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Abstract— In this paper, we study the connectivity of a Mobile 
Ad Hoc Network (MANET) of autonomous cooperative mobile 
agents (e.g. mobile robots) under the Rayleigh fading channel. 
Connectivity is a critical performance parameter of cooperative 
robots deployed in real-time scenarios such as disaster and rescue 
scenarios. There are two major factors that affect the 
connectivity of the MANET. First, the mobility of the nodes 
causes the separation between any pair of nodes to fluctuate. 
Second, atmospheric condition and obstacles can cause the 
transmission range of the nodes to fluctuate. Based on these 
factors, stochastic analysis is performed to derive the connectivity 
probability. The connectivity probability represents the fraction 
of time that a node is connected to at least one other node. This 
probability is used to study the effect of mobility and fading on 
the connectivity as the transmission range or number of nodes in 
the network varies. Such analytical results can form the basis of 
performance modeling of MANET routing protocols and 
network optimization. 
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I.  INTRODUCTION 
In this paper, we investigate the connectivity of a team of 

mobile robots working cooperatively in real-time scenarios 
where communications is supported by a mobile ad hoc 
network (MANET). The connectivity is affected by the 
separation between two nodes and the transmission range of a 
node. The separation between the two nodes is affected by the 
mobility of the nodes whereas the transmission range of the 
node is affected by the channel fading process. Although there 
are related works [1]-[7] on the analysis of connectivity of 
wireless networks, they assume a stationary network with high 
density, which are more appropriate for sensor networks. None 
of them considers the fluctuation of the transmission range due 
to scattering obstacles and varying atmospheric conditions. Our 
contribution in this paper is the application of stochastic 
modeling to derive the connectivity probability in terms of the 
node mobility and channel fading processes.  

The connectivity probability represents the fraction of time 
that a node is connected to at least one other node. As the 
nodes are all statistically identical, if they are connected within 

one hop, they are also fully connected to the network as a 
whole.  Therefore, the connectivity probability gives a measure 
of how fully connected a network is. Our aim here will be to 
minimize either the node count or the transmission range or 
both so as to achieve a well connected network. 

The paper is organized as follows. In Section II, we present 
our analytical models. The Probabilistic Mobility Model 
(PMM) of the nodes is described first followed by the channel 
fading model. In Section III, we derive the connectivity 
probability. In Section IV, we introduce the concept of the 
statistically equivalent mobility model, which allows us to 
obtain the approximate analytical connectivity probability of 
the popular simulation model known as the Random Waypoint 
Mobility Model (RWMM). In Section V, we present the 
numerical results along with the simulation results. The 
numerical results are used to study the effects of varying the 
system parameters as well as the fading parameter on the 
connectivity of the network. The simulation is used to verify 
the theoretical results. Section VI outlines the conclusions.  

II. THE ANALYTICAL MODEL 

A. The Mobility Model 
A Probabilistic Mobility Model (PMM) [8] is used. This 

model is first used by Chiang in his thesis [9]. For the purpose 
of analysis, the state variables are defined slightly different 
from the original version in [8]. In this model, a node moves in 
discrete steps. Let ∆x and ∆y be the incremental changes in the 
x and y directions respectively. The movement is described by 
Markov chains for both x and y directions (Fig 1). Note that the 
values for the incremental changes {-1, 0, 1} are also the 
Markov state values.  

 

Figure 1.   Markov chains for the mobility in the x and y directions 



The movements in the x and y directions are independent 
and the Markov Chains are identically distributed in the x and y 
directions. At each time step, a node either moves to one of the 
eight neighboring positions or stays in its original position (Fig 
2). The resolution of the path is increased by decreasing the 
step size [8].  

 

Figure 2.  Possible positions that a node can move at each time step 

The stationary state probabilities, πMob,-1, πMob,0 and πMob,1 
of the Markov Chain are given as follows: 
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The stationary state probabilities describe the fractions of  time 
that the node is moving backward (state -1), staying in the 
same position (state 0) and moving forward (state 1) for either 
the x or y direction at steady state respectively. The mobility 
process is at steady state when the time, t→∞. 

