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Sufficient conditions are given for an elementary quotient of the kth Dilworth 
truncation of a matroid M to be the kth Dilworth truncation of a quotient of M. 
As special cases, contractions of Dilworth truncations and principal truncations by 

connected flats of Dilworth truncations are characterised as Dilworth truncations of 
certain matroids. As an application of the theory it is shown that the degree of the 
minimal extension field of GF(q) needed to represent the first Dilworth truncation 

of PG(r - 1, q) is greater than 2r - 4. % 1990 Academx Press, Inc. 

1. INTR~DUC-~I~N 

The kth Dilworth truncation, denoted D,(M), is a canonical construc- 
tion, first realised in [S] which assigns to any matroid M a new matroid 
whose ground set is the set of flats of M with rank k + 1 (in this paper sub- 
sets of E(M) with cardinality k + 1). If M and M’ are matroids sharing a 
common ground set then M’ is a quotient of M if every flat of M’ is also 
a flat of M. If the rank of M and M’ differ by one then M’ is an elementary 
quotient of M. Elementary quotients are determined by modular cuts of M. 

In this paper we show that if (D,(M))’ is an elementary quotient of 
D,(M) determined by a modular cut of D,(M) whose minimal members 
are connected then (D,(M))’ = D,(W) where M’ is an elementary quotient 
of M. The modular cut of A4 determining M’ is specified. As special cases 
we are able to characterise principal truncations by connected flats of 
D,(M) and contractions of D,(M). 

As an application of the theory it is shown that the degree of the 
minimal extension field of GF(q) needed to represent the first Dilworth 
truncation of PG(r - 1, q) is greater than 2r - 4. This improves a bound of 
Brylawski [2]. 
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2. DEFINITIONS AND PRELIMINARY RESULTS 

We assume that the reader is familiar with the basic concepts of matroid 
theory. Matroid terminology used here will in general follow Welsh [9]. 
The set of elements of a matroid M will be denoted by E(M). If Tc E(M), 
the restriction of A4 to E( M)\T will be denoted by MI (E(M)\T) or by 
M\T and the contraction of M to E(M)\T will be denoted by 
M. (E(M)\T) or by M/T in either case according to convenience. The 
closure and rank of T in M will be denoted by cl,(T) and by rM(T), 
respectively, or if no danger of ambiguity exists by cl(T) and r(T), respec- 
tively. The simple matroid associated with M will be denoted by ii-i. 

The k th Matroidal Dilwarth Truncation 

Let A4 be a matroid. For 1 Q k < r(M) the kth Dilworth truncation of IV, 
denoted D,(M), is a matroid on the groundset 

E(D,(M))= {p:psE(M), IpI =k+ l> 

Whose family 2 of independent sets is given by 

y= {I:ZsE(D,(M)), rM 
> 

> 11’1+ k for all nonempty subsets I’ of 11. 

Note that the kth Dilworth truncation as defined in [4,5, 71 has as 
groundset the set of rank-(k + 1) flats of M and is a matroid isomorphic to 
the simple matroid associated with D,(M) defined above as is routinely 
verified. Our definition generalises that of Brylawski [2]. The statements 
and proofs of a number of theorems in this paper are simplified by con- 
sidering matroidal Dilworth truncations rather than Dilworth truncations. 

Note that p E E(D,(M)) is a loop of D,(M) if and only if p is dependent 
in M with Ipj = k + 1. It is well known that r(D,(M)) = r(M) - k. 

It is worth noting the following geometric interpretation of D,(M). 
Assume that M is embedded as a restriction of a rank-r projective space P 
and that F is a rank-(r - k) subspace of P in “general position” relative to 
M. Then D,(M) is isomorphic to the restriction of P to the set of points 
of intersections of the subspaces of P spanned by the rank-(k + 1) flats of 
A4 with F. 

Connected Flats 

Let F be a flat of the matroid M. Then F is connected if whenever x and 
y are non-loops of M contained in F, there exists a circuit of M contained 
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in F which contains both x and y. Note that, according to this definition, 
a connected flat may have loops. 

