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Abstract. A tangle in a matroid is an obstruction to small
branch-width. In particular, the maximum order of a tangle is
equal to the branch-width. We prove that: (i) there is a tree-
decomposition of a matroid that “displays” all of the maximal
tangles, and (ii) when M is representable over a finite field, each
tangle of sufficiently large order “dominates” a large grid-minor.
This extends results of Robertson and Seymour concerning Graph
Minors.

1. Introduction

Robertson and Seymour [7] introduced branch-width for graphs and
showed that this parameter is characterized by “tangles”. Robertson
and Seymour also stated that their results extend to matroids [7, p.
190]; the details were later given by Dharmatilake [1] (see, also, [3]).
Here we use the definitions given in [3]; we defer these definitions until
Section 3. For the purpose of this introduction, a tangle of order θ in
M can be thought of as a “θ-connected component” of M . We prove
the following two results.

1.1. Each matroid has a tree-decomposition that “displays” all its max-
imal tangles.

This will be made precise in Theorem 9.1, which extends a result in
Graph Minors X [7, (10.3)].

Theorem 1.2. For each finite field F and positive integer k there exists
an integer θ such that, if M is an F-representable matroid and T is a
tangle in M of order θ, then T dominates a minor N that is isomorphic
to the cycle matroid of a k by k grid.
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The proof is given in Section 7. Theorem 1.2 extends a result of
Robertson, Seymour, and Thomas [6, (2.3)]. The term “dominates” is
used specifically with respect to grid-minors and is defined in Section 7.
To prove Theorem 1.2 we will use the main result of [4] which says that
an F-representable matroid with huge branch-width contains a large
grid-minor.

These results are technical, but the motivation is to, hopefully, use
them in extending the Graph Minors Structure Theorem [8]. For ex-
ample, for certain fixed binary matroids N , we are interested in the
class of binary matroids that do not contain an N -minor. Typically we
choose N to be a highly structured matroid, such as: the cycle matroid
of a grid, the cycle matroid of a complete graph, or a projective geom-
etry. In such cases N has a unique maximal tangle TN . Now, if N is a
minor of some binary matroid M , then the tangle TN “induces” a tan-
gle TM in M . Any tangle in M that contains TM is said to “dominate”
N . Now 1.1 shows that the maximal tangles in M are composed in
a tree-like way. This tree structure essentially localizes each maximal
tangle in M and shows how M is composed from these local parts.
So, to determine the structure of binary matroids with no N -minor, it
suffices to determine the local structure of each maximal tangle in M
that does not dominate an N -minor. Unfortunately the local structure
of tangles that do not dominate N is complicated. This is partly over-
come by considering only tangles whose order is much larger than the
order of TN . By Theorem 1.2, each such tangle dominates a huge grid.
Supposing that our tangle does not dominate an N -minor, the hope
then is that this huge grid-minor will impose local structure on M .

2. Connectivity and branch-width

We assume that the reader is familiar with matroid theory; we use
the notation of Oxley [5].

Let λ be a function that assigns an integer value to each subset of a
finite set E. We call λ symmetric if λ(X) = λ(E − X) for all X ⊆ E.
We call λ submodular if λ(X) + λ(Y ) ≥ λ(X ∩ Y ) + λ(X ∪ Y ) for all
X,Y ⊆ E. If λ is integer-valued, symmetric, and submodular, then
we call λ a connectivity function on E. A connectivity system is a pair
K = (E, λ) where λ is a connectivity function on E. A partition (A,B)
of E(K) is called a separation of order λK(A).

For a matroid M and X ⊆ E(M), we let λM(X) = rM(X) +
rM(E(M) − X) − r(M) + 1. It is straightforward to prove that
KM = (E(M), λM) is a connectivity system. For a graph G and
X ⊆ E(G), we let λG(X) denote the number of vertices of G that
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are incident with both an edge of X and an edge of E(G) − X. It is
also straightforward to prove that KG = (E(G), λG) is a connectivity
system. Moreover, if G is connected we have for each X ⊆ E(G) that
λM(G)(X) ≤ λG(X).

Branch-width plays only a minor role in this paper, but we include a
definition for completeness. Let K be a connectivity system. A tree is
cubic if its internal vertices all have degree 3. A branch-decomposition
of K is a cubic tree T whose leaves are labeled by elements of E(K)
such that each element in E(K) labels exactly one leaf of T and each
leaf of T receives at most one label from E(K). If T ′ is a subgraph of
T and X ⊆ E(K) is the set of labels of T ′, then we say that T ′ displays
X. The width of an edge e of T is defined to be λK(X) where X is the
set displayed by one of the components of T − {e}. The width of T is
the maximum among the widths of its edges. The branch-width of K
is the minimum among the widths of all branch-decompositions of K.

The branch-width of a matroid M is the branch-width of its connec-
tivity system KM = (E(M), λM).