B. The Radio Channel Model 
The radio channel is modeled using the free space 

propagation model with Rayleigh fading [10]. Let Rab be the 
separation between two nodes, a and b, Pt and Pr be the powers 
of the transmitted and received signals and κ be the Rayleigh 
distributed fading gain. The free space attenuation is a function 
of Rab and is represented by g(Rab). The radio channel is 
modeled as follows: 

 ( ) tabr PRgP 2κ=  (2a) 

The probability density function (p.d.f.) of κ is given as 
follows: 

 ( ) ( ) ( )222 2exp σκσκκ −=p  (2b)    

where 2σ2 = E(κ2) is the mean power gain of the received 
power. The fading channel is non-lossy if the mean power gain 
is equal to one (2σ2 = 1). If the atmosphere contains resistive or 
absorbing elements which result in the dissipation of the 
energy, the mean power gain is less than one (2σ2 < 1). 

In a high data rate, low velocity environment, the fading is 
slow-varying [10]. Hence, the fading process is effectively 
independent from the mobility of the node. Let η0 be the free 
space transmission range. The p.d.f. of the transmission range, 
η is derived as: 

 ( ) ( ) ( )2
0

222
0

2 2exp ησηησηη −=p   (3)  

III. CONNECTIVITY PROBABILITY 
We are interested in the asymptotic connectivity of a node, 

a when t→∞. Let us assume that the nodes are independent and 
identically distributed (i.i.d.) and their movements are 
constrained within a square region of dimension (S × S). S is 
measured in unit of steps. The position of the node in the 
square region is denoted as (x, y) such that 0≤ x, y ≤ S and x, y 
∈ Integer. Let N be the number of nodes in the network. Also, 
let cab be the one hop connectivity probability between a pair of 
nodes, a and b with coordinates (xa, ya) and (xb, yb) respectively 
when t→∞. Node a is partitioned if it is not connected to any 
node in the network. Let ac and ca be the partitioning and 
connectivity probabilities of node a respectively, we have,  

 ( )∏
≠=

−−=−=
N

abb
abaa ccc

,1
111  (4a)  

The one-hop connectivity probability, cab is the probability that 
the physical separation, Rab between the two nodes, a and b, are 
less than the transmission range, η, 
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Also, using the total probability theorem, we have, 
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In other words, in order to calculate the conditional 
probability in equation (4c), we need to evaluate the probability 
of nodes, a and b jointly in all possible positions in the square 
region. For each pair of positions, we evaluate Rab and compare 
with the transmission range, η. If Rab is less than or equal to η, 
we will include the corresponding probability into the 
summation. 

( )bbaa yxyxp ,,,  is the asymptotic joint position 
probability distribution of a pair of nodes, a and b. In general, 
we expect the probability distributions of the positions of the 



nodes to be functions of time. The asymptotic position 
probability distribution exists only if the probability 
distributions of the positions of the nodes converge to 
stationary distributions when t→∞. To derive 

( )bbaa yxyxp ,,, , we observe that the coordinate (x,y) of the 
node in the square region can be viewed as a 2-variable state in 
the Markov process because of the mobility model that we 
have adopted for the analysis. This view can further be 
simplified because x and y are independent variables. Hence, 
we can model the Markov process as two separate and identical 
single variable state Markov Chains for x and y. The state 
values of the Markov Chain are the same as the values that x 
and y can take and they are { }S

kk 0= . The Markov Chain for 
either one of the coordinates is shown in Fig 3. The self-
transition in each state is illustrated using the dashed arrow.  

 

Figure 3.  The Markov Chain for the position of a node 

Let the transition probability of the states be qi,j such that 
0≤ i, j ≤ S and i, j ∈ Integer. qi,j can be obtained from equation 
(1) as follows: 
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Let the stationary probability distribution of the Markov Chain 
be { }S

kk 0=π . When we make use of the facts that the nodes are 
independent and identically distributed (i.d.d.) and the x and y 
coordinates are independent, the asymptotic joint position 
probability distribution can be expressed as follows: 

 ( )
bbaa yxyxbbaa yxyxp ππππ=,,,  (6) 

where,
bbaa yxyx ππππ ,,, are the stationary state probabilities 

for the x, y coordinates of node a and b respectively.  

