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Abstract. Very little is known about the asymptotic behaviour of
classes of matroids. We make a number of conjectures about such be-
haviours. For example, we conjecture that asymptotically almost ev-
ery matroid: has a trivial automorphism group; is arbitrarily highly
connected; and, is not representable over any field. We prove one re-
sult: The proportion of labeled n-element matroids that are connected
is asymptotically at least 1/2.

1. Introduction

In their monograph on combinatorial geometries, Brylawski and Kelly
make the following intriguing remark [3, p. 89]:

“It is an exercise in random matroids to show that most
matroids are not coordinatizable over any field (or even any
division ring).”

To the best of our knowledge, this exercise has yet to be successfully
completed. Indeed, there are almost no results on the asymptotic behaviour
of classes of matroids. This seems to be due to the lack of a successful
model of a random matroid (although random subsets of projective spaces
have been studied by Oxley and Kelly [5, 6] and by Kordecki [7, 8]). Even
the most elementary questions about the properties of “almost all” matroids
are currently unanswered.

In this introduction we collate some of those questions. The remainder
of the article is dedicated to an investigation of the proportion of labeled
n-element matroids that are connected. In particular, for a positive integer
n, let l(n) be the number of matroids on the ground set {1, . . . , n}, so that
l(n) is the number of labeled n-element matroids. We prove the following:
Theorem 1.1. For a positive integer n, let lc(n) be the number of connected
matroids on the ground set {1, . . . , n}. For every � > 0, there exists an
integer N such that

lc(n)
l(n)

≥ 1
2
− �

whenever n ≥ N .
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Thus we have shown that limn→∞ lc(n)/l(n) ≥ 1/2, provided that the
limit exists. We strongly believe that limn→∞ lc(n)/l(n) = 1. However, for
the moment this remains unproved.

In the following conjectures, we make no distinction between labeled and
unlabeled matroids. This is because we believe that asymptotically almost
every matroid is asymmetric (that is, has no non-trivial automorphism). To
make this more precise, we let u(n) be the number of unlabeled n-element
matroids, and Au(n) be the set of such matroids with trivial automorphism
groups. We believe that the following statement holds.

Conjecture 1.2. The limit limn→∞ |Au(n)|/u(n) exists and is equal to one.

A matroid property is a class of matroids that is closed under isomorphism.
Let P be a matroid property. Then Pu(n) and Pl(n) denote, respectively,
the set of unlabeled and labeled n-element matroids with property P.

Lemma 1.3. Assume that Conjecture 1.2 holds. Let P be a matroid prop-
erty. Then

lim
n→∞

|Pu(n)|
u(n)

exists and is equal to L if and only if

lim
n→∞

|Pl(n)|
l(n)

exists and is equal to L.

Thus, if we assume that Conjecture 1.2 holds, then our conjectures about
asymptotic behaviour coincide for labeled and unlabeled matroids. This
phenomenon has also been noted in the context of graph theory (see [1,
p. 1462]). Because the proof of Lemma 1.3 is not central to our arguments,
we relegate it to an appendix.

In what follows we assume Conjecture 1.2. The statement that asymptot-
ically almost every matroid has property P means that both |Pu(n)|/u(n)
and |Pl(n)|/l(n) tend to one as n tends to infinity.

Conjecture 1.4. Asymptotically almost every matroid is connected.

Recall that a matroid M on the ground set E is k-connected if and only
if there is no partition (X, Y ) of E such that |X|, |Y | ≥ k�, and r(X) +
r(Y )− r(M) < k�, for some k� < k.

Conjecture 1.5. For any fixed integer k > 1, asymptotically almost every
matroid is k-connected.

Recall that a rank-r matroid is paving if every circuit contains at least r
elements. Welsh [12] was prompted by the catalogue of matroids produced
by Blackburn, Crapo, and Higgs [2] to ask whether “most” matroids are
paving. We conjecture that this is true in a strong sense:

Conjecture 1.6. Asymptotically almost every matroid is paving.
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It is an easy exercise to prove that, if asymptotically almost every matroid
belongs to the class P, then asymptotically almost every matroid belongs
to P ∩ {M∗ | M ∈ P}. A matroid M is sparse paving if both M and M∗

are paving. Therefore Conjecture 1.6 implies that asymptotically almost
every matroid is sparse paving. We conjecture that any fixed sparse paving
matroid is present as a minor in asymptotically almost every matroid.

