VICTORIA UNIVERSITY OF WELLINGTON Te Whare Wananga o te Upoko o te Ika a Maui

School of Engineering and Computer Science

COMP 307 — Lecture 07

Machine Learning 4

DT Learning and Perceptron Learning

Mengjie Zhang (Meng)

mengjie.zhang@ecs.vuw.ac.nz

COMP307 ML4 (DT/Perceptron): 3

Numeric Attributes

	Job	Saving	Family	Class
A	true	\$10K	single	Approve
В	true	\$7K	couple	Approve
C	true	\$16K	single	Approve
D	true	\$25K	single	Approve
Е	false	\$12K	couple	Approve
1	true	\$4K	couple	Reject
2	false	\$30K	couple	Reject
3	true	\$15K	children	Reject
4	false	\$6K	single	Reject
5	false	\$8K	children	Reject

What question goes in the node "Saving"?

OMP307 ML4 (DT/Perceptron): 2

Outline

- Decision tree learning:
 - Numeric attributes
 - Extension for DT learning
- Perceptron learning:
 - Linear threshold unit
 - Threshold transfer functions
 - Proceptron learning rule/algorithm
 - Property/Problem of perceptrons

COMP307 ML4 (DT/Perceptron): 4

Numeric Attributes (Continued)

• Could split multiway — one brunch for each value

- bad idea, no generalisation

Saving

- Could split on a simple comparison
 - But what split point?

Saving > \$10K true false

- Could split on a subrange
 - But which range?

ML4 (DT/Perceptron): 5

Numeric Attributes (Continued)

	Job	Saving	Family	Class
1	true	\$4K	couple	Reject
4	false	\$6K	single	Reject
В	true	\$7K	couple	Approve
5	false	\$8K	children	Reject
A	true	\$10K	single	Approve
Е	false	\$12K	couple	Approve
3	true	\$15K	children	Reject
C	true	\$16K	single	Approve
D	true	\$25K	single	Approve
2	false	\$30K	couple	Reject

- Don't need to try each possible split point
 - Order items and only consider class boundaries!

COMP307 ML4 (DT/Perceptron): 7

Extension for DT Learning

- Information theoretical purity measures:
 - impurity = $\sum_{class} [P(class) \log(1/P(class))]$
 - Work for multiple classes
- Pruning:
 - Shrink the learned decision trees
 - Eliminate "overfitting"
- Multi-attribute decisions
 - Non-axis-parallel hyperplanes
- Turning learned decision trees to symbolic rules
- Regression trees
 - Leaves can be regression functions

COMP307 ML4 (DT/Perceptron): 6

Numeric Attributes to Binary

Consider the class boundaries, choose the best split:

- (Saving < 7): 0.2 imp(0:2) + 0.8 imp(5:3) = 0.188
- (Saving < 8): 0.3 imp(1:2) + 0.7 imp(4:3) = 0.238
- (Saving < 10): 0.4 imp(1:3) + 0.6 imp(4:2) = 0.208
- (Saving < 15): 0.6 imp(3:3) + 0.4 imp(2:2) = 0.250
- (Saving < 16): 0.7 imp(3:4) + 0.3 imp(2:1) = 0.238
- (Saving < 30): 0.9 imp(5:4) + 0.1 imp(0:1) = 0.222

Which one should we choose?

COMP307 ML4 (DT/Perceptron): 8

Why Perceptrons and Neural Networks

- How do human being learn and do classification?
- Use brains (and eyes etc.)
- However, the machine learning methods discussed so far don't seem realistic for implementing/simulating in human brains
- Can we use our knowledge of brain structures to suggest alternative learning mechanisms?
- Using neurons
 - Neurons supports parallel distributed processing
 - Many methods weren't doing so well on hard, no-linear problems
 - Linear threshold units (simple perceptrons)
 - Neural networks (multiple layers, more complex structure)

Neuron

- The neuron receives impulses (signals) from other neurons via dendrites
- The neuron sends impulses to other neurons via the axon
- Synapse: dendrite of one neuron and synapse of another
- Impulses cause neurotransmitters (chemicals) to diffuse across the synapse
- Enhance (excite) or inhibit
- Action adjusted (by learning?)