We remark that there are some trivial graphs G, such as trees, for
which KG and KM(G) have different branch-width. It is, however, con-
jectured that, if G has a circuit of length at least 2, then KG and KM(G)

have the same branch-width. In Section 6 we prove that this is at least
true for n by n grids.

3. Tangles

In this section we review results and definitions from [3].
Let K be a connectivity system. A tangle in K of order θ is a

collection T of subsets of E(K) such that:

(T1) For each B ∈ T , λK(B) < θ.
(T2) For each separation (A,B) of order less than θ, T contains

either A or B.
(T3) If A,B,C ∈ T , then A ∪ B ∪ C 6= E(K).
(T4) For each e ∈ E(K), E(K) − {e} 6∈ T .

It is proved in [3, Lemma 3.1] that, to verify that T is a tangle, we
may replace (T3) by the following weaker conditions:

(T3a) If B ∈ T , A ⊆ B, and λK(A) < θ, then A ∈ T .
(T3b) If (A1, A2, A3) is a partition of E(K), then T does not contain

all three of A1, A2, and A3.

Note that throughout this text partitions may have empty members;
in particular, (T3b) also says that no two members of T partition E(K).

The following slight variation of [7, (3.5)] was proved in [3, Theorem
3.2].
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Theorem 3.1. Let K be a connectivity system. Then, the maximum
order of a tangle in K is equal to the branch-width of K.

A tangle in a matroid M is a tangle in its connectivity system KM .
The following fact is used in the proof of (7.3.1).

Lemma 3.2. Let T be a tangle of order θ at least 3 in a matroid M .
Then each subset of E(M) with rank less than θ − 1 is in T .

Proof. Let X be a smallest possible subset in E(M) that is not in T .
As θ ≥ 3 it follows from (T2) and (T4) that singletons are in T . So X
can be partitioned into two smaller sets. By the choice of X these two
sets are in T . Hence by (T3), E(M) − X is not in T . Thus by (T2),
λM(X) ≥ θ. Note that, for any Y ⊆ E(M), the rank of Y is at least
λM(Y ) − 1. So X has rank at least θ − 1; as required. �

Let T be a tangle of order θ in matroid M . For X ⊆ E(M), if X is
a subset of a set in T , then we let

φT (X) = min(λM(A) − 1 : X ⊆ A ∈ T ),

otherwise we let φT (X) = θ− 1. The following result was proved in [3,
Lemma 4.3].

Lemma 3.3. Let M be a matroid and let T be a tangle in M of order
θ. Then φT is the rank function of a matroid of rank θ − 1.

This matroid is referred to as the tangle matroid of T .

4. New tangles from old

In this section we look at different constructions for tangles. Let
T be a tangle of order θ in a connectivity system K and let θ′ ≤ θ.
Now let T ′ be the collection of all sets A ∈ T with λK(A) < θ′. It is
straightforward to verify that:

Lemma 4.1. T ′ is a tangle in K of order θ′.

We say that T ′ is the truncation of T to order θ′. Note that if T ′

and T are tangles in K, then T ′ is a truncation of T if and only if
T ′ ⊆ T .

Let K = (E, λ) be a connectivity system and let X ⊆ E. We let
K ◦X = ((E−X)∪{eX}, λ

′) where, for each A ⊆ E−X, λ′(A) = λ(A)
and λ′(A ∪ {eX}) = λ(A ∪ X). It is straightforward to verify that:

Lemma 4.2. If K is a connectivity system and X ⊆ E(K), then K◦X
is a connectivity system.

We can also obtain a tangle in K ◦ X from a tangle in K.
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Lemma 4.3. Let T be a tangle of order θ in the connectivity system
K and let X ∈ T . Now let T ′ be the collection of subsets of E(K ◦X)
such that, for A ⊆ E(K) − X, A ∈ T ′ if and only if A ∈ T ; and
A ∪ {eX} ∈ T ′ if and only if A ∪ X ∈ T . Then T ′ is a tangle of order
θ in K ◦ X.

Proof. Each of the conditions (T1)− (T4) for T ′ to be a tangle follows
directly from the corresponding condition for T . �

A set X of elements in a connectivity system K is called titanic if
each partition (A1, A2, A3) of X satisfies λK(Ai) ≥ λK(X) for at least
one i = 1, 2, 3.

The following result is a partial converse of Lemma 4.3; it generalizes
a result in Graph Minors X [7, (8.3)].

Lemma 4.4. Let K be a connectivity system, let X ⊆ E(K) be titanic
with λK(X) < θ, and let T ′ be a tangle of order θ in K ◦ X. Now let
T be the collection of all A ⊆ E(K) such that λK(A) < θ and either
A−X ∈ T ′ or (A−X)∪ {eX} ∈ T ′. Then T is a tangle of order θ in
K.

Proof. Let Y = E(K) − X and L = K ◦ X. Note that λL({eX}) =
λL(Y ) = λK(Y ) = λK(X) < θ, so {eX} ∈ T ′. By definition, T satisfies
(T1).

