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Abstract. In NSGA-III, the diversity of solutions is guided by a set of
uniformly distributed reference points in the objective space. However,
uniformly distributed reference points may not be efficient for problems
with disconnected and non-uniform Pareto-fronts. These kinds of prob-
lems may have some reference points that are never associated with
any of the Pareto-optimal solutions and will become useless reference
points during evaluation. The existence of these useless reference points
in NSGA-III significantly affects its performance. To address this issue,
a new reference points adaptation mechanism is proposed that generates
reference points according to the distribution of the candidate solutions.
The use of this proposed adaptation method improves the performance of
evolutionary search and promotes population diversity for better explo-
ration.The proposed approach is evaluated on a number of unconstrained
benchmark problems and is compared with NSGA-III and other reference
point adaptation approaches. Experiment results on several benchmark
problems clearly show a prominent improvement in the performance by
using the proposed reference point adaptation mechanism in NSGA-III.

Keywords: Many-objective optimization. Genetic programming. Ref-
erence points. Evolutionary computation.

1 Introduction

NSGA-III [4] is one of the prominent and effective algorithms in the field
of many-objective optimization. It is an extension of NSGA-II [5] which uses
the widely distributed reference points for preserving diversity. Therefore, the
obtained Pareto-optimal solutions are also likely to be widely distributed on the
Pareto-optimal front. Previous studies have shown [4], [9] that NSGA-III per-
forms better on 3 to 15 objectives of constrained and unconstrained optimization
problems.

Even though NSGA-III has successfully solved various practical many-
objective optimization problems, it still has challenges when applying the al-
gorithm on real-world problems such as engineering problem. These real-world
problems usually have non-uniform and irregular Pareto-fronts and the adoption
of uniformly distributed reference points affect the performance of NSGA-III ad-
versely [8], [9]. This is because many of these reference points are never associated
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with any of the optimal solutions and become useless reference points. Evidently,
useless reference points will also notably affect the performance of NSGA-III [8],
[9].

Particularly, in problems with irregular, non-uniform and disconnected Pareto-
fronts, useful reference points are associated with more than one optimal solu-
tions in their closest proximity. Selecting some of these popular reference points
with a number of solutions may not help to span all solutions uniformly over the
entire Pareto-fronts [9]. This may reduce the solution diversity of current and
future population evolved by NSGA-III.

To address this key issue of useless reference points in NSGA-III, the main
goal of this study is to develop a new effective mechanism for reference point gen-
eration. This mechanism will improve the association between reference points
and the Pareto-fronts during evaluation. Further, a proposed algorithm will dis-
cover well-distributed solutions on the Pareto-optimal fronts. Guided by this
goal, we will develop an adaptation mechanism by using a modelling technique
and accurately approximates the Pareto-fronts based on evolved solutions. In
particular, we introduce a density-based model that estimates the density of so-
lutions from each defined sub-location in a whole objective space. Using distri-
bution density information, we can further identify the distribution of candidate
solutions in each generation and generate reference points in more promising
regions. Furthermore, reference points in each partition are generated uniformly
at that specific location. Therefore, associated solutions of these reference points
are also well-distributed over the Pareto-fronts. Consequently, the proposed al-
gorithm will decrease the existence of useless reference points for the close match
between reference points and the evolved Pareto-front. Moreover, well distributed
solutions over the entire Pareto-fronts will enhance the solution’s diversity.

Driven by the goal of reducing the useless reference points and promoting
the solution diversity, this paper is organized as follow. Section 2 presents the
problem definition and related works in the literature for adaptive reference
points approaches. Section 3 provides the technical description of the proposed
algorithm. Section 4 outlines the experimental design and parameter setting.
Section 5 analyses the experimental studies on very well known many-objective
test problems and finally our conclusion in section 6.

2 Research Background

This section briefly introduces many-objective optimization problems and
then discusses in more detail s several adaptive reference points approaches that
have been proposed previously in the literature [8],[9].

