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Abstract. Geometric semantic operators have been a rising topic in
genetic programming (GP). For the sake of a more effective evolution-
ary process, various geometric search operators have been developed to
utilise the knowledge acquired from inspecting the behaviours of GP
individuals. While the current exact geometric operators lead to over-
grown offsprings in GP, existing approximate geometric operators never
consider the theoretical framework of geometric semantic GP explicitly.
This work proposes two new geometric search operators, i.e. perpendic-
ular crossover and random segment mutation, to fulfil precise semantic
requirements for symbolic regression under the theoretical framework
of geometric semantic GP. The two operators approximate the target
semantics gradually and effectively. The results show that the new geo-
metric operators bring a notable benefit to both the learning perfor-
mance and the generalisation ability of GP. In addition, they also have
significant advantages over Random Desired Operator, which is a state-
of-the-art geometric semantic operator.

Keywords: Genetic programming · Symbolic regression · Geometric
semantic operators

1 Introduction

Semantic Genetic Programming (SGP) [8], which is a recently developed variant
of Genetic Programming (GP) [5], makes use of semantic-aware search operators
to produce offsprings that are highly correlated with their parents in behaviour.
The definition of semantics in GP is different from domain to domain. In sym-
bolic regression, the semantics of a GP program refers to a vector, the elements
of which are the corresponding outputs of the program for the given samples [8].
The semantics of GP individuals form the semantic space. The fitness function
(i.e. a kind of distance measure) spanning over the semantic space has a conic
shape, thus search in such a unimodal space should be easy in principle [6].
However, it is not the case in practice, since the semantic space is not the space
being searched in SGP. One particular category of SGP, Geometric Semantic GP
c© Springer International Publishing AG 2017
Y. Shi et al. (Eds.): SEAL 2017, LNCS 10593, pp. 422–434, 2017.
https://doi.org/10.1007/978-3-319-68759-9_35



GSGP with Perpendicular Crossover and Random Segment Mutation 423

(GSGP) [7], opens a new direction to utilise the semantics of GP individuals.
GSGP implements the exact geometric semantic operators, which generate off-
springs that lie either on the segment of the parents in the semantic space or in
the interval bound defined by one parent. In this way, GSGP makes the desired
semantics as the main driving force of the evolutionary process.

Research on GSGP mainly focuses on two aspects: the theoretical framework
which poses the geometric requirement to the offspring, and the implementation
algorithm of the geometric operators. Previous work [9] has figured out that the
implementation algorithm in GSGP [7], which is a linear combination of parents,
typically leads to over-grown offsprings, while the theoretical framework of it is
the principle of many successful applications [2,10]. The over-grown offsprings
are expensive to execute in both memory and time, which makes GSGP difficult
to use in practice. Recent research has proposed variants of geometric operators
to overcome this limitation. Random Desired Operator (RDO) [11] is one of
the state-of-the-art geometric operators. Although these approximate geometric
operators can eliminate over-grown individuals to certain extent, they never
follow the theoretical framework of GSGP to further improve the effectiveness
of the semantic operators. This work aims to fulfil this gap to some extent.

The overall goal of this work is to develop new geometric semantic operators
for crossover and mutation to fulfil new semantic requirements under the theo-
retical framework of GSGP. The new desired semantics for offspring individuals
will be much more precise than that in GSGP, and more diverse than that in
RDO (which only consider the target semantics). The newly desired semantics
are expected to guide the evolutionary search in a more effective way. A compar-
ison between the proposed geometric operators and RDO will be conducted to
investigate the effect of the new operators. Specifically, three research objectives
emerge in this work:

– whether the proposed geometric operators can improve the learning perfor-
mance of RDO on the training data,

– whether the proposed geometric operators can generalise better than RDO
on new/unseen test data, and

– whether the new geometric operators can evolve programs with a smaller
program size, and accordingly being more understandable.