For a connected flat F of D,(M) of positive rank let 4(F) = 
cl,( u {p E F: p not a loop of D,(M)}). It is a straightforward consequence 
of results in [4, Chap. 71 that 4 defines a bijection between the connected 
flats of D,(M) of positive rank and the flats of M having rank greater than 
k. We also have r($(F)) = r(F) + k for every connected non-trivial flat F 
of D,(M). 

We shall use the canonical bijection 4 frequently in this paper. In 
particular we have 

LEMMA 2.1. Let F, and F2 be connected flats of D,(M) then 

(i) if r(F, n Fz) > 0 then F, n F2 is a connected flat of D,(M) and 
4(F, n Fd = WI) n WJ, 

(ii) ifr(F, n F,) > 0 then cl(F, v F*) is a connectedflat of D,(M) and 
whenever cZ(F, u F2) is connected then &cl(F, u F,)) = cZ(4(F,) u &Fz)). 

Proox (i) Routine checking shows that F, n F2 = 4-‘(b(F,) n &F2)). 
Now F, n F2 is certainly connected since it is of the form &l(F) for some 
flat F of M and we also have &FI n F2) = @(F, ) n rj(F2). 

(ii) If r(F, nF2)>0, th en since both F, and F2 are connected it 
follows from circuit transitivity that cE(F, u F,) is connected. Assume that 
cl(F, u F2) is connected. Then cZ(F, u F2) = 4-‘(F) for some flat F of A4. 

But F contains d(F, ) and #(F2) and therefore F 2 c/(&F, ) u d(F2)). That 
is, WI u f’d 2 4p’(c4W,) u WJ)). But 4p’(4W,) u Wd)) con- 
tains F, and F; so &‘(cZ($(F,) u &Fz))) 1 cl(F, u F2). Therefore 
cZ(F, u F,) = d-‘(cZ(d(F,) u &Fz))) and we have &cZ(F, u F2)) = 

4W, 1 u Wd). 

Modular Cuts and Quotients 

Let M” be a matroid and M = M”\P, then M” is an extension of M 
by P. If P is independent in M” then M” is said to be an independent 
extension of M by P. 

Proposition 2.2 is a special case of a result of Higgs [6]. 

PROPOSITION 2.2. Let M and M’ be matroids with E(M) = E(M’), then 
M’ is an elementary quotient of M if and only if there exists an independent 
single point extension of M by p, say M”, with the property that M”/p = M’. 
The matroid M” is unique. 

That is, elementary quotients of M are determined by non-trivial single 
point extensions of M. Such extensions are, in turn, determined by modular 
cuts of M. 
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A modular cut C of the matroid M is a set of flats of it4 with the 
following properties: 

(i) if F, E C and F2 2 F, then F, E C, 

(ii) if F, and F2 belong to C and r(f’,) + r(FJ = 
r(F, n F2)+r(F, u Fz) (that is, F, and F, form a modular pair), then 
F, n F, E C. 

It is shown in [4] that the modular cut C determines a single point 
extension M” of M with ground set E(M) u x having the following 
independent sets. If IS E(M) then I is independent in M” if and only if I 
is independent in M, while Zu x is independent in M” if and only if Z is 
independent in M and cZ,,JZ) does not contain any member of C. 

The following definition enables us to bypass the single point extension 
and go straight from the modular cut to the quotient. If C is a modular cut 
of the matroid M then M’ is the quotient induced by C if M’ = M”jx where 
M” is the single point extension of M determined by C. If C is a proper 
non-empty modular cut of M (that is, C# 0 and C does not contain all 
the flats of M) then the quotient induced by C is an elementary quotient 
of M. Otherwise the quotient induced by C is just M itself, a case of little 
interest to us. 

One routinely obtains 

PROPOSITION 2.3. Let M be a matroid, C be a proper non-empty modular 
cut of M and M’ the quotient of M induced by C. Then 

(i) Z E E(M) is independent in M’ if and only if Z is independent in M 
and cl,,,(Z) contains no member of C. 

(ii) For SG E(M), 

TM(S) = rMM(S) if cl,(S) contains no member of C, 

r,dS) - 1 if clJS) contains a member of C. 