2.1 Problem Definition

Without losing generality, Many-Objective Optimization Problems (MaOPs)
involve four or more objectives [1] which often conflict with each other. In gen-
eral, an MaOPs can be formulated as follows:

min f
−→
(x) = {f1(−→x ) . . . fm(−→x )} : s.t. −→x ∈ X f ∈ Y (1)
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Given two solutions x1 and x2, it is said that x1 dominates x2 if and only if

∀i, 1 ≤ i ≤ D, fi(x1) ≤ fi(x2) : whereD ≥ 4

and

∃i, fi(x1) < fi(x2).

Moreover, a solution x∗ is said to be Pareto optimal if there does not exist
another solution x1 that dominates it.

2.2 Related Works

Several experimental and analytical studies [7],[11] have shown that Evo-
lutionary Multi-Objective (EMO) algorithms were vulnerable when handling
many-objective (four or more objective) problems due to the lack of adequate
selection pressure toward the Pareto-fronts.

To cope with many-objective issues, reference points based approach is one
of the state-of-the-art approaches that plays an important role for selecting well
diversified solutions during evaluation [4],[10],[14]. These points are used to guide
the solutions toward targeted locations. Therefore, the reference points based
approach has been used in several EMO algorithms for handling many-objective
optimization problems.

As an effective reference point based version of NSGA-II [5], NSGA-III [4] is
one of the most effective many-objective optimization algorithm which works on
uniformly distributed reference points. Although NSGA-III performs better on
a number of problems with uniformly distributed Pareto-fronts such as DTLZ1
problem, uniformly distributed reference points NSGA-III has an issue when it
is applied on non-uniform and irregular Pareto-front problems such as DTLZ7
problem. This limitation is also highlighted by Deb and Jain [9]. They have
witnessed in several many-objective problems that some reference points can
never be associated with a well-dispersed Pareto-optimal set while others are
associated with more than one candidate solutions. Several adaptive extensions
have been proposed [8],[15] in the literature for alleviating an issue of NSGAIII.

Reference Points based Evolutionary Algorithms for Many objective Opti-
mization (REPA)[12] is one of the extension of NSGA-III which adaptively gen-
erates a series of reference points. These points are generated by adopting a series
of local ideal points. Later individuals are selected by calculating the euclidean
distance between the reference points and individuals in the environmental se-
lection process.

ANSGA-III [9] is one of the well-known adaptive extension of NSGAIII. This
extension of NSGA-III relocates the reference points adaptively. Further, relo-
cation of the reference points adopt the distribution of candidate solutions on
current generation.This relocation of reference points is carried out by two ma-
jor operations: inclusion and exclusion. In the inclusion procedure, m-objective
reference points are added around the j-th reference points in form of m− 1 di-
mensional simplex. Moreover, the j-th reference points are kept as a centroid and
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the side length of the simplex is equal to the distance between two existing clos-
est reference points. Unfortunately, this inclusion procedure requires adding the
reference points outside the simplex, if new reference points introduces around
the vertices of simplex. Due to this reason, ANSGA-III is not able to fully relo-
cate the reference points and may fail to guide the evolution of a well-distributed
set of Pareto-optimal solutions.

One of our earlier work, Density Model based Reference Point Adaptation
(NSGA-III-DRA)[13] demonstrates the potential usefulness of the density model.
In addition, this algorithm estimates the density of solutions in each sub location.
NSGA-III-DRA generates reference points according to the average distance
between selected solution and the centroid of all the existing solutions in the
location. Random distribution of reference points does not allow to achieve an
ideal association, thus the algorithm still has the issue of useless reference points.

Our proposed algorithm overcomes the limitations of NSGA-III and pre-
viously proposed adaptive approaches. Our proposed algorithm enables close
match between reference points and the Pareto-front. In addition, our algorithm
generates reference points that distribute Pareto optimal points uniformly across
the entire Pareto front, thus alleviating the issue of randomness in NSGA-III-
DRA. Moreover, our approach does not add any extra reference points during
evolution and it is easy to implement regardless of the number of optimization
objectives under consideration.