2 Related Work

2.1 Geometric Semantic Genetic Programming

The definition of the theoretical framework of GSGP is as follows [7]:

Definition 1. Given two parent individuals P1 and P2, geometric seman-
tic crossover generates offspring Oj(j ∈ 1, 2) having semantics S(Oj) on
the segment between the semantics of their parents, i.e., ‖S(P1), S(P2)‖ =
‖S(P1), S(Oj)‖ + ‖S(Oj), S(P2)‖.
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Definition 2. Given a parent P , r-geometric semantic mutation produces off-
spring O in a ball of radius r centered in P i.e., ‖S(P ), S(O)‖ ≤ r.

Moraglio et al. [7] proposed an algorithm to implement the exact geometric oper-
ators. This implementation is a linear combination of the parent(s) and one/two
randomly created programs. The proposal of the exact geometric semantic oper-
ators opens a new direction in SGP, since geometric semantic operators aim to
search directly in the semantic space. However, the excessive growth in the size
of the offspring produced by these operators is an obstacle to the application
of GSGP, since it leads to an expensive computational cost and decreases the
interpretability of the evolved models. In addition, the exact geometric crossover
is criticised to contribute little to improving the generalisation ability of GP [4].

2.2 RDO and Semantic Backpropagation

Variants of GSGP have been proposed to overcome the limitation of GSGP.
Pawlak et al. [11] proposed a semantic operator named Random Desired Oper-
ator (RDO), which generates offspring individuals with the target semantics as
their desired semantics. The rationale behind RDO is that achieving a subtar-
get (part of the whole target) is much easier than the whole target. Based on
a randomly selected node of a GP individual, the desired semantics of the GP
individual is split into two parts, which are the semantics of the fixed suffix and
the desired semantics of the selected node. Then RDO only needs to approximate
the semantics of the selected node. To this end, a semantic backpropagation (SB)
algorithm was proposed [11]. The SB algorithm obtains the desire semantics of
the selected node by backpropagating through a chain of nodes from the root
to the node. Then a new subtree with the desired semantics is obtained from a
predefined semantic library, and replaces the original subtree. Although the SB
algorithm provides a sensible way to obtain the subtarget semantics, RDO can
potentially lead to a limitation of quickly losing the semantic diversity, which
might be caused by the unique desired semantics for all the offspring. Further-
more, RDO has a greedy nature in chasing a lower training error, which might
make GP suffer from overfitting and can not generalise well on the test data.

3 The Proposed Geometric Semantic Operators

This work proposes two new geometric operators named perpendicular crossover
and random segment mutation to fulfil new semantic requirements for the off-
spring individuals. The new requirements are either more effective in approx-
imating the target semantics or easier to achieve than the originally desired
semantics in both GSGP and RDO. The semantics of the children individuals
rely on their parent(s) in GSGP, while RDO only considers the target semantics.
The new geometric operators utilise both types of semantics. For presentation
convenience, GP with the two new geometric operators is named NGSGP.
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3.1 Perpendicular Crossover

To have a more precisely semantic control and approximate the target semantics
more effectively than the exact geometric semantic crossover operator, we pro-
pose a new semantic crossover operator called—perpendicular crossover . Given
two parent individuals, perpendicular crossover (PC) generates offsprings hav-
ing two geometric properties in semantic space. The first property is that the
semantics of offsprings (i.e. represented as a point in semantic space) need to
stand on the line defined by the semantics of their parents. The second one
is that the line defined by the target semantics and the offspring point should
be perpendicular to the given line of their parents. The first three columns in
Fig. 1 illustrate the three possible positions of offspring O. Suppose the target
semantic is T , and the semantics of the two parents are P1 and P2. As shown
in the figure, the three points define a triangle. α refers to the angle between
the relative semantics of P2 and T to P1, while β is its counterpart to P2. The
angle α and β are defined as follows:

α = arccos

(
(T − P1) · (P2 − P1)

‖T − P1‖ · ‖P2 − P1‖
)

β = arccos

(
(T − P2) · (P1 − P2)

‖T − P2‖ · ‖P1 − P2‖
)

