Neural Networks for
Multiple Class Object Detection Package:

USER GUIDE

Mengjie Zhang

Department of Computer Science
Royal Melbourne Institute of Technology

14 Feb 2000

2.1.3 multipat

%» multipat pattern classl class2 ... classN

The multipat program creates network pattern files from PGM images stored
in multiple directories. The first argument to multipat gives the name of the
pattern file to create. Up to eight additional arguments follow, which represent
examples of each class to be created.

The class files are actually text files that contain the locations of PGM images
belonging to each class.

For example, if we have four different classes of image that we’d like the
network to distinguish between, we must create four directories, one for each
class, and populate each directory with example images from that class. For each
directory, a text file is then created which contains a listing of all of the files in
the directory. This listing is given as an argument to multipat, which in turn
reads the listing and loads the appropriate PGM images. The multipat program
alternately reads an image from each class, copying the data to the pattern file,
thus ensuring that the data can be trained in sequential or batch mode learning.

2.2 Network Training Tools

The nntrain program trains a neural network. The nntest program is used to
verify the network’s performance on data not used in the training phase.

2.2.1 nntrain

/» nntrain network pattern [weights]

The nntrain program teaches a neural network to associate input patterns with
output patterns. The network and pattern arguments to nntrain are mandatory.
The formats of these files will be described in section 3. The third argument to
nntrain is an optional weights file, which may have been previously produced by
nntrain. This enables stopped training runs to be continued.

There are four conditions under which network training will be stopped:

1. The user control strategy. The user presses CTRL-C, which stops training
and causes the weights to be saved to a file weights.dat.

2. The error control strategy. The network produces an error less than criti-
cal_error, which indicates learning to the specified error has completed.

3. The epoch/cycle control strategy, where the training will keep going until
the training epochs/cycles reach a given number.

4. The proportion control strategy. When the proportion of the number of
patterns “correctly ”classified among the number of total training set reach
a pre-defined percentage, the train will be stopped. The classification cri-
terion is that the neural network classification is regarded as “correct” if
the class whose actual neural (output) activation value is the biggest one
among all the classes is the same as the desired class whose desired neural
output is 1.0. Otherwise, this pattern is “incorrectly” classified.

The nntrain software displays the current network error and the classification
accuracy on stdout.

Please note that there is another similar program called nntrain-epoch, where
the weights change after every epoch rather than every pattern in the program
nntrain presented above.

2.2.2 nntest

/» nntest network pattern weights

The nntest software provides a report (written to stdout) on the network’s
performance on both the training and test data contained in the supplied pattern
file. All arguments are mandatory.

2.3 Object Detection Tools

For each class, the nnsweep-img-loc program is used to apply the trained neural
network generated by nntrain as the template, in a moving window fashion, over
a large image in order to locate the objects of interest. The template is swept
across and down the large picture pixel by pixel in every possible position. The
shr-find-center program is used for finding the centers of the detected objects. We
use the centers of the objects to represent the corresponding objects themselves.

2.3.1 nnsweep-img-loc

/» nnsweep-img-loc network weights image

The nnsweep-img-loc software is used for network sweeping including object
localisation and classification experiments. nnsweep-img-loc takes a network de-
scription file, a weights file, and an image file as arguments. Typically the neural
network being passed to nnsweep-img-loc has been taught (trained) to perform
object classification task (with the input patterns of the cut-outs). This network
is then applied to the image file, a region with the size of the input field at a time
in every possible pixel position in the image.

A PGM format image and a position file are produced for each class of interest.
A PGM image for the other class (background) is also generated.

7

3.4 network definition files (.net)

The network definition file specifies all aspects of a networks architecture and
training parameters. Note that the critical error here is the mean squared error,
rather than total sum squared error.

1r learning_rate

m momentum_value

ce critical_error

r random_range

percent classification_accuracy
number_of_layers
units_in_input_layer
units_in_hidden_layer
units_in_output_layer

For example, the network file images.net for easy pictures is as follows:

1r 0.5

m 0.0

ce 0.002

r 0.5

percent 100.0
3

196

3

4

The network definition template given above shows a 3-layer network archi-
tecture. More layers are possible - just more hidden layer definitions.

3.5 pattern files (.pat)

Pattern files are produced by the multipat series of commands. See Pattern
Generation Tools for more information. Note that the pattern files used here are
usually binary. We also have the program of multipat-ascii which can produce
a pattern file with the full text format. Each pattern contains an input pattern
and an output pattern. The pattern file format is given as follows:

0.549 0.549 ... 0.867 0.690 0.988 0.753 ... 1.00 0.00 0.00 0.0
0.788 0.549 0.953 0.788 ... 0.914 0.549 ... 0.00 1.00 0.00 0.0
0.055 0.051 0.047 ... 0.075 0.035 0.071 ... 0.00 0.00 1.00 0.0
0.549 0.549 0.549 ... 0.549 0.549 0.549 ... 0.00 0.00 0.00 1.0

12

oS O O O

3.6 weight files (.dat)

Weight files consist of floating point numbers represented in ASCII. The weight
are given in linear order; the weight from input node 0 to hidden node 0 is given
first, followed by the weight from input node 1 to hidden node 0, etc... The last
weight given is from the last hidden node to the last output node. Please note
that the nodes in the input layer do not have biases, or the biases are 0.

Following the weight values are the bias values. Each computational unit
that produces an output (ie: hidden and output units) will have a bias value
associated with it listed at the end of the weights file.

A part of the weights.dat for the easy pictures is given below.

0.014683
0.012763
0.014847
-0.212967
-0.210692
-0.196092
0.000000
0.000000
0.000000

Weight files are produced by the nntrain programs.

3.7 .nam file

This type of files gives the names of all the object classes in a database. They
are used for network sweeping and called by the nnsweep-img-loc program in the
command line. An example for the detection of easy pictures objects.nam is given
as follows:

class1
class?
class3
other

3.8 location file and center files (.txt) and (.doc)
3.8.1 Location file format

A part of the location file for classl classi_loc.tzt in easy pictures is as follows:

13

