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contains the projective plane, PG(2,q), as a minor is uniquely
representable.
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1. Introduction

We prove the following theorem.

Theorem 1.1. If M is a 3-connected GF(q)-representable matroid with a PG(2,q)-minor, then M is uniquely
GF(q)-representable.

We recall that PG(k,q) is the rank-(k + 1) projective geometry over GF(q). Theorem 1.1 was con-
jectured in [2] where the weaker result with PG(2,q) replaced by PG(q,q) is proved. We hope that
Theorem 1.1 will help resolve the following conjecture which was also posed in [2].

Conjecture 1.2. No excluded minor for the class of GF(q)-representable matroids contains PG(2,q) as a minor.

Let F be a field and let M be a matroid. We use two different notions of equivalence for represen-
tations: algebraic equivalence and projective equivalence. Two F-representations of M are algebraically
equivalent if one can be obtained from the other by elementary row operations, column scaling, and
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field automorphisms. Two F-representations of M are projectively equivalent if one can be obtained
from the other by elementary row operations and column scaling. We remark that for finite fields
of prime order these two notions coincide since such fields have trivial automorphism groups. Two
representations that are not projectively equivalent are said to be projectively inequivalent.

Let N be a minor of M . We say that N stabilizes M over F if no F-representation of N can be
extended to two projectively inequivalent F-representations of M . We say that N is a stabilizer for F

if N stabilizes each 3-connected F-representable matroid that contains N as a minor. The main step
towards a proof of Theorem 1.1 is to prove the following result:

Theorem 1.3. For each prime power q, PG(2,q) is a stabilizer for GF(q).

We will prove a modest strengthening of Theorem 1.3 (see Theorem 3.2) which may be useful
with regard to Conjecture 1.2.

A matroid M is uniquely F-representable if it is F-representable and any two F-representations
of M are algebraically equivalent. The following result is referred to as the Fundamental Theorem of
Projective Geometry (see Artin [1, p. 85]).

Theorem 1.4. For each prime power q and integer k � 2, the projective geometry PG(k,q) is uniquely GF(q)-
representable.

Theorem 1.1 is a direct consequence of Theorems 1.3 and 1.4, although for non-prime fields one
needs to be a bit careful due to the two different notions of equivalence. Let Aut(GF(q)) denote the
automorphism group of GF(q) and let M be a 3-connected GF(q)-representable matroid that contains
a PG(2,q)-minor. From one representation of M we can construct |Aut(GF(q))| projectively inequiva-
lent representations that are algebraically equivalent. Since PG(2,q) is a stabilizer for M , there are no
other projectively inequivalent representations. Thus M is uniquely representable.

2. Preliminaries

We use the notation of Oxley [3]. We refer to flats of rank 1, 2, and 3 as points, lines, and planes
respectively.

Let e and f be distinct elements of M . We call e and f clones if there is an automorphism of M
that swaps e and f and that acts as the identity on all other elements of M; that is, e and f are
clones if rM(X ∪ {e}) = rM(X ∪ { f }) for each set X ⊆ E(M) − {e, f }.

The following lemma is well known but we include the proof for the sake of completeness.

Lemma 2.1. Let e be an element of a matroid M and let F be a field. If M \ e does not stabilize M over F, then
there exists an F-representable matroid M ′ with E(M ′) = E(M) ∪ { f } such that M = M ′ \ f , and e and f are
independent clones in M ′ .

Proof. If M \ e does not stabilize M over F, then there is an F-representation, say A, of M \ e that
extends to two projectively inequivalent F-representations, say [A, v1] and [A, v2], of M . Let M ′ be
the F-representable matroid represented by the matrix [A, v1, v2] where the last two columns are
indexed by e and f respectively. Clearly e and f are clones and, since the representations [A, v1] and
[A, v2] are projectively inequivalent, {e, f } is independent in M ′ . �

Note that, in Lemma 2.1, if M is 3-connected, then M ′ is also 3-connected.
The following result is due to Sandra Kingan (private communication).

Lemma 2.2. Let e and f be elements of a simple rank-3 GF(q)-representable matroid M. If e and f are clones,
then |E(M) − clM({e, f })| � q.
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Proof. Since M is GF(q)-representable, e is on at most q + 1 lines. Since e and f are clones, none
of these lines, other than the line containing both e and f , can contain 3 or more points. Hence
|E(M) − clM({e, f })| � q, as required. �

The following result shows that to test whether N is a stabilizer for F it suffices to check ma-
troids M with r(M) � r(N) + 1 and r∗(M) � r∗(N) + 1.

Theorem 2.3. (See Whittle [4].) A 3-connected matroid N is a stabilizer for the class of F-representable ma-
troids if and only if N stabilizes each 3-connected F-representable matroid M satisfying one of the following
conditions:

(i) N = M \ e for some e ∈ E(M),
(ii) N = M/e for some e ∈ E(M), or

(iii) N = M \ e/ f for some e, f ∈ E(M) where M \ e and M/ f are both 3-connected.