(1)

where (T −P1) · (P2 −P1) =
∑n

i=1(ti −p1i) · (p2i −p1i), ‖T −P‖ =
√∑n

i=1(ti − pi)2

and ‖P2 − P1‖ =
√∑n

i=1(p1i − p2i)2. p1i, p2i and ti are the values of P1, P2

and T in the ith dimension, respectively. The semantics of the offspring O is
corresponding to the base of the perpendicular dropped from T to the relative
semantics P2 − P1. In the first case (as shown in Fig. 1(a)), when α and β are
both smaller than 90◦, the offspring O (represented by the green point in the
figure) stands on the segment of P2 − P1. In the other two cases, where either
α or β is larger than 90◦, the offspring stands along the segments on the P1 or
P2 side. Now, a key step is to obtain point O on the line P1P2.

T T T

P1

P2 P1
P2O O P1 P2

O

(a) α<90°  and β <90°   

α 
β 

α 
β α 

β 

(b) α>90°  and β <90°   (c) α<90°  and β >90°   

T

O

p

Crossover Mutation

Fig. 1. PC and RSM (Color figure online)

In the scenario of obtaining a point on the line defined by two given points,
the parametric equation, which is the most versatile equation to define a line in
an n dimensional space, is a good choice to express a line. Then once the distance
from O to one of the given points is calculated, it is easy to obtain O. Specifically,



426 Q. Chen et al.

suppose L is the line given by two points P and Q in an n dimensional space.
A particular point in line L is given in Eq. (2).

O = P + k · (Q − P) (2)

where Q − P gives the direction of L, the elements of which are defined as
{q1 − p1, q2 − p2, . . . , qn − pn}. k = ‖O − P‖/‖Q − P‖ is a real number parameter,
which stands for the relative distance between O and P . When 0 < k < 1, O is
a point on the segment between P and Q. Further, if k < 0, O is outside the
segment on the P side, while if k > 1, O is outside on the Q side. The procedure
of obtaining the semantics of O is showing in Algorithm 1.

Algorithm 1. Obtaining the Desired Semantics in Perpendicular Crossover
Input : Target semantics T , and the semantics of the two parents P 1 and P 2

Output: The desired semantics of the offspring O
Obtain the P 2 − P 1, ‖P 2 − P 1‖, ‖T − P 1‖ and ‖T − P 2‖;
Calculate the angle α and β according to Equation (1);
if α < 90 and β < 90 then

‖O − P 1‖ = ‖T − P 1‖ · cos(α);
O = P 1 + ‖O − P 1‖/‖P 2 − P 1‖ · (P 2 − P 1);

else
if α > 90 then

‖P 1 − O‖ = ‖T − P 1‖ · cos(180 − α);
O = P 1 − ‖P 1 − O‖/‖P 2 − P 1‖ · (P 2 − P 1);

else
if β > 90 then

‖O − P 2‖ = ‖T − P 2‖ · cos(180 − β);
O = P 2 + ‖O − P 2‖/‖P 2 − P 1‖ · (P 2 − P 1);

3.2 Random Segment Mutation

RDO treats the target semantics as the only desired semantics for all the off-
spring. To utilise the target semantics in a better way and make the desired
semantics to be more achievable, we propose the random segment mutation
(RSM). RSM makes a small but important change to RDO, which is to utilises
the target semantics in an implicit way. The rationale for this change is twofold.
First RSM aims to maintain the semantic diversity of the population by assign-
ing vary desired semantics to offspring. Rapid loss of semantic diversity has
been considered as a major cause for the premature convergence of GP. Thus,
maintaining a high semantic diversity is important for GP to escape from local
optima. Secondly, RSM intends to approximate the target gradually. When tack-
ling real-world data containing noise, the property of less greedy to the target
semantics is expected to help GP to avoid the issue of overfitting.

In RSM, the desired semantics of the offspring individual stands on the seg-
ment of the parent and the target point in the semantic space. As shown in the
last column in Fig. 1, given a parent P , RSM firstly needs to find the segment
between the target semantics T and P . Then a random point is obtained along
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this segment, which is treated as the desired semantics of the offspring O. Then
O is obtained according to O = P + k · (T − P), k ∈ (0, 1).