We next prove that T satisfies (T2). Consider a separation (A,B)
of order less than θ in K. Since X is titanic in K, either λK(X ∩A) ≥
λK(X) or λK(X ∩ B) ≥ λK(X). By symmetry between A and B, we
may assume that λK(X ∩ A) ≥ λK(X). Then, by submodularity and
symmetry of λK , we see that λL(Y ∩B) = λK(Y ∩B) = λK(A∪X) ≤
λK(A) + λK(X) − λK(A ∩ X) ≤ λK(A) < θ. Therefore, as T ′ satisfies
(T2), one of Y ∩ B = B − X or (Y ∩ A) ∪ {eX} = (A − X) ∪ {eX} is
in T ′. Thus, T contains B or A, as required. So T satisfies (T2).

Next consider (T3a). Let B ∈ T and A ⊆ B with λK(A) < θ. Then,
by definition, B − X is contained in a set in T ′. Since A ⊆ B, the
union of (E(K)−A)−X, B−X and {eX} is E(L). As {eX} in T ′ and
as T ′ satisfies (T3), this implies that (E(K)−A)−X is not contained
in a set of T ′. So, E(K)−A 6∈ T . As λK(A) < θ and as T does satisfy
(T2) this implies that A ∈ T , as required. So T satisfies (T3a).

We next prove by contradiction that T satisfies (T3b). Let A1, A2,
and A3 be members of T that partition E(K). Then each of A1 − X,
A2 −X and A3 −X is contained in a set in T ′. So, since E(L) cannot
be covered by three sets in T ′, none of the sets (A1 ∩ Y ) ∪ {eX},
(A2 ∩ Y ) ∪ {eX}, or (A3 ∩ Y ) ∪ {eX} is in T ′. Thus T ′ contains each
of A1 ∩ Y , A2 ∩ Y , and A3 ∩ Y . Since A1 ∩ Y and {eX} lie in T ′, T ′
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does not contain Y − A1. Now since T ′ contains neither Y − A1 nor
(A1 ∩ Y ) ∪ {eX}, we have λK(Y − A1) = λL(Y − A1) ≥ θ > λK(A1).
So, by submodularity and symmetry of λK , we get that λK(X ∩A1) ≤
λK(X) + λK(A1) − λK(X ∪ A1) = λK(X) + λK(A1) − λK(Y − A1) <
λK(X). Similarly λK(X ∩ A2) < λK(X) and λK(X ∩ A2) < λK(X).
However this contradicts the fact that X is titanic. Thus T satisfies
(T3b) and, hence, T is a tangle of order θ in K.

Finally we prove by contradiction that T satisfies (T4). Suppose
e ∈ E(K) with E(K)−{e} ∈ T . Then at least one of E(L)−{e, eX} =
E(K) − {e} − X or E(L) − {e} = (E(K) − {e} − X) ∪ {eX} is in
T ′. As T ′ satisfies (T4), this means E(L) − {e, eX} ∈ T ′ and e ∈
E(L) − {eX}. Now we have, as E(K) − {e} ∈ T , that λL({e}) =
λK({e}) = λK(E(K)−{e}) < θ. So, as T ′ satisfies (T4), the singleton
{e} is in T ′. But since also {eX} and E(L) − {e, eX} are in T ′, this
contradicts that T ′ satisfies (T3). So T does indeed satisfy (T4). �

5. Minors and tangles

Let N be a minor of M and let TN be a tangle in N of order θ. Now
let TM be the collection of all sets A ⊆ E(M) where λM(A) < θ and
A ∩ E(N) ∈ TN . The following result is an immediate consequence of
definitions.

Lemma 5.1. TM is a tangle in M of order θ.

We say that TM is the tangle in M induced by TN .
Let f : Z+ → Z+ be a function and m ∈ Z+. A matroid M is called

(m, f)-connected if whenever (A,B) is a separation of order ℓ where
ℓ < m we have either |A| ≤ f(ℓ) or |B| ≤ f(ℓ).

Let g(n) = (6n−1−1)/5. Note that g(1) = 0 and g(n) = 6g(n−1)+1
for all n > 1. The main result in this section is the following.

Theorem 5.2. Let T be a tangle of order θ in a matroid M . Then
there exists a (θ, g)-connected minor N of M and a tangle T ′ of order
θ in N such that T is the tangle in M induced by T ′.

We will use the following result from [2, Lemma 3.1].

Lemma 5.3. Let f : Z+ → Z+ be a nondecreasing function. If e is
an element of an (m, f)-connected matroid M , then M \ e or M/e is
(m, 2f)-connected.

5.4. Proof of Theorem 5.2. The proof is by induction on |E(M)| with
θ fixed; the root of this induction lies in the (θ, g)-connected matroids.
Let T be a tangle of order θ in a matroid M and assume M is not
(θ, g)-connected. Choose m ∈ {1, . . . , θ − 1} as small as possible such
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that M is not (m + 1, g)-connected. Then there exists a separation
(A,B) of order m with |A|, |B| > g(m). By symmetry we may assume
that A ∈ T . Now let e ∈ A. By Lemma 5.3 and duality, we may
assume that M/e is (m, 2g)-connected.