3. The main results

It remains to prove Theorem 1.3. We will prove a slightly stronger result (see Theorem 3.2). The
following lemma is a key step in the proof.

Lemma 3.1. Let q � 3 be a prime-power and let N be a simple rank-3 GF(q)-representable matroid with
|E(N)| � q2 + q − 1. Let M be a 3-connected GF(q)-representable matroid with elements e and f such that
M/e, f = N. Then e and f are not clones in M.

Proof. Assume to the contrary that e and f are clones. Let a and b be distinct elements of N and let
Z = E(N) − clN ({a,b}). Thus |Z | � q2 − 2. Note that r(M/a,b) = 3 and {e, f } is an independent clonal
pair in M/a,b. Then, by Lemma 2.2, there are at most q points of M/a,b that are not spanned by
{e, f }. For each c ∈ Z , the set {a,b, c, e, f } is independent in M and, hence, X ∩ clM/a,b({e, f }) = ∅.
Therefore there is a parallel class of M/a,b that contains at least q elements of Z . So there is
a plane P of M containing a and b as well as at least q points of Z . Let α = |P | − q; thus α � 2.

Consider M as a restriction of PG(4,q) and let L be the line of PG(4,q) that is spanned by e
and f . For each point z ∈ L, let πz be the set of elements in E(N) − P that are spanned by P ∪ {z}.
Thus (πz: z ∈ L) is a partition of E(N) − P . Since e and f are clones, πe and π f are both empty.
Since M is 3-connected, {e, f } is not a series-pair and, hence, there exist distinct elements x and y
in L − {e, f } such that πx and πy are nonempty. Hence there is a partition (X, Y ) of E(N) − P into
two nonempty sets such that, for each x ∈ X and y ∈ Y , the elements x and y are in distinct parts of
(πz: z ∈ L).

For each x ∈ X and y ∈ Y , let Lxy denote the line of N spanned by x and y. We claim that there
exist x ∈ X and y ∈ Y such that |P − Lxy | � q + 1. Suppose otherwise and consider any two points
x ∈ X and y ∈ Y . Since |P − Lxy | � q and |P | = q +α, we have |Lxy ∩ P | � α. Since |P − Lxy | � q, there
are at most q/α other lines of N through x that contain points of Y . Hence |Y | � (q/α + 1)(q − α).
Similarly |X | � (q/α + 1)(q − α). Now

q2 + q − 1 �
∣
∣E(N)

∣
∣

= |X | + |Y | + |P |
� 2(q/α + 1)(q − α) + (q + α).

By multiplying through by α and rearranging we get

(α − 2)q2 + α(α − 1) � 0.

This gives the required contradiction since α � 2 and q � 0. Thus there exist x ∈ X and y ∈ Y such
that |P − Lxy| � q + 1, as claimed.
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Let P ′ = P − Lxy and let M ′ = (M|(P ′ ∪ {x, y, e, f }))/x, y. Note that M ′ has rank 3 and {e, f } is an
independent clonal pair in M ′ . Moreover, clN ({x, y})∩ P ′ = ∅ and rN (P ′) = rM(P ′), so clM({x, y, e, f })∩
P ′ = ∅. Therefore clM′ ({e, f }) ∩ P ′ = ∅. Thus |E(M ′) − clM′ ({e, f })| � q + 1, which contradicts
Lemma 2.2. �

Since PG(2,q) has q2 + q + 1 points, the following result generalizes Theorem 1.3.

Theorem 3.2. Let N be a simple rank-3 GF(q)-representable matroid with |E(N)| � q2 + q − 1. Then N is
a stabilizer for GF(q).

Proof. Since binary matroids are uniquely representable we may assume that q � 3. Now it is easy
to verify that N is 3-connected. By Theorem 2.3, to prove that N is a stabilizer it suffices to consider
3-connected, GF(q)-representable matroids M of one of the following types:

(i) N = M \ e for some e ∈ E(M).
(ii) N = M/e for some e ∈ E(M).

(iii) N = M \ e/ f for some e, f ∈ E(M) where M \ e and M/ f are both 3-connected.

Case (i): If N does not stabilize M , then, by Lemma 2.1, there is a 3-connected GF(q)-representable
matroid M ′ obtained by extending M by an element f such that e and f are clones. By Lemma 2.2,
|E(M ′) − clM′ ({e, f })| � q and, hence, |E(M ′)| � 2q + 1 � q2. However this contradicts the fact that
|E(N)| � q2 + q − 1.

Case (ii): If N does not stabilize M , then, by the dual of Lemma 2.1, there is a 3-connected GF(q)-
representable matroid M ′ obtained by co-extending M by an element f such that e and f are clones.
This contradicts Lemma 3.1.

Case (iii): Let N ′ = M/ f . By case (i), N stabilizes N ′ . Applying case (ii) to N ′ and M , we see that
N ′ stabilizes M . Therefore N stabilizes M .

In each case N stabilizes M over GF(q). Therefore N is a stabilizer for GF(q). �
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