3 Proposed Algorithm
Our proposed adaptive algorithm is inspired by a density-based model that

estimates the density of solutions at each sub location ŵ. Building this density-
based probabilistic model consists of two steps. First, the whole objective space
is decomposed into several sub-locations ŵ1, ŵ2, ŵ3....., ŵk ∈W . This decompo-
sition uses Das and Dennis’s [3] systematic approach. Then the number of the
associated solutions with ŵ is recorded in archive E(ŵ) where E(ŵ) preserves
the index of associated individuals. The association between each solution ŝ with
ŵ is obtained by a perpendicular distance (⊥). As a result, a solution is asso-
ciated with a sub-location where the perpendicular distance between the two
reaches the minimum. Lastly, solutions in E(ŵ) are divided by the total of the
non-dominated solutions (‖ S ‖) so far. Then the algorithm calculates the den-
sity of solutions of each sub-simplex locations ŵ. The density-based probabilistic
model is defined as

P (D|ŵ ∈W ) =
‖
∑

(argminsεSd
⊥(s, w)) ‖

‖ S ‖
(2)

Previous efforts on improving the adaptiveness of reference points in NSGA-
III focused mainly on adapting uniformly distributed reference points, guided
implicitly by the distribution of solutions (i.e. no distribution models are ex-
plicitly constructed and utilized to adjust reference point locations). However,
in our proposed algorithm, we emphasize clearly on the importance of using
modelling techniques to obtain a more accurate approximation of the Pareto-
fronts. Accordingly, our algorithm is capable of generating references points that
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matches closely with the distribution model. Furthermore, with the help of a
new technique that generates reference points around the centroids of associated
solutions, our algorithm can effectively handle solutions in close proximity to
the simplex vertices. Additionally improvements have also been made to ensure
even distribution of reference points around any solutions that fall well inside
the simplex. Therefore, our algorithm has the ability to improve the diversity of
solutions in NSGA-III.

3.1 Reference Point Adaptation

The basic framework of our proposed work is shown in Algorithm 1. In
this framework, the density model is built first. This formation of the density
model is shown in Algorithm 2. Next, a new adaptive procedure (see line 15
of Algorithm 1) is introduced into Algorithm 3.

Algorithm 1: The framework of NSGA-III-DRAU.

Input : Parent population Pg

Output: A set of non-dominated solutions
1 Initialize the population P 0;
2 evaluate the population P 0;
3 Generate the W that partition the Objective Space into sub-simplex locations;
4 Set g ← 0;
5 while g < gmax do
6 Generate the offspring population Qg using the crossover, mutation and reproduction ;

7 foreach Q ∈ Qg do Evaluate Q;
8 Rg ← P g ∪Qg;

9 Apply non-dominated sorting on (Rg) and find (F1, F2 . . . ) ;

10 Normalize the population members :Sg = ObjectiveNormalization(Sg);
11 foreach w ∈W do
12 identify member of Sg associated with w ;

13 Assign (E(ŵ), D(ŵ)) = Associatew(Sg,W ) ;

14 end

15 Assign Z∗
g = Generate(E(ŵ), D(ŵ), Sg,W ) ;

16 Construct the new population Pg+1 by the NSGA− III association and Niching;
17 g ← g + 1;

18 end
19 return The non-dominated individuals P ∗ ⊆ Pgmax

;

Algorithm 2: Associatew(Sg,W )

Input : Sg,W
Output: E(ŵ) (individuals at ŵ) &D(ŵ) (solution’s density at ŵ )

1 foreach w ∈W do
2 E(w) = φ;
3 end

4 foreach s ∈ Sg do
5 foreach w ∈W do

6 compute d⊥(s, w); // perpendicular distance of each solution from ŵ
7 end

8 Assign ŵ = argmins∈Sd
⊥(s, w) ; // associate the solution with the sub-location

9 Save s in E(ŵ);

10 end
11 foreach s ∈ E(ŵ) do
12 Calculate the number of associated solutions with ŵ and store in A(ŵ);
13 end
14 while i ≤‖ A(ŵ) ‖ do
15 Assign P (D|ŵ) =‖ A(ŵ) ‖ ÷‖ S ‖ ; // probability of the associated solution