5.4.1. A − {e} is titanic in M/e.

Subproof. When m = 1 this is vacuously true. Suppose that m > 1
and consider any partition (A1, A2, A3) of A−{e}. Since |A| > g(m) =
6g(m − 1) + 1, we have |Ai| > 2g(m − 1) for some i ∈ {1, 2, 3}. Then,
since M/e is (m, 2g)-connected, λM/e(Ai) ≥ m ≥ λM/e(A−{e}). Hence
A − {e} is indeed titanic in M/e. �

5.4.2. For each X ⊆ B, λM(X) = λM/e(X).

Subproof. Since M/e is (m, 2g)-connected, λM(B) = λM/e(B). Hence
e 6∈ clM(B). Therefore, for each X ⊆ B, e 6∈ clM(X). So λM(X) =
λM/e(X); as required. �

5.4.3. For each X ⊆ E(M) with λM(X) < θ we have that X ∈ T if
and only if X − A ∈ T or X ∪ A ∈ T .

Subproof. Let X ⊆ E(M) with λM(X) < θ. First assume that X −
A ∈ T or X ∪ A ∈ T . Then, as A ∈ T , it follows from (T3) that
E(M) − X 6∈ T . Hence X ∈ T .

For the reverse implication assume now that X ∈ T . By 5.4.2,
λM(A) = λM(B) = λM/e(B −{e}) = λM/e(A−{e}). So as A is titanic
in M/e either λM(A − X) ≥ λM/e(A − X) ≥ λM(A) or λM(A ∪ X) ≥
λM/e(A ∪ X) ≥ λM(A). If λM(A − X) ≥ λM(A), then by symmetry
and submodularity of λM we have that λM(X − A) = λM(X ∩ B) ≤
λM(X) + λM(B) − λM(X ∪ B) = λM(X) + λM(A) − λM(A − X) ≤
λM(X) < θ. Hence, if λM(A−X) ≥ λM(A) then it follows from (T3a)
that X−A ∈ T . If λM(A∩X) ≥ λM(A), then, again by submodularity,
λM(A∪X) ≤ λM(X)+λM(A)−λM(A∩X) ≤ λM(X) < θ. So by (T2)
either A ∪ X ∈ T or B − X ∈ T . However, as A ∈ T and X ∈ T it
follows from (T3) that B − X 6∈ T . So A ∪ X ∈ T . We conclude that
if X ∈ T then X − A ∈ T or X ∪ A ∈ T . �

Let T1 be the tangle in KM ◦ A of order θ obtained from T via
Lemma 4.3. By 5.4.2, there is a natural isomorphism between KM ◦A
and KM/e ◦ (A−{e}); let T2 be the tangle in KM/e ◦ (A−{e}) of order
θ that is obtained from T1 via this isomorphism. In both KM ◦ A and
KM/e ◦ (A − {e}) denote the element that is not in B by e′.

Let T3 be the tangle in M/e of order θ that is obtained from T2 via
Lemma 4.4. Finally let T4 be the tangle in M that is induced by T3.
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5.4.4. T = T4.

Subproof. Let (X,Y ) be a separation of M of order less than θ with
e ∈ Y . Then each of the following sequence of equivalences follows
directly from definitions.

X ∈ T4 ⇐⇒ X ∈ T3

⇐⇒ X − (A − {e}) ∈ T2 or (X − (A − {e})) ∪ {e′} ∈ T2

⇐⇒ X − A ∈ T1 or (X − A) ∪ {e′} ∈ T1

⇐⇒ X − A ∈ T or X ∪ A ∈ T .

So by 5.4.3, X ∈ T4 if and only if X ∈ T ; as required. �

The result now follows easily by applying induction to the tangle T3

in M/e. �

6. A tangle in a grid

An n by n grid is a graph Gn with vertex set V = {(i, j) : i, j ∈
{1, . . . , n}} where vertices (i, j) and (i′, j′) are adjacent if and only if
either i = i′ and |j − j′| = 1, or j = j′ and |i − i′| = 1.

The goal of this section is to prove the existence of a natural tangle
of order n in M(Gn). For i ∈ {1, . . . , n} let Pi denote the path in
Gn on vertices (i, 1), . . . , (i, n) and let Qi denote the path in Gn on
vertices (1, i), . . . , (n, i). Now we let Tn denote the collection of all
subsets A ⊆ E(Gn) such that λM(Gn)(A) < n and A does not contain
any E(Pi) for i ∈ {1, . . . , n}. We will prove, for n ≥ 3:

Lemma 6.1. Tn is a tangle in M(Gn) of order n.