3.3 Fulfilling the Semantic Requirements

Both PC and RSM rely on semantic backpropagation to fulfil the semantic
requirements of the offspring individuals.

Figure 2 gives an example of semantic backpropagation. Given a randomly
selected node in a GP individual, semantic backpropagation decomposes the indi-
vidual into two parts: the prefix expressed by the subtree rooted at the selected
node and the suffix corresponding to the rest of the individual. Accordingly,
the desired semantics of the GP individual is achieved by the combination of
the fixed semantics of the suffix and a new semantics of the prefix. This new
semantics is the semantic difference between the target and the fixed suffix.
Specifically, to calculate the desired semantics of the prefix, semantic backprop-
agation starts from the desired semantics of the whole individual (like D1 shown
in Fig. 2), then backpropagates through a chain of nodes from the root to the
selected node, i.e., in order to obtain D3, which is the desired semantics of the
selected subtree, the semantics of its parent node, which is referred to D2, is
needed beforehand. The same requirement is propagated to the root node D1.
For the given example, the backpropagation chain is from D1 to D2, then to D3.
In addition, the inverted function operator is applied, which is the invert of the
original operators. For example, in Fig. 2, the output of the parent node (“+”)
of the selected node (“2”) is equal to S2 + D3, then accordingly D3 = D2 − S2,
thus “−” is the inverted operator of “+”, and vice versa.

*

-
x 3

+

x 2

Desired
semantics 8 8 8 8

D1

Randomly selected 
node

1 2 1 2

3 3 3 34 5 4 5

S1

2 2 2 2

4 5 4 5

D2=D1/S1

Suffix

6 7 6 7

8 4 8 4

D3=D2-S2
4 -1 4 -1S2

4 -1 4 -1 Sub-target

2 2 2 2
Original 
semantics

D1

Chain for Propagation 

D2 D3

Fig. 2. One example for semantic backpropagation.

After obtaining the desired semantics, the prefix will be replaced by a new
subtree from a predefined semantic library. Specifically, an exhaustive search
will perform on the library to find a subtree with the desired semantics. If a
subtree with the exact desired semantics does not exist, the search will return a
subtree with the closest Euclidean distance to the desired semantics among the
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library. The diversity of the semantic library is important for the success of the
exhaustive search, thus the semantic library is updated and filled with subtrees
taken from individuals at every generation. These subtrees have unique seman-
tics. When two subtrees have the same semantics, the small one is preferred.

Compared with GSGP and RDO, the proposed NGSGP algorithm has the
following properties. First NGSGP utilises both the target semantics and the
semantics of the parent(s) to have a precise control over the semantics of the
offspring individuals. Meanwhile, in contrast with driven by a uniform target
semantics, the precise control has been conducted in a way of fulfilling various
semantic requirements, which are more achievable and maintain more diverse
semantics of the GP population. Second instead of relying on a linear combi-
nation of parent(s) and randomly generated trees, NGSGP fulfils the semantic
requirement by semantic backpropagation and selects appropriate subtrees from
a semantic library. With these significant improvements, NGSGP is expected to
not only achieve a good learning ability but also generalise well.

4 Experiment Design

To investigate the effectiveness of NGSGP, it is compared with RDO. In addition,
to have a more precise investigation, the performance of GP with only one of
the two operators, i.e. GP with only PC (denoted as PC) and GP with only
RSM (denoted as RSM), are also examined. Standard GP is used as a baseline
for comparison. All the GP methods are implemented under the GP framework
provided by Distributed Evolutionary Algorithms in Python (DEAP) [3]. The
five GP methods are tested on six commonly used synthetic datasets, which are
taken from previous work on GSGP [6,11]. The target functions and sampling
strategies are shown in Table 1. In addition, we are also interested in testing the
proposed method on real-world datasets [1,12] shown in Table 2, which have not
been widely used in GSGP.