Conjecture 1.7. Let N be a fixed sparse paving matroid. Asymptotically
almost every matroid has an N -minor.

Recall that the Vámos matroid, V8, is a self-dual rank-4 paving ma-
troid [11] (see [9, Example 2.1.22]). The next conjecture would be implied
by a positive answer to Conjecture 1.7, and is perhaps more approachable.

Conjecture 1.8. Asymptotically almost every matroid has a V8-minor.

A simple counting argument shows that if F is a finite field, then asymp-
totically almost every matroid is not representable over F. It is a relatively
straightforward exercise to show that a result due to Ronyai, Babai, and
Ganapathy [10] implies that this phenomenon holds for any fixed field F.
We conjecture something stronger:

Conjecture 1.9. Asymptotically almost every matroid is not representable
over any field.

Since V8 is not representable over any field, a positive answer to Conjec-
ture 1.8 would imply Conjecture 1.9

Welsh asked whether the number of non-isomorphic n-element matroids
with rank r is maximum when r = �n/2� (see [12, P20]). We make a stronger
conjecture.

Conjecture 1.10. Asymptotically almost every matroid M satisfies

|E(M)|− 1
2

≤ r(M) ≤ |E(M)|+ 1
2

.

2. Loopless and coloopless matroids predominate

We now turn to the proof of Theorem 1.1. Our strategy is to prove that
connected matroids make up at least half of the set of loopless and coloop-
less labeled matroids on n elements. To show that this implies Theorem 1.1,
we must establish that loopless and coloopless matroids asymptotically pre-
dominate in the set of labeled matroids. This section is devoted to that
task.

Let M be a matroid. Recall that a modular cut of M is a collection, F ,
of flats of M such that:

(i) if F0 ∈ F and F1 is a flat containing F0, then F1 ∈ F ; and,
(ii) if F0, F1 ∈ F , and r(F0) + r(F1) = r(F0 ∩ F1) + r(F0 ∪ F1), then

F0 ∩ F1 ∈ F .
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A single-element extension of M is a matroid M0 on the ground set
E(M) ∪ e, where e /∈ E(M), such that M0\e = M . It is well-known that
the single-element extensions of M are in bijective correspondence with the
modular cuts of M [9, Section 7.2]. If F is a flat of M , then the set of flats
that contain F is a modular cut of M . The single-element extension that
corresponds to this modular cut is said to be a principal extension.

Proposition 2.1. Let M be a rank-r matroid. Then M has at least 2r flats.

Proof. Simply take any basis of M and form the closures of every subset of
that basis. �
Proposition 2.2. Let n ≥ 2 be an integer. Then l(n) ≥ 2(n−3)/2l(n− 1).

Proof. Consider the l(n− 1) matroids on the ground set {1, . . . , n− 1}. By
duality, at least l(n−1)/2 of these have rank no less than (n−1)/2. Each of
these matroids has at least 2(n−1)/2 flats, by Proposition 2.1. We construct
the principal extensions on {1, . . . , n} corresponding to these flats. These
extensions are all distinct, as two distinct matroids on the set {1, . . . , n− 1}
cannot have identical single-element extensions on the set {1, . . . , n}. Thus
there are at least 2(n−1)/2l(n − 1)/2 distinct matroids on the ground set
{1, . . . , n}. The result follows. �
Theorem 2.3. For a positive integer n, let lo(n) be the number of matroids
on the ground set {1, . . . , n} that have at least one loop or coloop. If n ≥ 2,
then

lo(n)
l(n)

≤ n

2(n−5)/2
,

and hence lo(n)/l(n) → 0 as n →∞.

Proof. Suppose that i is an integer in {1, . . . , n}, and that M is a matroid
on {1, . . . , n} in which i is a loop. Let loi (n) be the number of such matroids.
We claim that loi (n) = l(n − 1). Consider the function which takes each
such M to the matroid obtained from M by deleting i and relabeling every
element j ∈ {i + 1, . . . , n} with j − 1. This is clearly a bijection between
the matroids on {1, . . . , n} in which i is a loop, and the matroids on the set
{1, . . . , n− 1}. Hence we have established the claim.