A similar result was proved by Kleitman and Saks; see [7, (7.3)].
They considered tangles in KGn

, whereas we consider tangles in
KM(Gn). Our proof follows that of Kleitman and Saks; we need some
preliminary results on connectivity.

Let X and Y be disjoint subsets of E(M), we define κM(X,Y ) =
min(λM(A) : X ⊆ A ⊆ E(M) − Y ). The following result, due to
Tutte [9], is an extension of Menger’s Theorem.

Theorem 6.2 (Tutte’s Linking Theorem). If S and T are disjoint sets
of elements in a matroid M , then there exists a minor N of M such
that E(N) = S ∪ T and λN(S) = κM(S, T ).

The following result was proved in [4].

Lemma 6.3. Let S and T be disjoint sets of elements of a matroid M .
Then there exist sets S1 ⊆ S and T1 ⊆ T such that |S1|+1 = |T1|+1 =
κM(S1, T1) = κM(S, T ).
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In order to prove Lemma 6.1, we first need to establish that certain
sets of edges in a grid are “highly connected”.

Lemma 6.4. Let i ∈ {1, . . . , n} and, for each j ∈ {1, . . . , n} − {i}, let
ej and fj be disjoint edges of Pj. Now let X = {ej : j ∈ {1, . . . , n} −
{i}} and let Y = {fj : j ∈ {1, . . . , n}−{i}}. Then κM(Gn)(X,Y ) = n.

Proof. Let D = E(Q2) ∪ · · · ∪ E(Qn−1) and let C = E(Q1) ∪ E(Qn) ∪
((E(P1) ∪ · · · ∪ E(Pn)) − (X ∪ Y )). Now let H = Gn \ D/C. Note
that H[X] and H[Y ] are disjoint spanning trees of H. Therefore n =
λM(H)(X) = κM(H)(X,Y ) ≤ κM(Gn)(X,Y ) ≤ |X| + 1 = n. Thus
κM(Gn)(X,Y ) = n, as required. �

The proofs of the following two results are similar to that of
Lemma 6.4; we leave these to the reader.

Lemma 6.5. Let i, j ∈ {1, . . . , n}. Then κM(Gn)(Pi, Qj) = n. Also, if
i 6= j, then κM(Gn)(Pi, Pj) = n and κM(Gn)(Qi, Qj) = n.

Lemma 6.6. Let X ⊆ E(P1) ∪ E(Pn) with |X| ≥ n − 1 and let j ∈
{1, . . . , n}. Then κM(Gn)(X,Qj) = n.

We call a set A ⊆ E(Gn) small if λM(Gn)(A) < n and A does not
contain any of E(P1), . . . , E(Pn) or E(Q1), . . . , E(Qn).

Lemma 6.7. Let (A,B) be a separation of M(Gn) of order less than
n. Then one of A and B is small. Moreover, if B is small, then A
contains one of E(P1), . . . , E(Pn) and one of E(Q1), . . . , E(Qn).

Proof. By Lemma 6.4, either A or B must contain one of
E(P1), . . . , E(Pn). Then, by symmetry, either A or B must contain
one of E(Q1), . . . , E(Qn). However, by Lemma 6.5, A and B cannot
both contain one of E(P1), . . . , E(Pn), E(Q1), . . . , E(Qn). �

Note that Tn trivially satisfies conditions (T1), (T3a), and (T4).
By Lemma 6.7, Tn also satisfies (T2). Thus in order to complete the
proof of Lemma 6.1, we need only verify (T3b); this is achieved by the
following result.

Lemma 6.8. For n ≥ 3, E(Gn) cannot be partitioned into three small
sets.

Proof. The proof is by induction on n. The case n = 3 is trivial;
suppose then that n ≥ 4 and that the result holds for Gn−1. Now
assume (A1, A2, A3) is a partition of E(Gn) into three small sets.

By symmetry we may assume that Qn meets A1 and A2. (That is,
A1 ∩E(Qn) and A2 ∩E(Qn) are nonempty.) By Lemma 6.7, there is a
path Qj disjoint from A1. Note that κM(Gn)(A1∩(E(P1)∪E(Pn)), Qj) ≤
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λM(Gn)(A1) < n. Then, by Lemma 6.6, |A1∩ (E(P1)∪E(Pn))| < n−1.
Similarly |A2 ∩ (E(P1) ∪ E(Pn))| < n − 1. Therefore either P1 or Pn

meets A3; by symmetry, we may assume that Pn meets A3. Therefore
E(Pn) ∪ E(Qn) meets each of A1, A2, and A3.

Note that Gn−1 = Gn − (V (Pn) ∪ V (Qn)). For each i ∈ {1, 2, 3}, let
A′

i = E(Gn−1) ∩ Ai.

6.8.1. There exists k ∈ {1, 2, 3} such that λM(Gn−1)(A
′
k) ≥ n − 1.

Subproof. By the induction hypothesis, there exists k ∈ {1, 2, 3} such
that A′

k is not small in Gn−1. Suppose that λM(Gn−1)(A
′
k) < n − 1.