Parameter settings for all the GP methods are summarised in Table 3. Most
of these parameters are common settings in GP [5,7]. In the four GSGP methods
(RDO, RSM, PC and NGSGP), the Euclidean metric is adopted to measure the
distance between two points. For an easy comparison, at every generation, the
root mean square error (RMSE) of the best-of-generation model on the training

Table 1. Synthetic datasets. (The training samples are drawn using regular intervals
from the interval range, while the test samples are drawn randomly within the same
interval. Each of them have 20 samples. The interval range is [−1; 1] (except for Nguyen-
7, which has a range of [0; 2]).)

Problem Function Problem Function

Septic x7 − 2x6 + x5 − x4 + x3 − 2x2 + x Nonic
∑

i=1 9xi

Nguyen-7 log(x + 1) + log(x2 + 1) R1 (x + 1)3/(x2 − x + 1)

R2 (x5 − 3x3 + 1)/(x2 + 1) R3 (x6 + x5)/(x4 + x3 + x2 + x + 1)
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Table 2. Real-world problems

Name # Features #Total instances #Training instances #Test instances

LD50 626 234 163 71

DLBCL 7399 240 160 80

Table 3. Parameter settings for GP

Parameter Value Parameter Value

Population size 256 Generations 100

Crossover rate 0.9 Mutation rate 0.1

Elitism 1 Maximum tree depth 17

Initialisation Ramped half-and-half Initialisation depth 2–6

Function set +, −, ∗, %protected,
exp, log, sin, cos

Fitness function Euclidean
distance, RMSE

set and its corresponding test error are recorded. 100 independent runs has been
conducted for each method on each dataset.

5 Results and Discussions

This section compares and discusses the experiment results obtained by the five
GP methods. The comparison will be presented in terms of training performance,
generalisation ability and the size of the evolved programs by the GP methods.
The non-parametric statistical significance test—Wilcoxon test, which has a sig-
nificance level of 0.05, is conducted to compare the training RMSEs and test
RMSEs of the 100 best-of-run models.

5.1 Overall Results

The mean and standard deviation of RMSEs achieved by the best-of-run pro-
grams on the training sets and the corresponding results on the test sets are
shown in Tables 4 and 5, respectively. The best (i.e. smallest) values among the
five methods are marked in bold.

As shown on Table 4, the four GSGP methods all have much smaller training
RMSEs than standard GP on most of the datasets. On seven of the eight training
sets (except for LD50), NGSGP obtains smaller mean RMSEs than RDO. On
LD50, NGSGP has a higher training error than RDO. The difference between
NGSGP and RDO on the eight datasets are all significant. RSM and PC both
have better training performance than RDO on five of the eight problems.

Table 5 shows clearly that the four GSGP methods can generalise better than
standard GP on all the synthetic benchmarks. The advantages are all significant.
However, it is not the case on the two real-world datasets. On LD50 and DLBCL,
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Table 4. Training errors of the 100 best-of-run programs