Exactly the same argument shows that l(n−1) is the number of matroids
on {1, . . . , n} in which i is a coloop. By taking the sum as i ranges over
{1, . . . , n}, we see that lo(n) is at most 2nl(n − 1). Now Proposition 2.2
shows that

lo(n)
l(n)

≤ 2nl(n− 1)
2(n−3)/2l(n− 1)

=
n

2(n−5)/2
. �

3. The loopless and coloopless case

In this section we show that connected matroids make up at least half
of the loopless and coloopless matroids on {1, . . . , n}. As a first step, we
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partition the disconnected but loopless and coloopless matroids on {1, . . . , n}
into two classes.

Let M1 be the set of loopless and coloopless disconnected matroids on
{1, . . . , n} that either have at least three connected components, or that
have no connected component of rank one. Let M2 be the set of loopless
and coloopless disconnected matroids on {1, . . . , n} that have precisely two
connected components, at least one of which has rank one.

Suppose that M is a matroid with rank at least one. Let I(M) be the
family of independent sets of M . The truncation of M , denoted by T (M),
is the matroid on the ground set E(M) with {I ∈ I(M) : |I| ≤ r(M) − 1}
as its independent sets.

Proposition 3.1. Let M be a loopless matroid with rank at least two. Then
T (M) is connected. In particular, if M ∈M1 then T (M) is connected.

Proof. Let e and f be elements of E(M). Since M has no loops, either
{e, f} is a circuit, or it is independent. If {e, f} is a circuit of M , then it
is a circuit of T (M), as r(M) ≥ 2. If {e, f} is independent in M , then it is
contained in a basis B of M . The set B is a circuit of T (M). Thus e and f
are contained in a common circuit of T (M) in either case. Therefore T (M)
is connected. As each member of M1 is loopless and has rank at least two,
the result follows. �
Lemma 3.2. Let M1 and M2 be members of M1. If T (M1) = T (M2), then
M1 = M2.

Proof. Suppose that T (M1) = T (M2). We will show that M1 and M2 have
exactly the same set of circuits. Note that M1 and M2 must have the same
rank. Let r be this common rank. As M1 and M2 both belong to M1, it
follows that each connected component of Mi has rank at most r − 2, for
i = 1, 2. Thus every circuit of Mi has rank at most r− 2, and is therefore a
non-spanning circuit of T (Mi). On the other hand, a non-spanning circuit
of T (Mi) is also a circuit of Mi.

The previous paragraph establishes that the circuits of Mi are precisely
the non-spanning circuits of T (Mi). Since T (M1) = T (M2), it follows that
T (M1) and T (M2) have the same set of non-spanning circuits, and hence
M1 and M2 have the same set of circuits. �

Suppose that M1 and M2 are matroids on the ground set E and that
I(M1) and I(M2) are their families of independent sets respectively. Recall
that the union of M1 and M2, denoted M1 ∨ M2, is the matroid on the
ground set E, with {I1 ∪ I2 : I1 ∈ I(M1), I2 ∈ I(M2)} as its family of
independent sets.

Next we assume that M is a member of M2. Thus M has no loops or
coloops, and M has precisely two connected components, N1 and N2. Let E,
E1, and E2 be the ground sets of M , N1 and N2 respectively. By relabeling
as necessary, we assume that N1 is the connected component of M with
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rank one. (Recall that E = {1, . . . , n}. If both N1 and N2 have rank one,
we assume that N1 is the component containing the element 1.)

Let N �
1 be the rank-one uniform matroid on the ground set E. Let N �

2 be
obtained from N2 by adding the elements of E1 as loops. Thus N �

1 and N �
2

are both matroids on the ground set E. We define Ψ(M) to be N �
1∨N �

2. We
remark here that Ψ(M) can also be defined using the free product of Crapo
and Schmidt [4]. Alternatively, Ψ(M) can be obtained by freely coextending
N2 by an element e ∈ E1, and then adding E1 − e in parallel to e.