16 Assign D(ŵ)=‖ P (ŵ) ‖*length of reference points; // return solution’s density

17 set i=i+1 ;

18 end
19 return E(ŵ) &D(ŵ);
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Algorithm 3: Generate(E(ŵ), D(ŵ), Sg,W )

Input : E(w), P (w), D(w), Sg,W
Output: Z∗

g

1 foreach ŵ ∈W do
2 set nref= ‖ D(ŵ) ‖ ; // number of reference points required at location ŵ
3 Assign Zr= ŵ ; // set ŵ as a first reference point

4 if Zr!=Vertex Points then
5 Assign Z∗

g= IntermediatePoints(E(ŵ), D(ŵ), nref, Sg,W,Z
r) ; // call

intermediate points method

6 end
7 if Vertex points then
8 Assign Z∗

g= V ertexPoints(E(ŵ), D(ŵ), nref, Sg,W,Z
r); // call vertex

points method

9 end

10 end
11 return Z∗

g ;

3.2 Reference Point Generation

Our proposed algorithm is broken into two parts: (1) handling references
points on the vertex and (2) dealing with the intermediate points.

References points on the vertex The first method of the proposed algorithm
handles the issue of ANSGA-III. This issue relates to the generation of the
reference points around the vertices of simplex. In this method, the reference
points are generated from the centroid location of the associated solutions and
these reference points are always generated inside a simplex location. In this
procedure we have used the following steps:

1. Obtain the centre location from existing solutions in the sub-simplex ŵ ∈W ,
where ŵ is one of the vertices of the hyperplane.

2. Calculate the perpendicular distance from the centroid to associated solu-
tions of ŵ.

3. Select a solution s based on a minimum perpendicular distance.
4. Calculate a mid-point value between the selected solution and the centroid

for generating a corresponding reference point. This mid-point of each di-
mension is considered as one of the reference points around the vertices

5. Repeat steps 1 to 4 until the required number of reference points are gener-
ated.

Intermediate Points The generation of reference points at any intermediate
location is described in Algorithm 4. Consider the situation in M = 3 objective
case where M points are generated around any of the intermediate locations on
the simplex. This example is shown in Fig. 1. In this example,

{
Z1, Z2, Z3

}
reference points are generated using the following two equations:

pointsi = Zr − (Interval)/M (3)

Zinew = Zinew/div + pointsi (4)

where the interval is the difference between two consecutive reference points on
the hyperplane and the division(div) is the total number of partitions on the
original simplex.
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Algorithm 4: IntermediatePoints(E(ŵ), D(ŵ), nref, Sg,W,Zr)

Input : E(ŵ), D(ŵ), nref, Sg,W,Z
r

Output: Z∗
g

1 foreach ŵ ∈W do
2 associate(Zr, s ∈ E(ŵ) ; // associate solutions with the reference point

3 if ρ(Zr) = 1 then
4 Assign Zg = Zr : nref=nref-1;
5 end
6 while nref ≥ 0 do
7 foreach zr ∈ Zr do
8 if ρ(Zr) ≥ 2 and Flag(Zr) = 0 then
9 while i ≤M do

10 Zr = Zr − interval ÷M ;
11 Znew = Znew ÷ div + Zr ; // generate new reference point

12 i=i+1;

13 end
14 while i ≤M do
15 associate(Zinew, s ∈ E(ŵ) ; // associate the solutions with the

new reference point

16 if ρ(Zinew) 6= 0 then
17 set Flag(Znew)=0;
18 if already − exist(Zinew) = FALSE and Zinew lie in first quadrant

then
19 Assign Zr = Zinew ∪ Zr;
20 end

21 end
22 i=i+1;

23 end
24 foreach zr ∈ Zr do
25 if ρ(zr) = 1 then
26 Zg = zr : set Flag(zr)=1 ;
27 nref=nref-1;