Problem GP RDO RSM PC NGSGP

Mean± Std Mean± Std Mean± Std Mean± Std Mean± Std

Septic 0.07± 0.04 0.01± 0.01 0.02± 0.01 0.01± 0.01 2.1E−3± 1.7E−3

Nonic 0.06± 0.03 0.01± 0.02 4E−3± 2.3E−3 0.01± 0.01 2.9E−3± 1.8E−3

Nguyen7 0.01± 0.01 2.1E−3± 3E−3 3.6E−4± 3.1E−4 9.5E−4± 1.2E−3 3.3E−4± 3.3E−4

R1 0.05± 0.03 0.01± 0.01 3.2E−3± 2.8E−3 3.6E−3± 3.2E−3 2.6E−3± 2.3E−3

R2 0.05± 0.03 3E−3± 3.1E−3 1.4E−3± 8.9E−4 1.5E−3± 1.3E−3 1.3E−3± 8.8E−4

R3 0.01± 3.9E−3 2.1E−3± 0.01 8E−4± 6.1E−4 1.9E−3± 4.2E−3 8.8E−4± 1.4E−3

LD50 1950.94± 67.66 1692.2± 317.1 1888.59± 108.26 1952.63± 51.68 1844.52± 88.5

DLBCL 0.65± 0.02 0.63± 0.07 0.65± 0.04 0.62± 0.03 0.57± 0.08

Table 5. Corresponding test errors of the 100 best-of-run programs

Problem GP RDO RSM PC NGSGP

Mean± Std Mean± Std Mean± Std Mean± Std Mean± Std

Septic 0.07± 0.05 0.03± 0.01 0.05± 0.07 0.04± 0.07 0.02±0.03

Nonic 0.06± 0.04 0.02± 0.02 0.06± 0.18 0.02± 0.02 0.01±0.02

Nguyen7 0.01± 0.01 0.01± 0.02 6.8E−4±5.4E−4 3.2E−3± 0.01 0.01± 0.03

R1 0.06± 0.04 0.01± 0.02 0.01± 0.02 0.01± 0.01 3.2E−4±7E−3

R2 0.05± 0.03 0.02± 0.05 0.01± 0.02 0.03± 0.08 0.01±0.03

R3 0.01± 0.01 0.02± 0.05 0.24± 1.43 4.8E−3± 0.01 4.4E−3±0.01

LD50 2007.5± 67.1 4354.9± 9236.7 1996.8± 79.4 2020.7± 83.3 1987.88±87.5

DLBCL 0.7± 0.04 0.71± 0.04 0.7± 0.04 0.69± 0.05 0.62±0.07

while RDO generalises much worse than standard GP, GP equipped with the two
new operators (solely or together) can generalise better than standard GP. Par-
ticularly on LD50, where all the GSGP methods can have much better training
performance than standard GP, only RSM and NGSGP can generalise slightly
better than standard GP. On DLBCL, while RDO still can not generalise better
than standard GP, the other three methods can generalise significantly better
than standard GP. On these two real-world datasets, PC, RSM and NGSGP
all have significantly better generalisation performance than RDO. The rank-
ing of the generalisation performance of the five GP methods on the synthetic
datasets is consistent with that on the training set, which indicates the geomet-
ric semantic methods are resistant to overfitting on the comparatively simple
problems. On the real-world datasets, which might contain noise, RDO is prone
to overfitting and NGSGP has a much better generalisation ability than RDO.

5.2 Behavior Analysis—Training/Evolutionary Process

The evolutionary plots on the training sets, which are drawn using the median of
training errors of the 100 best-of-generation individuals, are shown in Fig. 3. On
five of the seven training sets, except for Septic and R3, NGSGP outperforms
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Fig. 3. Training/Evolutionary process on the training sets.

RDO in an early stage and this advantage becomes larger over generations.
This might be due to the less greedy nature of NGSGP for achieving the tar-
get semantics. NGSGP is driven by vary target semantics, which are a kind of
intermediate target under the theoretical requirement of GSGP. These interme-
diate targets are different from individual to individual, which can help maintain
the semantic diversity of the population better than utilising only one target.
Higher semantic diversity will lead to a better exploration ability of GP and
has a positive effect on enhancing the effectiveness of the evolutionary search.
Furthermore, these intermediate targets are generally closer to the parents than
the target semantics. Searching from a semantic library, which consists of seman-
tic uniquely subtrees from the population, the semantics of these intermediate
targets are easier to match. Following these reliable and achievable intermediate
targets, NGSGP is able to get even closer to the target semantics than RDO
gradually and smoothly.

Comparing PC and RSM with RDO, it can be observed that both new geo-
metric operators generally have a positive effect on enhancing the training per-
formance of RDO to some extent. Combining the new geometric crossover, which
is relatively stable, with the new geometric mutation operator, which brings ran-
domness, can lead to even better learning performance.

