〈5%, 250〉 0.37 ± 0.07 −

Specialist Combined 2.10 ± 0.15 −
Total 4.27 ± 0.39 2.32 ± 0.34

4 Experimental Results

To compare the two GP approaches, the GP process is run 30 times over each ma-
chine breakdown scenarios to obtain sets of independent rules for the different machine
breakdown scenarios. The computation times of the runs is also recorded and compared
against each other before comparing the performances of the generalist and the special-
ist rules. One GP approach is significantly better than the other GP approach either in
terms of computation time or performance if it can be verified by the two sided Stu-
dent’s t-test at p = 0.05. After the comparisons, we analyse the behaviours of the rules
evolved by the niched GP approach.

4.1 Computation Costs

Both the niched and the benchmark GP approaches are implemented in a Java program
ran on Intel(R) Core(TM) i7 CPU 3.60GHz. The time taken to evolve the rules is given
in Table 3, where the computation time is measured in seconds. In the table, “Specialist
Combined” denotes the sum of the times required to evolve the specialist rules with
the benchmark GP approaches over the different machine breakdown scenarios. This is
to compare the overall computation time required to evolve the specialist rules with the
benchmark GP approach to the niched GP approach, as the niched GP approach evolves
the generalist rule and the specialist rules simultaneously over a single run. “Total”
denotes the sum of the time required to evolve the generalist and the specialist rules for
the niched and the benchmark GP approaches. Since niched GP approach evolves the
generalist and the specialist rules simultaneously, its time is only given in the “Total”
category.

From the tables, compared to the combined amount of time required to evolve the
specialist rules or the generalist rules individually using the benchmark GP approach,
the niched GP approach takes significantly longer amount of time. This is due to the
additional evaluation required to further evaluate the niched individuals in the niched
GP approach after the individuals have been evaluated over the training set. However,

8

for evolving all rules, i.e., both the generalist and the specialist rules, the niched GP
approach is significantly faster than the benchmark GP approach.

An interesting observation is that the additional computation time required by the
niched GP approach does not exactly correspond with the theoretical amount of time re-
quired to further evaluate the niched GP individuals (Section 2.1). From the GP and the
DJSS parameters, the number of simulation runs required per generation for each spe-
cialist rules for the benchmark GP approaches is the population size times the number
of configurations per machine breakdown scenario, i.e., 1024 × 2 = 2048. Combined
together, the total number of simulation runs required by the benchmark GP approach
to evolve the specialist rules require 2048×7 = 14336. This is equivalent to the number
of simulation runs required by the niched GP approach to evaluate the GP population
minus the additional runs required to further evaluate the niched GP individuals, which
requires 7 × 2 = 14 simulation runs. This means that the additional simulation runs
should approximately add 14/14336 × 100% = 0.1% overhead to the niched GP ap-
proach compared to evolving the specialist rules separately. However, the experiments
show that the niched GP approach takes ∼ 10% longer computation time to evolve the
rules compared to the combined time required by the benchmark GP approach to evolve
the specialist rules. Instead, the additional computation time is likely be due to the fit-
ness adjustments made to GP individuals that are close to the niched individuals in the
clearing algorithm (Section 2.1). It may also be likely that the evolved GP rules for the
niched GP approach is also bigger, which results in longer computation time required
to calculate the priorities of jobs during the simulation.

4.2 Performance Comparison of Evolved Rules

The performances of a set of rules are calculated by applying the evolved rules to sim-
ulation models generated from the simulation configurations provided in Section 3.1.
A simulation model in the test set uses a new seed so that the exact times of the job
arrivals and machine breakdowns (and their properties) that are generated by the simu-
lation differs from the simulations during training. An evolved rule is applied to DJSS
simulation model to generate a schedule and get a MWT objective value. This is then
repeated 30 times with different seeds for the simulation model to get an average MWT
performance of the evolved rule over the simulation configuration. The evolved gener-
alist rules are applied to all simulation configurations, whereas the evolved specialist
rules are applied to the machine breakdown scenarios they are designed for. The perfor-
mances of the specialist and the generalist rules are given in Table 4. In the table, µ±σ
for each set of rules denotes that the mean MWT performance is µ and the standard
deviation is σ. In addition, 〈b, r, h〉 in the tables denotes that the particular simulation
model has b breakdown level, r mean repair time and h due date tightness factor.

From the tables, we can see that the niched GP approach generally outperforms the
benchmark GP approach in terms of both the specialist rules performances and the gen-
eralist rules performances. The only configuration scenarios where the benchmark spe-
cialist rules significantly outperform the niched specialist rules are on the simulations
with zero machine breakdowns. In addition, the benchmark specialist rules are slightly
better than the niched specialist rules for the scenarios 〈5%, 25, 3〉, 〈5%, 250, 5〉 and
〈5%, 250, 3〉, but the differences are not significant.

9

Table 4: Comparison showing the mean and the standard deviation of the MWT perfor-
mances for the specialist and the generalist rules evolved by the niched and the bench-
mark GP approaches over the test simulation runs.