Certain special cases of quotients are of particular interest to us. Let F 
be a flat of the matroid M and C be the modular cut consisting of all flats 
containing F. Then the first principal truncation of M at F, denoted 
T,,,(M), is the quotient of M induced by C. This definition differs from 
that given in [ 1 ] but is easily seen to be equivalent to it up to associated 
simple matroids. Geometrically TFtIj(M) is the matroid obtained by 
placing a point freely on the flat F in M and then contracting the point. 
It is readily checked that F is a flat of T,,,,(M) and that TF(,)(TFtIj(M)) 
is thus well defined. We therefore define recursively the kth principal 
truncation of M at F, denoted TFckj(M), by TFoj(M)= TF(,j(TF(k-I1)(M)) 
for k > 1. In the case k = r,,,(F) - 1 one obtains the complete principal 
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truncation of M at F, denoted T,(M). This case is of particular interest 
(see, for example, [l, 3, lo]). In the case k 2 r,,,JF), T,(,,(M)\F= M/F and 
since F is the set of loops of T,,,,(M) we have TF&A4) z M/F. 

3. QUOTIENTS OF DILWORTH TRUNCATIONS 

In this section we give a suflicient condition for a quotient of the 
Dilworth truncation of a matroid M to be the Dilworth truncation of a 
quotient of M. We need to relate certain modular cuts of D,(M) to corre- 
sponding modular cuts of M. 

LEMMA 3.1. If q5(F,) and $(F2) are a modular pair offlats of h4 then F;, 
and F2 are a modular pair of connected flats of D,(M). On the other hand 
lf F, and F2 are a modular pair of connected flats of D,(M) with 
r(F, n Fz) > 0 then q5(F,) and qS(F2) are a modular pair of flats of M. 

Proof The flats F, and F2 of D,(M) are connected with r(F, n F2) > 0 
if and only if r++(F,) and q5(F2) are flats of A4 with r(4(F,) n q5(F2)) > k. For 
such flats we see by Lemma 2.1 that F, n F2 and cl(F, u F,) are connected 
flats of D,(M) with &F, n F2) = #(F,) n #(F2) and &cl(F, u F2)) = 
c[( & F, ) u d( F,)). Therefore 

r(4(Fl)) + r(W’d) - r(W,) n W’d) - r(4(F;l) u M’d) 

= r(W’,)) + r(W’d) - r(W’, n Fd) - r(W’, u Fd) 

=r(F,)+k+r(F,)+k-r(F,nF*)-k-r(F,uF,)-k 

=r(F,)+r(F,)-r(F,nF2)-r(F,uF,) 

and hence F, and F2 form a modular pair if and only if &(F, ) and #(F2) 
form a modular pair. 

Now assume that q5(F,) and &F2) are a modular pair of flats of M with 
r(&F,) n #(F,)) < k. In this case r(F, n F2) = 0. If cl(F, u F2) is not con- 
nected then F, and F2 certainly form a modular pair so assume that 
cZ(F, u F2) is connected. By Lemma 2.1, $(cl(F, u F2)) = cl(b(F1) u &F2)) 
and therefore we have 

o=r(~W’~)) + r(W’d-r(4(F1) n~(F2))-r(~(F,)u~(F~;)) 
>r(F,)+k+r(F,)+k-k-r(F,uF,)-k 

=r(F,)+r(F,)-r(F,nF,)-r(F,uF2)>0. 

80 all inequalities are equalities and therefore F, and F, form a modular 
pair. 
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Associated with each modular cut of a matroid are its minimal members 
(when ordered by set inclusion). If 9 is a set of non-comparable flats of the 
matroid A4 then it is easily seen that 9 is the set of minimal members of 
a modular cut C of M if and only if whenever F, and F2 are a modular pair 
of flats of M, each containing a member of F, then F, n F2 contains a 
member of 9. 

LEMMA 3.2. If C is a non-trivial modular cut of D,(M) whose minimal 
members are connected, then C’ = {d(F): F is a connected member of C> is 
a modular cut of M. 