5.3 Analysis of Generalisation Behaviour

The generalisation performance of the evolved models on unseen data is a key
metric to measure the effectiveness of the proposed GP method. Figure 4 shows
the evolutionary plots on the generalisation performance. The overall pattern on
the test sets is similar to that on the training sets. Clearly, NGSGP is the winner
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Fig. 4. Results on the test sets against the evolution.

on the generalisation performance among the four geometric semantic methods.
On seven of the eight benchmarks (except for Septic), NGSGP generalises sig-
nificantly better than RDO. On Septic, no significant difference can be found
between the two methods. On Nonic, R1 and R2, where RDO generalises well,
NGSGP can generalise even better than RDO. On the other four datasets, where
RDO overfits the training data, NGSGP can either overfit less (i.e. on R3, LD50
and DLBCL) or resistant to overfitting (on Nguyen7). On these datasets, before
the 40th generation on LD50 and the 20th generation on DLBCL, both method
do not overfit, NGSGP still has much smaller generalisation error than RDO. On
LD50, RDO achieves the best training performance but the worst generalisation
performance, which indicates it overfits to the training set the severest among
the four methods.

Compared PC and RSM with RDO, on five of the eight benchmarks, except
for Septic, Nonic and R3, both PC and RSM have better generalisation perfor-
mance than RDO. Clearly, the advantage of NGSGP over RDO on the generali-
sation performance is brought by both the perpendicular crossover and random
segment mutation. Compared with RDO, which uses the target semantics in an
explicit way, the two semantic operators in NGSGP intend to approximate the
target gradually. When tackling the real-world data containing noise, the prop-
erty of NGSGP, i.e. being less greedy, to the target semantics will surely lead it
to less overfit the training set, thus generalise better.

5.4 Comparison on the Program Size

The average and minimum sizes of the best-of-run individuals are presented
in Table 6. Not surprisingly, the modes evolved by GSGP methods have a much
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Table 6. Program size of the evolved models

Problem GP RDO NGSGP Problem GP RDO NGSGP

Mean(Min) Mean(Min)

Septic 215.04 (111) 1180.32 (39) 702.16 (239) Nonic 184.12 (59) 1050.28 (31) 1016.4 (471)

Nguyen7 115.8 (51) 2152.63 (15) 1111.0 (571) R1 168.92 (67) 1715.9 (29) 1670.16 (325)

R2 144.32 (47) 1261.88 (39) 1008.16 (151) R3 200.76 (63) 1141.43 (17) 1085.0 (485)

LD50 179.76 (39) 947.2 (23) 78.04 (7) DLBCL 60.2 (3) 205.56 (3) 46.0 (5)

larger size than standard GP on most of the datasets, which is 5–15 times larger.
However, it is interesting to see that, on the two real-world datasets, NGSGP
has the smallest average program size, which is even smaller than standard GP.
These smaller models generally have better interpretability, which is a desired
property in many real-world problems. Comparing the program size of RDO
and NGSGP, it is clear that on all the eight benchmarks, NGSGP has a smaller
average program size but much higher minimum size than RDO. This indicates
that the programs evolved by the different runs in NGSGP are more stable than
RDO in size, and NGSGP is less likely to generate oversize programs.

6 Conclusions and Future Work

This work aimed to address the limitations of GSGP and RDO, which are either
a loosely or a uniformly semantic control over the offspring individuals and can
potentially lead to premature convergence and overfitting in GP. The goal has
been achieved by developing two new geometric semantic operators named per-
pendicular crossover and random segment mutation to conduct a precise seman-
tic control under the theoretical requirement of GSGP. The behavioural analy-
sis of the evolved models releases that NGSGP, which employs the two opera-
tors, outperforms RDO at an early stage of learning process and this advantage
increases along with generations. More importantly, NGSGP has a much better
generalisation ability than RDO shown by obtaining lower testing errors and
eliminating/releasing overfitting. In addition, NGSGP also evolves more com-
pact models than RDO.

For future work, we are interested in speeding up the new operators, as
the overall computational cost of the new geometric operators is much higher
than the canonical form of GP operators. The major expense is in searching
the semantic library and evaluating the large individuals. Thus, we would like
to improve the algorithm on semantic library search and introduce bloat free
mechanism to the new operators in the near future. In addition, this work only
compares with one kind of geometric operators, a more comprehensive compar-
ison between the new operators and other variants of geometric operators on
improving the performance of GP will be performed in the future.
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