28 end
29 if ρ(zr) = 0 then
30 remove(zr) ; // remove reference point

31 end

32 end

33 end

34 end

35 end

36 end
37 return Z∗

g ;

These newly generated reference points can be inserted in the reference points
archive called Zr if they satisfy the two main conditions: (i) a reference point
must be inside the boundary of entire simplex; (ii) duplication is not allowed
and reference points must be unique. Once new reference points are added into
archive Zr, then the association between existing members of Zr and solutions
in E(ŵ) must be checked. If the i-th reference point from Zr still has ρi ≥
2, reference points are generated around i-th reference points but this time a
parameter value of interval is set to half of the current value and the division(div)
is set to be double its existing value. This process is also shown in Fig. 1. Fig.
1 demonstrates that the i-th reference point is kept as a centroid location for
newly generated reference points and the reference points are generated as a
layer approach. These layers are also shows into the Fig. 1 with two different
colours. Thus, we named this method a centroid layer approach.
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Fig. 1: Generate reference points until M − 1 times

4 Experimental Setup

4.1 Test Problems

In order to verify the quality of the proposed algorithm, we have compared
the performance of NSGA-III-DRAU with NSGA-III, ANSGA-III and NSGAIII-
DRA on benchmark problems with three to eight objectives. We selected four
many-objective test problems, DTLZ and Inverted DTLZ (IDTLZ), introduced
by Deb et al.[6]. The characteristics of DTLZ and IDTLZ problems [2] are men-
tioned in Table 1.

Table 1: The Characteristics of DTLZ Problems
Problems No. of Obj(m) n Characteristics
IDTLZ1 3,5,8 m+4 Linear, multi-model, inverted
IDTLZ2 3,5,8 m+9 Concave, inverted
DTLZ5 3,5,8 m+9 Concave, degenerate
DTLZ7 3,5,8 m+19 Mixed, disconnected, multi model

4.2 Parameter Setting

The number of decision variables for DTLZ and inverted DTLZ test problems
are set as recommended in [6]. The population size of all compared algorithms
are set to 92 for the three-objective, 212 for the five-objective and 156 for eight-
objective. The size of reference points are also kept same as the population size.
91 reference are supplied to all compared algorithms for three-objective case, 210
for five-objective case and 156 for eight-objective case. The crossover and the
mutation parameters of NSGA-III are kept identical in the proposed algorithm.
In order to maintain a consistent and fair comparison the parameter settings of
compared algorithms are kept the same in all experiments

4.3 Performance Measures

To evaluate the performance of the all proposed algorithm on DTLZ prob-
lems, we used the Inverted Generational Distance (IGD) [16] and Hyper-Volume
(HV) [17]. These two indicators have been commonly used to evaluate the per-
formance of EMO algorithms. In this study, the exact Pareto-optimal surface
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of DTLZ test problems are known. Therefore, we use the true Pareto-fronts for
calculating IGD. In the case of HV the nadir point is set as (1, 1, 1,...1). The
HV values in this study are normalized to [0,1].

5 Results and Discussions

In the experiment, for each algorithm, 30 independent runs are carried out.
Then, the mean and the standard deviation of HV and IGD values are reported.
The best value for each problem is marked in boldface.

5.1 Overall Results

Table 2 presents the mean and standard deviation of the four compared
algorithms on DTLZ problems. The Wilcoxon rank sum test with the significance
level of 0.05 is carried out on both HV and IGD values.

IDTLZ1 fitness landscape contains a large number of local optima which
may require better exploration. Therefore, a higher degree of population di-
versity plays an important role for more exploration in this multi-model test
problem. Table 2 shows that adaptively relocating reference points NSGAIII-
DRA, NSGAIII-DRAU and ANSGA-III have better HV and IGD values because
they can generate higher population diversity than the predefined uniformly dis-
tributed reference points in NSGA-III. Furthermore, the result also reveals that
NSGAIII-DRAU performs significantly better than NSGA-III and NSGAIII-
DRA but is competitive with ANSGA-III. This can also be seen in Fig. 2. Fig.
2 also demonstrates that the NSGAIII-DRA has random distribution of solu-
tions and some area of the plane do not have any of the solution. Thus, the
NSGAIII-DRA plot indicates that reference points are not widely distributed in
the objective space. vspace-3mm
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Fig. 2: Approximate Pareto Front for 3-objective Inv-IDTLZ1 problem