Proposition 3.3. Suppose that C is a circuit of N2 and that e is an element
in E1. Then C ∪ e is a circuit of Ψ(M). Conversely, if C � is a circuit of
Ψ(M) that contains e, then C � − e is a circuit of N2.

Proof. Suppose that C∪e is independent in Ψ(M). Then C∪e is the disjoint
union of I1 and I2, where Ii is independent in N �

i for i = 1, 2. Note that
I2 cannot contain any element of E1, for any such element is a loop of N �

2.
Thus I2 must be a proper subset of C. It follows that I1 contains e and at
least one element of C. But such a pair is a circuit of N �

1. Thus we have a
contradiction and we conclude that C ∪ e is dependent in Ψ(M).

However, if x ∈ C, then C − x is independent in N �
2 and both {e} and

{x} are independent in N �
1. It follows easily that C ∪ e is indeed a circuit of

Ψ(M).
To prove the converse, we note that if C �−e were independent in N2, then

C � would be independent in Ψ(M). Thus C � − e contains a circuit of N2.
The arguments in the previous paragraphs show that C �− e must in fact be
a circuit of N2, for otherwise C � properly contains a circuit of Ψ(M). �
Proposition 3.4. There are no loops in Ψ(M), and E1 is the unique non-
trivial parallel class of Ψ(M).

Proof. Let e be a member of E. Then {e} is independent in N �
1, and hence

in Ψ(M). Thus Ψ(M) has no loops.
Suppose that e and f are contained in E1 and that {e, f} is independent

in Ψ(M). Then {e, f} is the disjoint union of I1 and I2, independent sets of
N �

1 and N �
2 respectively. Note that I2 is non-empty, as {e, f} is dependent

in N �
1, so I2 contains either e or f . But both these elements are loops of N �

2,
so we have a contradiction. Thus {e, f} is a circuit of Ψ(M). Suppose that
x ∈ E2. If e ∈ E1, then {e} is independent in N �

1, and {x} is independent
in N �

2. Therefore {e, x} is independent in Ψ(M), so E1 is indeed a parallel
class of Ψ(M).

Suppose that P is a non-trivial parallel class of Ψ(M) other than E1, and
let {x, y} be a parallel pair in P . Then {x, y} must be dependent in N2, and
as N2 is loopless, {x, y} is a parallel pair of N2. Now Proposition 3.3 implies
that {x, y, e} is a circuit of Ψ(M), where e is any member of E1. Since this
circuit properly contains {x, y} we have a contradiction and deduce that E1

is the only non-trivial parallel class in Ψ(M). �
Proposition 3.5. Let M be a member of M2. Then Ψ(M) is connected.
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Proof. It suffices to show that if e ∈ E1 and f ∈ E2, then there is a circuit
of Ψ(M) that contains {e, f}. As M has no coloops, there is a circuit C of
N2 that contains f . Proposition 3.3 says that C ∪ e is a circuit of Ψ(M), so
we are done. �
Lemma 3.6. The function that takes each member M of M2 to Ψ(M) is
injective.

Proof. We will prove this fact by demonstrating that M can be canonically
recovered from Ψ(M). Proposition 3.4 says that E1 is the unique non-trivial
parallel class of Ψ(M). Suppose that e ∈ E1. If C is a circuit of N2, then
C ∪ e is a circuit of Ψ(M), so C is a circuit of Ψ(M)/e. Suppose that
C ⊆ E2 is a circuit of Ψ(M)/e. If C is a circuit of Ψ(M), then C must be
a dependent set of N2. Let C � be a circuit of N2 that is contained in C.
Then C � ∪ e is a circuit of Ψ(M), so C � must be properly contained in C.
But then C � is a circuit of Ψ(M)/e that is properly contained in C. This
contradiction means that C ∪ e is a circuit of Ψ(M). Now Proposition 3.3
asserts that C is a circuit of N2.

We have shown that the matroid obtained from Ψ(M)/e by deleting E1−e
is equal to N2. Thus M can be recovered from Ψ(M) by contracting any el-
ement from its unique parallel class, deleting the resulting loops, and adding
the unique parallel class of Ψ(M) to the resulting matroid as a connected
component. This completes the proof. �
Proposition 3.7. Suppose that M is a member of M2 on the ground set
E. If f ∈ E is contained in a non-spanning circuit of Ψ(M), then there is
a non-spanning circuit of Ψ(M) that contains f and an element from the
unique non-trivial parallel class of Ψ(M).