ProoJ: Let F”’ = {d(F); F a minimal member of C}; 8’ is well defined 
since the minimal members of C are all connected. Clearly C’ consists of 
all flats of M containing a member of 9’. Say d(F,) and &F2) are a 
modular pair of flats, each of which belongs to C’, then by Lemma 3.1, F, 
and F, are a modular pair of connected flats of D,(M). But both 4(F,) and 
d(F2) contain members of 9-I so both F, and F2 contain minimal members 
of C and therefore F, n F2 contains a minimal member of C. By 
Lemma 2.1, F, n F; is connected and d(F, n F,)=#(F,) n#(F,) so 
&F,) n &F2) contains a member of F’ and the result follows. 

We are now in a position to prove our main result. 

THEOREM 3.3. Let M be a matroid, C be a non-trivial modular cut of 
D,(M) whose minimal members are connected, and c’ be the modular cut of 
M defined by c’= (4(F): F a connected member of C}. Let (D,(M))’ and 
M’ be the quotients of D,(M) and M induced by C and C’, respectively. 
Then D,(M’) = (D,(M))‘. 

Proof By Lemma 3.2, C’ is indeed a modular cut of M. Assume that 
SG E(M) is independent in [D,(M)]‘, then by Proposition 2.3, S is inde- 
pendent in D,(M) and cZDk(,,,)(S) contains no member of C. Say the con- 
nected components of cl,,(,)(S) are F,, . . . . Fk, then #(F,), #(F,), . . . . &Fk) 
are flats of M none of which belong to C’. Consider S’ G S. If 
c~,,~,~(S’)GF~ for in (1, . . . . k), then cl,(u {i; iES’})c4(F,) and there- 
fore cI,( u {i; iE S’}) 4 C’. Since S is independent in D,(M), 
rM(U (i; iES’})> IS’1 +k, but by Proposition 2.3, rM(IJ {i; iES’))= 
r,+,(U {i; iES’j) and therefore r,&U {i; iES’})> ISI +k. If cl,,(,,,,)(S’) G 
Fi for any iE { 1, . . . . k} then cZ,,~,~(S’) is not connected and therefore 
rM(IJ {i; iE S’>) > IS’1 + k. By Proposition 2.3, r,+,,(U (i; i E S’}) 2 
rM(U {i; iES’})- 1 and therefore rM(U {i; iES’))a IS’/ +k. In either 
case, for S’ E S, rM(U {i; iE S’}) 2 IS’1 + k and therefore S is independent 
in D,(M’). 

Assume that S is dependent in [D,(M)]‘. Then either S is dependent in 
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D,(M) or S is independent in D,(M) and cZ,,(,,(S) contains a member of 
C. If S is dependent in D,(M) then S contains a circuit A of D,(M). But 
circuits span connected flats and therefore 

rM U {a:aGA} =r,,(,)(A)+k= IAl +k-1. 
( > 

But rM(U {a:aEA))dr,(U {a:a~A}) so 

rMr U {a:aeA} <IAl +k 
( > 

and therefore S is dependent in D,(M’). If S is independent in D,(M) and 
CUD, contains a member of C then some minimal member F of C is 
a subset of cl Dk(Mj(S). Any connected component of cl,,(,)(S) is spanned 
by a subset of S and at least one connected component contains F (all the 
minimal members of C are connected). Assume that this component is 
spanned by S’ES. Then rM(lJ {s:s~S’))= IS’1 +k and cZ,(lJ {s:s~S’}) 
24(F). But ~(F)EC’ so by Proposition2.3, r,&lJ {s:s~S)})= 
rM(lJ {s:s~S’})- l< IS’1 + k and therefore S’ is dependent in D,(M’). 
That is, if S is dependent in [D,(M)]‘, then S is dependent in D,(M’). 

Since [D,(M)]’ and D,(M’) share common ground sets the result 
follows. 

We immediately obtain 

COROLLARY 3.4. rf F is a connected non-trivial jlat of D,(M), then 
D~T~~F~~I~W)) = TmdDhW). 

Equivalently, if F is a jlat of M with r(F) > k, then Dk( T,,,,(M)) = 
T~-~~I)(DIJM)). 

