
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

VUW
School of Engineering and Computer Science

COMP 307 — Lecture 08

Machine Learning 5

Neural Networks and Back Propagation

Mengjie Zhang (Meng)

mengjie.zhang@ecs.vuw.ac.nz

COMP307 ML5 (Neural Networks): 2

Outline

• From perceptron to neural networks

• Network architecture

• Back (error) propagation learning

– Gradient descent search

– Relationship between the weight change and the error, out-

puts

– Feed forward pass

– Back propagation pass

COMP307 ML5 (Neural Networks): 3

Multilayer Perceptron (Neural Networks)

• Change one or two layers of nodes to three or more layers

– Multilayer perceptron (MLP)

– Feed forward neural networks

– Standard feed forward networks: nodes in neighbouring layers are fully

connected

layer
Hidden Hidden OutputInput

layer layer layer

– Input layer: input patterns/features

– Output layer: output patterns/class labels

– Hidden layer(s): high level features

COMP307 ML5 (Neural Networks): 4

Feed Forward Networks as A Pattern Classifier

Digits in Speech Underwater Weather

Postcode Recognition Object Prediction
Output Pattern

Wij

Hidden

Input

Input Pattern

Output

Wij

Picture of an Speech Sonar Weather

Envelope Waveform Signal Data

COMP307 ML5 (Neural Networks): 5

Networks as A Function Approximator/Series Predictor

Prediction of Prediction of Survival Genetic

activity stock price months Sequence

Output Pattern

Wij

Hidden

Input

Input Pattern

Output

Wij

Sunspot Stock market Heart attack Genetic

Time Series Time Series Data Sequences

COMP307 ML5 (Neural Networks): 6

Changes in Transfer Functions

• Soft threshold:

– Small changes in weights −→ small change in output

– Transfer function, activation function, output function

– Typically use the sigmoid/logistic function

– Smooth response to small changes

x (input)

y = f(x) (output)

• The Sigmoid Function:

y = f(x) =
1

1 + e−x

y′ =
dy

dx
= f ′(x) = f(x)(1− f(x)) = y(1− y)

COMP307 ML5 (Neural Networks): 7

Where do Weights Come From

• Massively difficult problem, in general

• Much current research

• General Approach

1. Get examples for which desired behaviour is known

2. Pick a random set of weights

3. Put examples through the network giving network outputs.

Difference between network outputs and desired outputs is

the error

4. If error is small enough stop

5. Adjust current weights to make error smaller

6. Go to 3

COMP307 ML5 (Neural Networks): 8

Weight Optimization

• In general: Error = f(wij)

• We want to the minimum value of Error

• We have a multidimensional

optimization problem

0
0.1
0.2
0.3
0.4
0.5

W1
W2

Error

• Need to SEARCH/Learn!!!!

COMP307 ML5 (Neural Networks): 9

Network Training: Back Error Propagation

• Input Units: Real numbers, usually scaled to be in [0,1]

• Hidden units: Activation ∈ [0, 1]

• Output Units: Activation ∈ [0, 1]

• Usually in fully connected layers, but this is not necessary.

• Transfer function: Logistic

• Units evaluated in serial/synchronous order

• Learning rule: Generalized delta rule

• Error of an output unit dz − oz
• Error of a pattern

∑

z(dz − oz)
2

• Total error of all training patterns

– Total Sum Squared Error: TSS = 1
2

∑

patterns
∑

z(dz − oz)
2

– Root Mean Square Error (RMSE)
√

2TSS/(numpat.numout)

COMP307 ML5 (Neural Networks): 10

Back Propagation: Gradient Descent

• Hill climbing requires evaluating the effect of one parameter

while keeping the others constant

• Gradient descent improvement

– Requires the ‘hill’ to be a smooth/continuous function of the

parameters (weights)

– Vary all weights simultaneously in proportion to how much

good is done by individual changes

– A move in the direction of the (steepest) gradient

• Back Propagation procedure

– Relatively efficient procedure for computing how much per-

formance (error reduction) improves with a weight change

– Computes changes to final layer of weights first

– Computes changes to next to last layer.....initial layer

– Requires a smooth transfer function

COMP307 ML5 (Neural Networks): 11

Intuition Behind BP 1

Hidden
i j k z

Hidden Hidden Output

• How big a change should we make to weight wi→j?

• Make a big change if it will result in a big improvement in error

• If a change to wi→j will have little effect on on error, make it

small

COMP307 ML5 (Neural Networks): 12

Intuition Behind BP 2

Hidden
i j k z

Hidden Hidden Output

• A change in input to node j results in a change to output that

depends on the slope of transfer function

• Change in input has maximum effect where the slope is steepest

• Slope of sigmoid/logistic is given by o(1− o)

Thus ∆wi→j ∝ oj(1− oj)

COMP307 ML5 (Neural Networks): 13

Intuition Behind BP 3

Hidden
i j k z

Hidden Hidden Output

• Change in input to node j depends on output of node i. wi→j

should change substantially if oi is high. Thus ∆wi→j ∝ oi

• Let β be a factor which measures how beneficial the change is

(in terms of lower error). Node j is connected to nodes in next

(kth) layer. A change in oj will be a benefit to each one. So

Hidden: βj =
∑

k wj→kok(1− ok)βk

Output: βz = dz − oz and ∆wi→j ∝ βj

COMP307 ML5 (Neural Networks): 14

Intuition Behind BP 4

Hidden
i j k z

Hidden Hidden Output

• Putting all together:

∆wi→j ∝ oioj(1− oj)βj

Let η be the constant or learning rate

• Back-propagation formulas

∆wi→j = ηoioj(1− oj)βj

βj =
∑

k wj→kok(1− ok)βk (Hidden units)

βz = dz − oz (Output Units)

COMP307 ML5 (Neural Networks): 15

BP Algorithm

• Let η be the learning rate.

• Set all weights, including biases to small random values.

• Until total error (TSS or RMSE) is small enough do

– For each input vector

∗ Feed forward pass to get outputs

∗ Compute β for output nodes βz = dz − oz
∗ Compute β for hidden nodes, working from last layer to

first layer βj =
∑

k wj→kok(1− ok)βk
∗ Compute and store weight changes for all weights

∆wi→j = ηoioj(1− oj)βj

– Add up weight changes for all input vectors and change the

weights

COMP307 ML5 (Neural Networks): 16

Summary

• Multilayer perceptron vs feed forward networks

• Network architecture

• NN applications

• Back (error) propagation learning

– Gradient descent search

– Relationship between the weight change and the error, out-

puts

– Feed forward pass

– Back propagation pass