For the IDTLZ2 problem, Table 2 shows that our proposed algorithm NSGAIII-
DRAU significantly outperformed NSGAIII, ANSGA-III and NSGAIII-DRA in
terms of HV and IGD. To verify this result, we plotted the Pareto-fronts of
our proposed algorithm and ANSGA-III. Fig. 3a and 3b show that the pro-
posed algorithm has generated more diversified solutions on the hyperplane than
ANSGA-III for this problem.

DTLZ5 has a degenerated Pareto-front,i.e., the Pareto-front is always a curve
regardless of the dimensionality of the objective space. For DTLZ5 problem,
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Table 2: The mean and standard deviation over the average HV values on M-objectives inverted
DTLZ1, inverted DTLZ2, DTLZ5 and DTLZ7 problems. The significantly better results are shown
in bold.

HV Mean(std)
Function M NSGAIII ANSGA-III NSGAIII-DRA NSGAIII-DRAU

Inv-DTLZ1
3 1.07e-1(4.0e-3) 1.30e-1(2.8e-3) 1.19e-1(4.7e-3) 1.31e-1(2.0e-3)
5 7.91e-4(4.2e-4) 2.05e-3(3.0e-4) 2.75e-3(2.9e-4) 3.62e-3(2.0e-4)
8 2.62e-4(3.8e-5) 9.10e-3(1.5e-3) 1.35e-4(4.3e-5) 1.58e-4(4.3e-4)

Inv-DTLZ2
3 4.14e-1(1.7e-2) 4.47e-1(4.0e-3) 4.35e-1(6.74e-3) 6.74e-1(4.1e-3)
5 6.30e-2(2.4e-3) 6.89e-2(5.9e-3) 8.53e-2(3.1e-3) 2.85e-1(1.1e-2)
8 6.62e-3(6.8e-4) 9.37e-3(1.1e-4) 7.92e-3(8.8e-4) 1.25e-2(7.9e-4)

DTLZ5
3 8.19e-2(1.7e-2) 8.54e-2(6.3e-4) 8.41e-2(1.2e-3) 8.45e-2(2.3e-3)
5 2.28e-1(2.6e-1) 7.12e-1(4.2e-1) 4.5e-1(4.7e-2) 7.21e-1(3.5e-2)
8 6.03e-1(1.9e-2) 6.92e-1(2.2e-2) 6.44e-1(5.4e-2) 6.96e-1(2.2e-2)

DTLZ7
3 3.10e-1(7.9e-3) 3.15e-1(1.4e-2) 2.99e-1(5.5e-3) 3.19e-1(1.2e-2)
5 2.240e-1(3.8e-3) 3.23e-1(6.3e-3) 2.75e-2(2.7e-3) 3.25-1(4.3e-3)
8 3.08e-1(4.8e-3) 3.25e-1(6.3e-3) 2.23e-3(1.7e-2) 3.28e-1(6.2e-3)

IGD Mean(std)

Inv-DTLZ1
3 3.22e-2(5.0e-3) 2.37e-2(7.7e-3) 2.82e-2(2.5e-3) 2.34e-2(1.8e-3)
5 8.62e-2(3.8e-3) 5.53e-2(8.3e-3) 4.47e-2(6.8e-3) 3.11e-2(3.9e-3)
8 9.62e-2(8.8e-3) 7.13e-2(9.2e-3) 6.17e-2(9.9e-3) 5.49e-2(8.9e-3)

Inv-DTLZ2
3 6.80e-2(8.3e-3) 6.39e-2(4.6e-3) 6.38e-2(4.2e-3) 6.19e-2(4.6e-3)
5 2.33e-1(1.2e-2) 2.03e-1(1.2e-2) 1.61e-1(1.2e-2) 1.23e-1(1.4e-2)
8 2.62e-1(3.8e-2) 3.53e-1(2.3e-2) 2.78e-1(3.5e-2) 2.39e-1(3.4e-2)