COMP307

ML4 (DT/Perceptron): 11

Perceptron (Continued)

• Transfer functions

Threshold function

Sigmoid/Logistic function

- Input values (or "features") may *binary* (0/1) (usually) or *numeric*
- Output: binary (1 or 0)
- Problems:
 - How do you learn the weights?
 - How do you choose the input features?

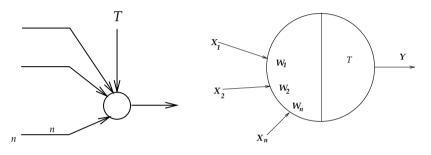
COMP307 ML4 (DT/Perceptron): 10

Perceptron

- A kind of artificial neuron
- Simplest kind of neural networks
- Linear threshold unit

-
$$Netinput = \sum_{i=1}^{n} x_i w_i$$

$$-if Netinput \ge T then y = 1 else y = 0$$



COMP307

ML4 (DT/Perceptron): 12

Simplify the Formula

• Replacing the threshold with a "dummy" feature:

- Set
$$x_0 = 1$$

- Let
$$w_0 = -T$$

• Change the rule

if
$$\sum_{i=1}^{n} w_i x_i > T$$
 then $y = 1$ else $y = 0$

to

if
$$\sum_{i=0}^{n} w_i x_i > 0$$
 then $y = 1$ else $y = 0$

• The weights in the perceptron can be learned an algorithm

Perceptron Learning Algorithm

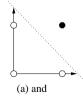
- Initialize weights to (small) random numbers
 - Present an example (+ve/1, or -ve/0)
 - If perceptron is correct, do nothing
 - If -ve example and wrong
 - * (weights on active features are too big/threshold is too low)
 - * Subtract feature vector from weight vector
 - If +ve example and wrong
 - * (weights on active features are too small/threshold is too high)
 - * Add feature vector from weight vector
- Repeat the above steps for every input-output pair until y = d for every pattern pair

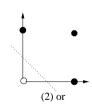
COMP307

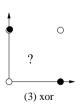
ML4 (DT/Perceptron): 15

Perceptron Learning(Continued)

- What can the perceptron learn?
- It can learn to discriminate linearly separable categories such as AND and OR.







- XOR is not linearly separable. There is no way to draw a line to correctly classify all points.
- Perceptron cannot learn the XOR function!!! (Proved in 1969 by Minsky and Papert, with controversial result.)

Perceptron Classifier

- Consider a perceptron with two inputs, n = 2 ($\vec{x} = (x_1, x_2)$)
- Output is true (1) if $w_0 + w_1x_1 + w_2x_2 \ge 0$ Output is false (0) if $w_0 + w_1x_1 + w_2x_2 < 0$
- Thus the line given by $w_0 + w_1x_1 + w_2x_2 = 0$ i.e. $x_2 = -(w_1/w_2)x_1 - w_0/w_2$ is the separating line between the two regions
- If n = 3 there will be a separating plane If n > 3 there will be a separating hyperplane
- A training set is *linearly separable* if the data points corresponding to the classes can be separated by a line.
- *Perceptron convergence theorem:* The perceptron training algorithm will converge **if and only if** the training set is linearly separable.

COMP307

ML4 (DT/Perceptron): 16

Perceptron Learning(Continued)

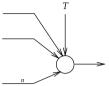
• Another example: "E" vs "not E"

- If we use the pixel values marked in the figure as input features, can the perceptron method successfully solve this classification problem?
- Perhaps perceptron is not really useful if it can't compute something as simple as XOR?
- Need better features!
- Need better network architecture!
- Need better learning algorithm!

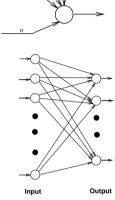
COMP307 ML4 (DT/Perceptron): 17

Perceptron Networks

• Perceptron (Linear Threshold Unit): n inputs, 1 output



- Perceptron, perceptron network: n inputs, m outputs
- Input units just pass their input activation unchanged to all output arrows
- Two layers of nodes, one layer of weights.
- Still need improvement
 - Multilayer perceptron or
 - Feed forward neural networks!!



COMP307 ML4 (DT/Perceptron): 18

Summary

- Numeric attributes in decision tree learning
- IG purity measure in decision trees
- Perceptron structure
- Perceptron learning algorithm
- Limitation of perceptron learning
- Next lecture: Neural networks
- Reading: Text book section 20.5 (2nd edition) or section 18.7 (3rd edition) or Web materials