Proof. Suppose that f is contained in a non-spanning circuit C of Ψ(M).
If f ∈ E1 then the result is obvious, as E1 is a non-trivial parallel class of
Ψ(M). Therefore we suppose that f ∈ E2. Assume that there is no non-
spanning circuit of Ψ(M) that both contains f and meets E1. In particular,
C contains no element of E1.

Let e be an element of E1. The set C is not a circuit of N2, for otherwise
Proposition 3.3 implies that C∪e is a circuit of Ψ(M) that properly contains
C. However C must be dependent in N2, so C properly contains at least
one circuit of N2. Suppose that C contains two distinct circuits C1 and C2

of N2. Then C1 ∪ e and C2 ∪ e are circuits of Ψ(M) by Proposition 3.3.
As |C1 ∪ e| ≤ |C| and |C2 ∪ e| ≤ |C|, it follows that C1 ∪ e and C2 ∪ e are
non-spanning circuits of Ψ(M). Thus f is contained in neither C1 nor C2.
Now ((C1∪e)∪(C2∪e))−e contains a circuit of Ψ(M), by circuit-exchange,
and this circuit must be C. Thus C1 ∪C2 = C. But this is a contradiction,
as f /∈ C1 ∪ C2. Therefore C contains precisely one circuit C1 of N2.

Let x be an element of C1. Then C − x is independent in N �
2. However

{x} is independent in N �
1, so C is independent in Ψ(M). This contradiction

completes the proof. �
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Lemma 3.8. Suppose that M1 ∈M1 and that M2 ∈M2. Then T (M1) �=
Ψ(M2).

Proof. Suppose that T (M1) = Ψ(M2). Proposition 3.4 implies that T (M1)
contains a unique non-trivial parallel class E1. As the members of M1 have
rank at least three, E1 is a parallel class of M1. Let f be an element from a
connected component of M1 that does not contain E1. Now f is contained
in a circuit of M1. We remarked in the proof of Lemma 3.2 that the circuits
of M1 are the non-spanning circuits of T (M1). Therefore f is in a non-
spanning circuit of T (M1), and by Proposition 3.7 must be contained in a
non-spanning circuit of T (M1) that also contains a member of E1. This
means that f is contained in a circuit of M1 that meets E1, which is a
contradiction. �

Recall that lc(n) is the number of connected matroids on the ground set
{1, . . . , n}.

Lemma 3.9. Let n be a positive integer, and let lø(n) be the number of
loopless and coloopless matroids on the ground set {1, . . . , n}. Then lc(n) ≥
lø(n)/2.

Proof. We note that lø(1) = 0, so the result is true if n = 1. Henceforth
we assume that n > 1. Let M be a loopless and coloopless matroid that is
not connected, and consider the function that takes each such M to T (M)
if M ∈ M1 and to Ψ(M) if M ∈ M2. The image of M is connected by
Propositions 3.1 and 3.5. Moreover this function is injective by Lemmas 3.2,
3.6, and 3.8. Therefore the number of connected matroids on {1, . . . , n} is
at least as large as the number of disconnected but loopless and coloopless
matroids on {1, . . . , n}. Since the sum of these two numbers is lø(n) the
result follows. �

Now we can prove our main result. We recall that l(n), lc(n), lo(n), and
lø(n) are, respectively, the number of: matroids; connected matroids; ma-
troids with at least one loop or coloop; and loopless and coloopless matroids,
on the ground set {1, . . . , n}.

Theorem 1.1. For every � > 0, there exists an integer N such that
lc(n)/l(n) ≥ 1/2− � whenever n ≥ N .