DTLZ5
3 2.18e-2(2.5e-3) 1.35e-2(1.5e-3) 1.99e-2(3.7e-3) 1.39e-2(2.84e-3)
5 2.70e-1(5.16e-2) 1.99e-1(5.7e-2) 3.57e-1(8.4e-2) 1.85e-1(5.4e-2)
8 4.04e-1(8.8-e-2) 4.01e-1(7.2e-2) 4.57e-1(8.9e-2) 3.95e-1(9.14e-2)

DTLZ7
3 9.6e-2(5.07e-3) 8.60e-2(6.8e-3) 9.57e-2(1.6e-3) 8.37e-2(6.43e-3)
5 4.54e-1(2.2e-2) 3.44e-1(2.4e-2) 3.68e-1(2.7e-2) 3.60e-1(2.6e-2)
8 7.89e-1(3.7e-2) 7.61e-1(2.7e-2) 8.83e-1(5.5e-2) 7.54e-1(7.9e-2)
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DRAU on DTLZ7
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(d) ANSGA − III on
DTLZ7

Fig. 3: Approximate Pareto Front for 3-objective Inv-IDTLZ2 and DTLZ7 test prob-
lems

Fig.4a and 4b show that the solutions obtained by NSGAIII-DRAU are well
distributed around Pareto-fronts, thus achieving better diversity than ANSGA-
III. For the five-and-eight objective test problems, Table 2 shows that NSGAIII-
DRAU significantly outperforms NSGAIII, ANSGA-III and NSGAIII-DRA.

Similar observations can be made from the results on DTLZ7 with three to
eight objectives as well. DTLZ7 has a disconnected Pareto-front. Due to this fea-
ture, some algorithms that rely on uniformly distributed reference points cannot
perform well on this problem. Hence, the algorithms having adaptive reference
points eventually have significantly better performance. Fig. 4c and 4d show that
NSGAIII-DRAU can converge faster than ANSGA-III. For the three-objective
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test problem, ANSGA-III apparently failed to cover some location on the Pareto-
fronts. This can be seen in Fig. 3c and 3d

For the eight-objective test problems, Table 2 shows that NSGAIII-DRAU
significantly outperforms NSGAIII, ANSGA-III and NSGAIII-DRA on most of
the test problems.
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(b) ANSGA − III
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(c) NSGA − III −
DRAU on DTLZ7
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(d) ANSGA − III
on DTLZ7

Fig. 4: Parallel coordinate plot for the e fitness values of the population on 5-objective
DTLZ5 and DTLZ7 problems.

6 Conclusion
In this paper, we proposed a new adaptive generation strategy NSGA-III-

DRAU for reference points in the recently proposed many-objective NSGA-III.
NSGA-III-DRAU addresses a key research issue of using uniformly distributed
reference points NSGA-III on many-objective irregular and disconnected Pareto
front problems and attempted to alleviates the limitations of recently proposed
adaptive approaches. The proposed algorithm is applied to a number of un-
constrained three to eight-objective optimization problems. We compared our
proposed algorithm with NSGA-III and previously proposed reference points
adaptive approaches. Experimental results on the benchmark problems show
that NSGA-III-DRAU reduces the useless reference points and provides a better
distribution of Pareto optimal solutions on the entire Pareto fronts. Further, a
better distribution of reference points also helps improve the diversity of the
solutions that can be observed visually and in terms of HV and IGD. This find-
ing leads us believe that our algorithm NSGA-III-DRAU is capable of handling
many-objective problems with non-uniformly distributed Pareto front effectively.

This study opens up a substantial research direction for many-objective opti-
mization problems. It is still in exploration phase and more studies are required
in future. Thus, we have a plan to do more analytical and experimental studies
to know in detail about the behavior of the solutions in term of non-uniform and
irregular Pareto fronts.
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