Then A′
k contains one of E(P1) ∩ E(Gn−1), . . . , E(Pn−1) ∩ E(Gn−1) or

one of E(Q1) ∩ E(Gn−1), . . . , E(Qn−1) ∩ E(Gn−1). By Lemma 6.7, Ak

avoids some path Pi and some path Qj. Since E(Pn) ∪ E(Qn) meets
each of A1, A2, and A3, either i 6= n or j 6= n. Thus A′

k avoids
one of E(P1) ∩ E(Gn−1), . . . , E(Pn−1) ∩ E(Gn−1) or one of E(Q1) ∩
E(Gn−1), . . . , E(Qn−1) ∩ E(Gn−1). So, applying Lemma 6.7 to Gn−1,
we contradict the assumption that λM(Gn−1)(A

′
k) < n − 1. �

By Lemma 6.3, there exists S ⊆ A′
k and T ⊆ E(Gn−1)−A′

k such that
|S| + 1 = |T | + 1 = κM(Gn−1)(S, T ) ≥ n − 1. Now, by Tutte’s Linking
Theorem, there exists a minor H of Gn−1 such that E(H) = S ∪T and
λM(H)(S) ≥ n. Suppose that H = Gn−1 \ D/C; we may choose D and
C such that D does not contain a cut of Gn. Thus H is connected and
S and T are disjoint spanning trees of H; thus |V (H)| ≥ n − 1. Now
let H ′ = Gn \ D/H. Vertices (1, n) and (n, 1) both have a neighbour
in V (H) in H ′. Note that there exist e ∈ (E(Pn) ∪ E(Qn)) ∩ Ak

and f ∈ (E(Pn) ∪ E(Qn)) − Ak. Now there exists a minor H ′′ of
H ′ such that S ∪ {e} and T ∪ {f} are disjoint spanning trees of H ′′.
Thus λM(H′′)(S ∪ {f}) ≥ n. However, this contradicts the fact that
λM(Ak) < n. �

7. A grid in a tangle

Let M be a matroid and let N be a minor of M that is isomorphic to
the cycle matroid of the n by n grid. Now let TN be the tangle in N of
order n given by Lemma 6.1 and let TM be the tangle in M of order n
that is induced by TN . (We recall that the term “induced” was defined
at the start of Section 5 and the term “truncation” was defined at the
start of Section 4.) A tangle T in M is said to dominate N if TM is a
truncation of T . In this section we prove Theorem 1.2. We need the
following lemma. (We use the “tangle matroid” which is defined at the
end of Section 3.)
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Lemma 7.1. Let T be a tangle in a matroid M and let MT be the
tangle matroid of T . Now let Gn be the n by n grid and suppose that
N = M(Gn) is a minor of M . Then T dominates N if and only if
each of the sets E(P1), . . . , E(Pn) is independent in MT .

Proof. Note that, if T ′ is the truncation of T to order n, then MT ′ is
the truncation of MT to rank n − 1. Thus, by possibly truncating, we
may assume that T has order n. Now let Tn be the tangle in N of
order n given by Lemma 6.1 and let TM be the tangle in M of order n
that is induced by TN . Thus T dominates N if and only if T = TM .
Now T 6= TM if and only if there exists a set A ∈ T that contains one
of E(P1), . . . , E(Pn). On the other hand, E(Pi) is independent in MT

if and only if there does not exist A ∈ T such that E(Pi) ⊆ A. �

We also need the following result from [4].

Theorem 7.2. There exists an integer-valued function f(k, q) such
that for any positive integer k and prime-power q, if M is a GF (q)-
representable matroid with branch-width at least f(k, q), then M con-
tains a minor isomorphic to M(Gk).

Note that, if M has a tangle of high order, then M has large branch-
width and, hence by Theorem 7.2, M has a big grid as a minor. Un-
fortunately, this grid-minor need not be dominated by the tangle.

7.3. Proof of Theorem 1.2. Let g(t) = (6t − 1)/5 for any integer t ≥ 0.
Let n = g(k − 1) + 2, let q be the order of F, and let θ = f(n, q). Now
let M be an F-representable matroid and let T be a tangle in M of
order θ. By Theorem 5.2, there exists a (θ, g)-connected minor M1 of
M and a tangle T1 in M1 of order θ such that T is the tangle in M
that is induced by T1. By Theorem 3.1 and Theorem 7.2, there exists
a minor N of M1 that is isomorphic to M(Gn). By possibly relabeling,
we may assume that N = M(Gn). Now let P1, . . . , Pn be the vertical
paths in Gn, let MT1

be the tangle matroid of T1, and let φ1 be the
rank-function of MT1

.

7.3.1. φ1(E(Pi)) ≥ k − 1 for each i ∈ {1, . . . , n}.