One routinely shows that if F is connected in M with r(F) > 1 then F is 
connected in TFCI)(M) and we therefore have 

COROLLARY 3.5. If F is a connected non-trivial flat of D,(M), then for 
j G r(F), DA Tw)(~) (Ml) = T~cjdDk(W). 

Equivalently if F is a jlat of M with r(F) > k, and j< r(F) - k, then 
D/~(TF(/J(W) = Tb-l(F)(/) (D,(W). 

Two special cases are of particular interest. 

COROLLARY 3.6. Zf F is a rank j+ 1 connected flat of D,(M) then 
Dk(Tb(F)(j)(M)) = TAD,(M))* 

This characterises complete principal truncations at connected flats of 
Dilworth truncations. The result is intuitively evident; the complete prin- 
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cipal truncation of D,(M) by F is obtained by putting a set P of j points 
freely on the flat F and then contracting the set P. The effect is to reduce 
F to a rank one flat. If TF(DP(M)) were to be the kth Dilworth truncation 
of anything, it must be that of a matroid in which 4(F) has rank k + 1. The 
simplest way to do this is to put a set P ofj points freely on the flat d(F) 
in M and then contract P. This is exactly what is done and Corollary 3.6 
shows that the natural correspondences hold. 

Just as evident intuitively is 

COROLLARY 3.7. Zf F is a rank-j connected flat of D,(M) then 

D/c( T#,,,,j,(W)\F= DAM/F, and since F is a set of loops of 

D/J Tb(F,(jJM))\F we have, DA T+cFjcj,(W) g DdWIf’. 

This characterises contractions by flats of Dilworth truncations. The case 
when F is not connected is covered by considering each component of Fin 
turn. In the case k = 1 (the traditional Dilworth truncation on the lines 
of M), we see that, up to associated simple matroids, the contraction of 
D,(M) by a connected flat F is isomorphic to the first Dilworth truncation 
of the complete principal truncation of M at 4(F). 

As an application of the above theory we turn our attention to a 
problem of Brylawski. In [2] Brylawski shows that if a matroid M is 
representable over GF(q), then D,(M) is representable over some extension 
field of GF(q). For such a matroid, denote by d(M, q) the degree of the 
minimal extension field needed to represent D,(M). Brylawski shows that 
for r > 1, d( PG(r - 1, q), q) > r. We improve on this bound. 

PROPOSITION 3.8. d(PG(r - 1, q), q) > 2r - 4. 

Proof: Assume r > 2 (the result is trivial for r = 2), and let F be a coline 
of PG(r - 1, q). It is straightforward to show that lines of T,(PG(r - 1, q)) 
are either lines of PG(r - 1, q) disjoint from F or hyperplanes of 
PG(r - 1, q) containing F. There are q 2’-4 distinct lines of PG(r- 1, q) 
disjoint from F and there are q + 1 distinct hyperplanes of PG(r - 1, q) 
containing F (see, for example, Sved [S] for justification of these well 
known facts). That is, there are qzr-’ + q + 1 distinct lines of TF( PG(r - 1, q)) 
and hence DI(TF(PG(r-1,q)))~UU2,q2r-4+y+,. But by Corollary 3.7, 

D,(TAWr- 1, q))) rD,(PG(r- 1, s))/&‘(F). 

That is, U, q~rm.++q+l is a minor of D,(PG(r-1,q)). But U2,y~r-4+q+1 is 
not representable over GF( q*‘- 4 ) and therefore d(PG(r - 1, q), q) > 2r - 4. 

Finally we note that Theorem 3.3 does not generalise easily to quotients 
determined by modular cuts of D,(M) whose minimal members are not 
connected. For example, let F4 be the free matroid on 4 points and 
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E(F,)= (1, 2, 3, 4). Then F= { { 1, 2}, (3, 4)) is a disconnected flat of 
D,(Iiq). Let (D1(F4))' be the quotient of D1(F4) determined by the modular 
cut consisting of all flats containing F. Now, apart from the double point 
{ (1, 2}, {3,4}}, (II,(F is isomorphic to Uz,S and it is readily verified 
that (D1(F4))' is not the Dilworth truncation of any quotient of F4. 
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