The stationary probability distribution { }S
kk 0=π  exists for 

the Markov Chain and is given in equation (7). We observe that 
the boundary conditions at k = 0 and k = S have been taken care 
of in the derivation. Furthermore, it can be shown that the 
Markov Chain is ergodic. This implies that the Markov process 
always converges to the same stationary probability 
distribution irregardless of the initial position of the node. 
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Finally, we can remove the condition in the conditional 
probability in equation (4c) to derive the one hop connectivity 
probability, cab in equation (4b). The equation for the one hop 
connectivity probability, cab is derived as follows:  
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Note that in the derivation, we make use of the independence 
of the fading process and the mobility of the node. 

IV. STATISTICALLY EQUIVALENT MOBILITY MODEL 
RWMM is a random mobility model that is popularly used 

in the MANET simulations. As there are a few variations, in 
this paper, we will discuss only one variation [8] to 
demonstrate the concept of the statistically equivalent mobility 
model. The statistical equivalent mobility model can be used to 
derive the approximate analytical connectivity probability of 
the RWMM. A RWMM is described by the following 
parameters: minimum and maximum speed, [vmin, vmax], travel 
time, ttravel and pause time, tpause. Briefly, a node in RWMM 
will first choose a speed and direction that are uniformly 
distributed between [vmin, vmax] and [0, 2π] respectively. It then 
travels for the duration of ttravel and pauses for the duration of 
tpause, before choosing a new speed and direction and repeats 
the cycle again.  

Since a cycle consists of one ttravel and tpause, the equivalent 
pause time can be derived as follows: 

 ( )2
0,

2
0, 1 mobmobtravelpause tt ππ −=  (9a) 

Let tstep and dstep be the transition time step in seconds and the 
step size in meters respectively in the PMM. In the PMM, the 
average time and distance that the node travels in the same 
direction for either x or y direction are geometrically 
distributed and derived as: 
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Therefore, the equivalent travel time, distance and average 
speed when the node is traveling in the same direction are 
derived as, 
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V. NUMERICAL AND SIMULATION RESULTS 
In this section, we generate a few plots to study the effects 

of varying the system parameters on the connectivity of the 
network. There are two motivations for such studies. First, 
usually the system parameters represent scarce resources which 
we will like to minimize given a reasonable quality of 
connectivity in the network. Second, the minimization of 
system resources has an additional benefit of reducing 
interference and channel contention at the MAC layer [11]. In 
addition, we will look into the effect of the channel fading on 
the connectivity of the network. By choosing an appropriate 
value for the fading parameter, we could characterize the 
aggregate effect of the radio environment on the connectivity 
of the network. 

 

Figure 4.  The transistion probabilities used for the numerical results 

The following parameters are set to be the same for all 
plots: room size = (1000×1000) m2, 2σ2 = 0.6. The transition 
probabilities for the mobility model are set to be similar to 
those used in [8], the values are illustrated in Fig 4. 

First, we are interested in the connectivity of the nodes in 
an enclosed room as the transmission range of the nodes 
increases. One way to achieve an increase in transmission 
range will be to increase the transmission power of the node. 
Hence, by looking at the connectivity probability, we will 
know the amount of transmission power required to achieve a 
certain level of connection. In Fig 5, we show the connectivity 
probability over different transmission ranges for the cases 
with and without fading. The node count, N is fixed at 25 nodes 
for this plot. From the graph, the connectivity probabilities 
increase for both cases as the transmission range increases. 
When there is no fading, the connectivity probability increases 
at a faster rate. For example, when there is no fading, the 
connectivity probability is approximately one when the 
transmission range is 250m. The average number of hops is 
about (1000/250 =) 4 hops for this case. However, when there 
is fading, the transmission range is increased to 380m in order 
to achieve the same connectivity probability, with an average 
number of 2.6 hops. 