Subproof. Suppose to the contrary that φ1(E(Pi)) < k − 1 for some i.
Thus there exists A ∈ T1 such that E(Pi) ⊆ A and λM1

(A) ≤ k − 1.
By definition |A| ≥ |E(Pi)| = n− 1 > g(k − 1). Therefore, since M1 is
(θ, g)-connected, |E(M1)−A| ≤ g(k−1) = n−2 ≤ f(n, q)−2 < θ−1.
Moreover, as k ≥ 1, we have that θ ≥ 3. Hence by Lemma 3.2,
E(M1) − A ∈ T1; contradicting (T3). �

For each i ∈ {1, . . . , k}, let Ai be an MT1
-independent subset of

E(P1+(i−1)k) with |Ai| = k − 1; as k2 − k + 1 ≤ n these sets Ai exist.
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Now there exists a minor H of Gn such that H is isomorphic to Gk and
such that A1, . . . , Ak are the edge-sets of the vertical paths in H. By
Lemma 7.1, T1 dominates H. Then, since T is induced by T1, T also
dominates H. �

8. Tree-decompositions and laminar families

We begin by reviewing some elementary results on laminar families
and tree-decompositions. Let E be a set. A partition of E into two
sets is called a separation of E. Two separations (A1, A2) and (B1, B2)
of a set E are said to cross if Ai ∩Bj 6= ∅ for each i and j in {1, 2}. A
collection S of separations of E is laminar if no two separations in S
cross.

A tree-decomposition of E consists of a pair (T,P) where T is a tree
and P = (Pv : v ∈ V (T )) is a partition of E (where one or more of
the Pv may be empty). For any X ⊆ V (T ), we let P [X] denote the
set ∪v∈XPv. Now, for any e ∈ E(T ), the separation of E displayed by
e is (P [V (T1)],P [V (T2)]) where T1 and T2 are the two components of
T − e. The following result is both easy and well-known.

Lemma 8.1. If (T,P) is a tree-decomposition of E, then the set of all
separations displayed by (T,P) is laminar.

Let (T,P) be a tree-decomposition of E and let S be a set of separa-
tions of E. We say that (T,P) represents S if S is the set of separations
displayed by (T,P). The following converse to Lemma 8.1 is also well-
known.

Lemma 8.2. If S is a laminar set of separations of E, then there is a
tree-decomposition of E that represents S.

Let K be a connectivity system. A set X ⊆ E(K) is robust if for each
proper partition (X1, X2) of X either λK(X1) > λK(X) or λK(X2) >
λK(X). (A partition is proper if all its members are nonempty.) A
separation (X,Y ) of K is robust if X and Y are both robust.

Lemma 8.3. Let K be a connectivity system and let S be the set of all
robust separations of K. Then S is laminar.

Proof. Suppose that (A1, A2), (B1, B2) ∈ S cross. By symmetry, we
may assume that λK(A1) ≤ λK(B1). As λK is symmetric, we may
assume that λK(A2 ∩ B2) ≥ λK(A1 ∩ B2); otherwise swap A1 and A2.
Then, since B2 is robust, λK(A2 ∩ B2) > λK(B2). So symmetry and
submodularity of λK yield λK(A1 ∩B1) ≤ λK(A1)+λK(B1)−λK(A1 ∪
B1) = λK(A1)+λK(B2)−λK(A2∩B2) < λK(A1). So, since A1 is robust,
λK(A1∩B2) > λK(A1). Also, as λK(B1) ≥ λK(A1) ≥ λK(A1∩B1) and



TANGLES, TREE-DECOMPOSITIONS AND GRIDS 13

as B1 are robust, λK(A2∩B1) > λK(B1). Combining the last two strict
inequalities we get λK(A1 ∩ B2) + λK(A2 ∩ B1) > λK(A1) + λK(B1) =
λK(A1) + λK(B2). As λK(A2 ∩ B1) = λK(A1 ∪ B2), this contradicts
submodularity. �

9. Tree-representations of maximal tangles

The main result of this section is Theorem 9.1; when applied to the
maximal tangles T1, . . . , Tn of the matroid, those that are not trunca-
tions of others, it is the result alluded to in the introduction by 1.1.

If T1 and T2 are two tangles in a connectivity system K, neither of
which is a truncation of the other, then there exists a distinguishing
separation (X1, X2) with X1 ∈ T1 and X2 ∈ T2.

Theorem 9.1. Let K be a connectivity system and let T1, . . . , Tn be
tangles in K, none of which is a truncation of another. Then there ex-
ists a tree-decomposition (T,P) of E(K) such that V (T ) = {1, . . . , n}
and such that the following hold:
(i) For each i ∈ V (T ) and e ∈ E(T ) if T ′ is the component of T − e
containing i then P [V (T ′)] is not in Ti.
(ii) For each pair of distinct vertices i and j of T , there exists a
minimum-order distinguishing separation for Ti and Tj that is displayed
by T .