Specialist Generalist
Approach

NGP GP NGP GP

MWT
(×102)

〈0%, 0, 5〉 2.26 ± 0.44 1.94 ± 0.22 2.16 ± 0.13 2.21 ± 0.10
〈0%, 0, 3〉 4.68 ± 1.35 3.43 ± 0.17 3.25 ± 0.06 3.29 ± 0.11

〈2.5%, 25, 5〉 3.43 ± 0.21 3.55 ± 0.23 3.37 ± 0.12 3.46 ± 0.13
〈2.5%, 25, 3〉 4.60 ± 0.21 4.72 ± 0.22 4.45 ± 0.06 4.52 ± 0.12
〈2.5%, 125, 5〉 4.50 ± 0.10 4.69 ± 0.17 4.45 ± 0.13 4.54 ± 0.14
〈2.5%, 125, 3〉 5.81 ± 0.08 6.10 ± 0.16 5.82 ± 0.08 5.93 ± 0.16
〈2.5%, 250, 5〉 6.12 ± 0.17 6.28 ± 0.15 6.06 ± 0.14 6.18 ± 0.20
〈2.5%, 250, 3〉 7.55 ± 0.11 7.71 ± 0.15 7.51 ± 0.11 7.62 ± 0.18

〈5%, 25, 5〉 4.50 ± 0.13 4.58 ± 0.19 4.40 ± 0.15 4.52 ± 0.21
〈5%, 25, 3〉 6.50 ± 0.26 6.42 ± 0.18 6.33 ± 0.17 6.47 ± 0.27
〈5%, 125, 5〉 6.40 ± 0.15 6.51 ± 0.20 6.42 ± 0.16 6.56 ± 0.26
〈5%, 125, 3〉 8.42 ± 0.19 8.45 ± 0.26 8.55 ± 0.21 8.74 ± 0.35
〈5%, 250, 5〉 8.77 ± 0.33 8.74 ± 0.35 8.95 ± 0.27 9.20 ± 0.46
〈5%, 250, 3〉 11.20 ± 0.29 11.15 ± 0.30 11.43 ± 0.32 11.65 ± 0.46

Another interesting observation is that the generalist rules for the benchmark GP
approach performs better than the specialist rules for a number of simulation config-
urations (from the simulation configuration 〈0%, 0, 3〉 to the simulation configuration
〈2.5%, 250, 3〉). This is likely attributed to the number of simulation runs each GP indi-
vidual during the GP process undergoes during the evaluation procedure. The generalist
rules are applied to 14 different simulation runs with different machine breakdown sce-
narios, whereas a specialist rule is only applied to two simulation runs over the specific
machine breakdown scenario. In other words, the GP individuals in the benchmark GP
process may not have had enough training instances to effectively evaluate the qualities
of the individuals, resulting in underperforming specialist rules. To verify this, we ran
additional experiments for the benchmark GP process where the GP individuals are ap-
plied to simulations under a specific machine breakdown scenario runs 14 times instead
of two times, using different seeds for each simulation. The specialist rules evolved us-
ing the additional simulation runs for the GP individuals performs significantly better
than the generalist rules.

4.3 Diversity Analysis

For the analysis procedure, the goal is to find differences in terms of the rules’ be-
haviours that have been evolved using different machine breakdown scenarios. To do
this, we calculate the phenotypic distances between the rules evolved by the niched GP
approaches using the job rank distance measure proposed by Hildebrandt and Branke
[14] and used by the clearing algorithm Clearing(P,S, σ, κ) [13]. The distances be-
tween a single rule in a rule set are compared against the 30 rules of another rule set to
obtain an average distance of the single rule to the rule set. The means and the standard
deviations of the average distances of the rule for the generalist and the specialist rule

10

0±0 0.69±0.72 0.11±0.4 0.11±0.4 0.06±0.34 0.09±0.37 0.14±0.43 0.11±0.4

0.69±0.72 0±0 0.69±0.58 0.69±0.63 0.63±0.6 0.66±0.59 0.71±0.67 0.69±0.63

0.11±0.4 0.69±0.58 0±0 0.11±0.32 0.06±0.24 0.09±0.28 0.14±0.36 0.11±0.32

0.11±0.4 0.69±0.63 0.11±0.32 0±0 0.06±0.24 0.09±0.28 0.09±0.28 0.06±0.24

0.06±0.34 0.63±0.6 0.06±0.24 0.06±0.24 0±0 0.03±0.17 0.09±0.28 0.06±0.24

0.09±0.37 0.66±0.59 0.09±0.28 0.09±0.28 0.03±0.17 0±0 0.11±0.32 0.09±0.28

0.14±0.43 0.71±0.67 0.14±0.36 0.09±0.28 0.09±0.28 0.11±0.32 0±0 0.03±0.17

0.11±0.4 0.69±0.63 0.11±0.32 0.06±0.24 0.06±0.24 0.09±0.28 0.03±0.17 0±0

Generalist

<0%>

<2.5%,25>

<2.5%,125>

<2.5%,250>

<5%,25>

<5%,125>

<5%,250>

G
en

er
al

is
t

<0
%

>

<2
.5

%
,2

5>

<2
.5

%
,1

25
>

<2
.5

%
,2

50
>

<5
%

,2
5>

<5
%

,1
25

>

<5
%

,2
50

>

Rule Set

R
ul

e
S

et

0.00

0.25

0.50

0.75

1.00
Mean

Fig. 1: Pairwise mean and standard deviations of the average distances between the rules
evolved by the niched GP approach using Hildebrandt and Branke’s ranked distance
measure [14]. First table compares the specialist rule sets against each other, and the
second table compares the generalist rule set against the specialist rule sets.

sets are shown in Fig. 1. In the figure, we provide a heat map of the average distances
of two sets of rules as visual aids.