Proof. We start by observing that

l(n)
lø(n)

=
l(n)

l(n)− lo(n)

=
1

1− lo(n)/l(n)
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so Theorem 2.3 implies that l(n)/lø(n) tends to 1 from above as n → ∞.
Now, by applying Lemma 3.9, we see that

lc(n)
l(n)

=
lc(n)/lø(n)
l(n)/lø(n)

≥ 1/2
l(n)/lø(n)

so the result follows. �

4. Appendix

In this section we prove Lemma 1.3. Recall that l(n) and u(n) stand
respectively for the number of labeled and unlabeled n-element matroids.
Moreover Al(n) and Au(n) are respectively the number of labeled and unla-
beled n-element matroids with no automorphism other than the trivial one.
We shall use Al(n) and Au(n) to denote the sets of labeled and unlabeled
n-element matroids with at least one non-trivial automorphism.

Throughout this section we assume that Conjecture 1.2 holds. In other
words, we use the following hypothesis.

Hypothesis 1. The limit limn→∞ |Au(n)|/u(n) exists and is equal to one.

We will make frequent use of the following fact:

Fact 1. Let {Xn}n≥1 be a sequence of sets. For every positive integer
n, let Yn and Zn be subsets of Xn. Suppose that limn→∞ |Yn|/|Xn| and
limn→∞ |Zn|/|Xn| exist, and are equal to L and 1 respectively. Then

lim
n→∞

|Yn ∩ Zn|
|Xn|

= L.

Proof. If limn→∞ |Zn|/|Xn| = 1, then limn→∞ |Yn∪Zn|/|Xn| = 1, so writing
|Yn ∩ Zn|/|Xn| as

|Yn|
|Xn|

+
|Zn|
|Xn|

− |Yn ∪ Zn|
|Xn|

and taking the limit as n tends to infinity gives the result. �
Fact 2.

lim
n→∞

l(n)
n!u(n)

= 1.

Proof. The number of labeled matroids associated with the unlabeled n-ele-
ment matroid M is n!/|Aut(M)|, where Aut(M) is the automorphism group
of M . Let Mn be the set of unlabeled n-element matroids. Then

l(n) =
�

M∈Mn

n!
|Aut(M)| .

On the other hand,
n!u(n) =

�

M∈Mn

n!,
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so l(n) ≤ n!u(n), and thus l(n)/n!u(n) ≤ 1. Now

l(n) ≥
�

M∈Au(n)

n!
|Aut(M)| = n!|Au(n)|.

Therefore
1 ≥ l(n)

n!u(n)
≥ n!|Au(n)|

n!u(n)
=

|Au(n)|
u(n)

.

The last expression tends to one as n →∞, by our hypothesis, so the result
follows. �

The last fact implies that limn→∞ n!u(n)/l(n) = 1.

Fact 3. The limit limn→∞ |Al(n)|/l(n) exists and is equal to one.

Proof. Note that both limn→∞ |Au(n)|/u(n) and limn→∞ n!u(n)/l(n) exist
and are equal to one. Therefore

1 = lim
n→∞

n!|Au(n)|
n!u(n)

· lim
n→∞

n!u(n)
l(n)

= lim
n→∞

n!|Au(n)|
n!u(n)

· n!u(n)
l(n)

= lim
n→∞

n!|Au(n)|
l(n)

= lim
n→∞

|Al(n)|
l(n)

�

Proof of Lemma 1.3. Suppose that limn→∞ |Pu(n)|/u(n) = L. Then

lim
n→∞

|Pu(n) ∩Au(n)|
u(n)

= L,

by Hypothesis 1 and Fact 1. Now
|Pl(n) ∩Al(n)|

l(n)
=

�
n!|Pu(n) ∩Au(n)|

n!u(n)

� �
n!u(n)
l(n)

�
.

The limits, as n → ∞, of the bracketed expressions exist, and are equal to
L and 1 respectively. Therefore

lim
n→∞

|Pl(n) ∩Al(n)|
l(n)

= L.

But
|Pl(n)|
l(n)

=
|Pl(n) ∩Al(n)|

l(n)
+
|Pl(n) ∩Al(n)|

l(n)
and it follows easily from Fact 3 that |Al(n)|/l(n), and hence |Pl(n) ∩
Al(n)|/l(n), tends to zero as n →∞. Therefore

lim
n→∞

|Pl(n)|
l(n)

= lim
n→∞

|Pl(n) ∩Al(n)|
l(n)

= L,

as desired. The proof of the converse is similar. �
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