Let K and K ′ be connectivity systems with E(K) = E(K ′). We call
K ′ a tie-breaker for K if for each X,Y ⊆ E(K):

(i) λK′(X) 6= λK′(Y ) unless X = Y or X = E(K) − Y ,
(ii) λK′(X) < λK′(Y ) if λK(X) < λK(Y ).

Lemma 9.2. Each connectivity system has a tie-breaker.

Proof. Let K be a connectivity system. We may assume that E(K) =
{1, . . . , n}. Now, for X ⊆ {1, . . . , n − 1}, let λL(X) =

∑
i∈X 2i and

let λL(E(K) − X) = λL(X). We leave it to the reader to verify that
L = (E(K), λL) is indeed a connectivity system. Now, for each X ⊆
E(K), we let λK′(X) = 2nλK(X) + λL(X). It is easy to check that
K ′ = (E(K), λK′) has the desired properties. �

It is evident that a tangle in a connectivity system K is a tangle in
any tie-breaker for K.

Lemma 9.3. Let T1 and T2 be tangles in a connectivity system K that
are incomparable by truncation, let K ′ be a tie-breaker for K, and let
(X1, X2) be a distinguishing separation for T1 and T2 with minimum
order in K ′. Then (X1, X2) is a robust separation of K ′.
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Proof. Suppose otherwise. Then, by symmetry, we may assume that
there exists a proper partition (A,B) of X1 such that λK′(A) ≤ λK′(X1)
and λK′(B) ≤ λK′(X1). Since K ′ is a tie-breaker, λK′(A) < λK′(X1)
and λK′(B) < λK′(X1). Condition (T3a) for T1 implies that A,B ∈
T1. Then, by our choice of the distinguishing separation (X1, X2), T2

contains neither E(K) − A nor E(K) − B. Then, by (T2), A,B ∈ T2.
But then T2 contains each of A, B, and X2; contrary to (T3). �

Proof of Theorem 9.1. Let K ′ be a tie-breaker for K. As T1, . . . , Tn

are tangles in K ′, we may assume that K = K ′. For each i, j ∈
{1, . . . , n} with i 6= j let (Xij, Yij) be the minimum-order separation
of K distinguishing Ti and Tj (where we assume that Xij ∈ Ti). By
Lemma 9.3, (Xij, Yij) is a robust separation of K. Now let S be the
collection of all of these distinguishing separations. By Lemma 8.3, S is
laminar. Then, by Lemma 8.2, there is a tree-decomposition (T,P) of
E(K) that represents S. We may assume that if v is a vertex of T with
degree 1 or 2, then Pv 6= ∅ (since, otherwise, we could find a smaller
tree-decomposition representing S). This means that the edges of T
display proper and distinct separations. It remains to show that there
is a bijection between T1, . . . , Tn and V (T ) satisfying the conclusion of
Theorem 9.1.

For i = {1, . . . , n}, consider the collection Xi of nonempty subsets
X of V (T ) such that E(K)−P[X] ∈ Ti and such that (P [X], E(K)−
P [X]) is displayed by T . Each member of Xi induces a subtree of T and
by (T3) each two members of Xi intersect. As any collection of pairwise
intersecting subtrees of a tree has a common vertex, the members of
Xi have a nonempty intersection. Call that intersection Vi.

Note that by construction of Vi each edge of T that leaves Vi displays
a separation (A,B) with P [Vi] ⊆ A and B ∈ Ti. From this, (T2),
(T3) and the fact that each separation in S is displayed by T it is
straightforward to see that to prove Theorem 9.1 it suffices to show
that (V1, . . . , Vn) is a partition of V (T ) into singletons.

The sets V1, . . . , Vn are pairwise disjoint as for each i 6= j the set
P [Vi] lies in Yij and the set P [Vj] lies in Yji = Xij.

It remains to prove that if w in V (T ) then {w} = Vi for some i.
Among the edges incident with w take the one that displays the sepa-
ration, (Xij, Yij) say, of largest order. So that order is at most the order
of Ti and of Tj. We may assume that Pw ⊆ Yij. As no two edges of T
display the same separation, all other edges incident with w display a
separation of order less than those of Ti and Tj. By the definition of
(Xij, Yij) these separations do not distinguish Ti from Tj. Combining
that with (T3) for Tj, we see that for each of these separations Pw is
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not part of the side that is in Ti. Hence Vi ⊆ {w}. As Vi is not empty,
{w} = Vi as claimed. �

We conclude with a simple corollary to Theorem 9.1.

Corollary 9.4. An m-element connectivity system has at most m−2
2

maximal tangles.

Proof. Let K be an m-element connectivity system and let T1, . . . , Tn be
the maximal tangles in K. Now let (T,P) be the tree-decomposition
of E(M) given by Theorem 9.1. Let v be a vertex of T of degree
dv. By (T3) and (T4), dv + |Pv| ≥ 4. Now 4n ≤

∑n
i=1(di + |Pi|) =

2|E(T )| + |E(M)| = 2(n − 1) + m. So n ≤ m−2
2

as claimed. �
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