Compared to the other scenarios, the specialist rules that specialise on the scenario
with zero machine breakdown has a higher average distances from the specialist rules
evolved on other machine breakdown scenarios and the generalist rules. This implies
that the rules that are effective on DJSS problems with only dynamic job arrivals are
very different from the rules that are effective on DJSS problems with both dynamic job
arrivals and machine breakdowns. However, the large standard deviation in the average
distances between the behaviours of the rules evolved on zero machine breakdown and
the other sets of evolved rules means that the differences in the distances are not statisti-
cally significant. Therefore, further experiments that isolate individual rules and analyse
their behaviours may be required.

5 Conclusions and Future Work

This paper proposes a novel niched GP approach that incorporates multitasking [9] to
evolve effective dispatching rules for a DJSS problem with dynamic job arrivals and ma-
chine breakdowns. The proposed niched GP approach evolves a generalist and multiple
specialist rules for the different machine breakdown scenarios simultaneously. Evolv-
ing the generalist rules and the specialist rules for niched GP approach is significantly
faster than sequentially evolving the rules using a benchmark GP approach. In addition,
the evolved rules from the niched GP approach generally outperform the rules evolved
by the benchmark GP approach.

For the future work, it may be promising to further investigate the behaviours of
the rules evolved on the different machine breakdown scenarios, to determine why the

11

rules evolved for the niched GP approach performs significantly better. The preliminary
comparison shows that the rules that are effective for DJSS problem instances with no
machine breakdowns behave differently than the rules that are effective for DJSS prob-
lem instances with machine breakdown, but the large variance in the behaviours of the
rules means that this difference is not significant. In addition, further experiments that
apply the rules to DJSS problem instances with unseen machine breakdown scenar-
ios (e.g. a DJSS problem instance with machine breakdown level of 10%) may further
be able to test generalisation ability of the generalist rules evolved by the niched GP
approach.

References

1. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. 4 edn. SpringerUS (2012)
2. Nguyen, S., Mei, Y., Zhang, M.: Genetic programming for production scheduling: a survey

with a unified framework. Complex & Intelligent Systems 3(1) (2017) 41–66
3. Branke, J., Nguyen, S., Pickardt, C.W., Zhang, M.: Automated design of production schedul-

ing heuristics: A review. IEEE Transactions on Evolutionary Computation 20(1) (2016)
110–124

4. Potts, C.N., Strusevich, V.A.: Fifty years of scheduling: a survey of milestones. Journal of
the Operational Research Society 60(1) (2009) S41–S68

5. Ouelhadj, D., Petrovic, S.: A survey of dynamic scheduling in manufacturing systems. Jour-
nal of Scheduling 12(4) (2009) 417–431

6. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: A computational study of representations
in genetic programming to evolve dispatching rules for the job shop scheduling problem.
IEEE Transactions on Evolutionary Computation 17(5) (2013) 621–639

7. Yin, W.J., Liu, M., Wu, C.: Learning single-machine scheduling heuristics subject to machine
breakdowns with genetic programming. In: Proceedings of IEEE Congress on Evolutionary
Computation (CEC 2003). (2003) 1050–1055

8. Park, J., Mei, Y., Chen, A., Zhang, M.: Investigating the generality of genetic programming
based hyper-heuristic approach to dynamic job shop scheduling with machine breakdown.
In: Proceedings of the 2017 Australasian Conference on Artificial Life and Computational
Intelligence. Volume 10142 of Lecture Notes in Artificial Intelligence., Springer Interna-
tional Publishing (2017) 301–313

9. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on Knowledge and
Data Engineering 22(10) (2010) 1345–1359

10. Ong, Y.S., Gupta, A.: Evolutionary multitasking: A computer science view of cognitive
multitasking. Cognitive Computation 8(2) (2016) 125–142

11. Gupta, A., Ong, Y.S., Feng, L.: Multifactorial evolution: toward evolutionary multitasking.
IEEE Transactions on Evolutionary Computation 20(3) (2016) 343–357

12. Holthaus, O.: Scheduling in job shops with machine breakdowns: an experimental study.
Computers & Industrial Engineering 36(1) (1999) 137–162

13. Mei, Y., Nguyen, S., Xue, B., Zhang, M.: An efficient feature selection algorithm for evolving
job shop scheduling rules with genetic programming. IEEE Transactions on Emerging Topics
in Computational Intelligence 1(5) (2017) 339–353

14. Hildebrandt, T., Branke, J.: On using surrogates with genetic programming. Evolutionary
Computation 23(3) (2015) 343–367

12