Second, we are interested in the connectivity of the nodes in 
an enclosed room as the node count increases. In Fig 6, we 
show the connectivity probability over different node count for 
the cases with and without fading. The free space transmission 
range, η0 is fixed at 250m for this plot. From the graph, the 
connectivity probabilities increase for both cases as the node 
count increases. Again, when there is no fading, the 
connectivity probability increases at a faster rate.  

Simulations using PMM and RWMM for both no fading 
and fading cases are used to verify our analysis. The simulation 
code is written using C language. The common parameter 
values used in the simulation are shown in Table I. Using 
equation (9a)-(9c), we obtain the equivalent RWMM. The 
parameter values of the equivalent RWMM for Fig 5 and 6 are 
given in Table II. The simulation plots in Fig 5 and 6 show that 
the simulation results converge well to the theoretical results. 
They also show that PMM provides very good approximation 
to the RWMM.  

TABLE I.  PARAMETER VALUES USED IN THE SIMULATION 

Parameter Value 
Run 100 

Duration to stabilize the mobility 10,000s 
Simulation duration 10,000s 

Time Step, tstep 1s 
Step Size, dstep 10m 

Propagation Model Free space 

TABLE II.  MOBILITY PARAMETER VALUES FOR FIGURE 5 AND 6 

RWMM PMM 
ttravel 3s [πMob,-1,πMob,0,πMob,1] [0.385,0.231,0.385]
tpause 0s tstep 1s 

[vmin, vmax] [0,20] dstep 10m 
v  10m/s v  10 m/s 

TABLE III.  MOBILITY PARAMETER VALUES FOR FIGURE 7 

RWMM PMM 
ttravel 9s [πMob,-1,πMob,0,πMob,1] [0.296,0.408,0.296]
tpause 2s tstep 4s 

[vmin, vmax] [0,20] dstep 40m 
v  10m/s v  10 m/s 

 

Finally, we provide one example where parameters for the 
RWMM are given and those of the equivalent PMM are 
derived (see Table III). The result for the case with fading is 
plotted in Fig 7. We also plot the analytical result for the fading 
case from Fig 5 into Fig 7 for comparisons. Again, we see that 
the PMM provides very good approximation to the RWMM. 
We observe that there is almost no difference between the two 
analytical plots which are used to approximate the RWMM 
with different mobility parameters. Hence, connectivity is 
actually not very sensitive to the parameters of the mobility 
models. Therefore, we infer that connectivity results obtained 
from analysis of static node distributions is a good 
approximation to the connectivity of the mobile nodes. 



 

Figure 5.  Theoretical vs Simulation Connectivity Probabilities when 
Transmission Range is varied 

 

Figure 6.  Theoretical vs Simulation Connectivity Probabilities when Node 
Count is varied 

 

Figure 7.  Theoretical vs Simulation Connectivity Probabilities when 
Transmission Range is varied for different mobility parameters, with fading 

VI. CONCLUSION 
Connectivity of MANET is affected by the mobility of the 

nodes and the fading of the signals in the radio channel due to 
varying atmospheric conditions and scattering obstacles. In this 
paper, we address the issues using stochastic modeling. We 
derive the connectivity probability and study the effects of 
varying the system parameters on the connectivity of the 
network. We hope that from the study, we could find ways to 
minimize the scarce resources given a reasonable quality of 
connectivity in the network. This minimization of the scarce 
resource also has an additional benefit of reducing interference 
and channel contention at the MAC layer. In addition, we also 
study the aggregate effect of the channel fading on the 
connectivity of the network. It is shown from the numerical 
result that for the case with fading, we need either a higher 
transmission power or node count in order to achieve the same 
level of connectivity compared to the case without fading. 
Furthermore, we observe that the connectivity of the network is 
actually not very sensitive to the parameters in the mobility 
model. In future, this model will serve as a basis to further 
analytical modeling of MANET routing protocols and network 
optimization. 
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