ON THE ASYMPTOTIC PROPORTION OF CONNECTED MATROIDS

DILLON MAYHEW, MIKE NEWMAN, DOMINIC WELSH, AND GEOFF WHITTLE

Abstract

Very little is known about the asymptotic behaviour of classes of matroids. We make a number of conjectures about such behaviours. For example, we conjecture that asymptotically almost every matroid: has a trivial automorphism group; is arbitrarily highly connected; and, is not representable over any field. We prove one result: The proportion of labeled n-element matroids that are connected is asymptotically at least $1 / 2$.

1. Introduction

In their monograph on combinatorial geometries, Brylawski and Kelly make the following intriguing remark [3, p. 89]:
"It is an exercise in random matroids to show that most matroids are not coordinatizable over any field (or even any division ring)."
To the best of our knowledge, this exercise has yet to be successfully completed. Indeed, there are almost no results on the asymptotic behaviour of classes of matroids. This seems to be due to the lack of a successful model of a random matroid (although random subsets of projective spaces have been studied by Oxley and Kelly [5, 6] and by Kordecki [7, 8]). Even the most elementary questions about the properties of "almost all" matroids are currently unanswered.

In this introduction we collate some of those questions. The remainder of the article is dedicated to an investigation of the proportion of labeled n-element matroids that are connected. In particular, for a positive integer n, let $l(n)$ be the number of matroids on the ground set $\{1, \ldots, n\}$, so that $l(n)$ is the number of labeled n-element matroids. We prove the following:
Theorem 1.1. For a positive integer n, let $l_{c}(n)$ be the number of connected matroids on the ground set $\{1, \ldots, n\}$. For every $\epsilon>0$, there exists an integer N such that

$$
\frac{l_{c}(n)}{l(n)} \geq \frac{1}{2}-\epsilon
$$

whenever $n \geq N$.

[^0]Thus we have shown that $\lim _{n \rightarrow \infty} l_{c}(n) / l(n) \geq 1 / 2$, provided that the limit exists. We strongly believe that $\lim _{n \rightarrow \infty} l_{c}(n) / l(n)=1$. However, for the moment this remains unproved.

In the following conjectures, we make no distinction between labeled and unlabeled matroids. This is because we believe that asymptotically almost every matroid is asymmetric (that is, has no non-trivial automorphism). To make this more precise, we let $u(n)$ be the number of unlabeled n-element matroids, and $A_{u}(n)$ be the set of such matroids with trivial automorphism groups. We believe that the following statement holds.
Conjecture 1.2. The limit $\lim _{n \rightarrow \infty}\left|A_{u}(n)\right| / u(n)$ exists and is equal to one.
A matroid property is a class of matroids that is closed under isomorphism. Let \mathcal{P} be a matroid property. Then $\mathcal{P}_{u}(n)$ and $\mathcal{P}_{l}(n)$ denote, respectively, the set of unlabeled and labeled n-element matroids with property \mathcal{P}.

Lemma 1.3. Assume that Conjecture 1.2 holds. Let \mathcal{P} be a matroid property. Then

$$
\lim _{n \rightarrow \infty} \frac{\left|\mathcal{P}_{u}(n)\right|}{u(n)}
$$

exists and is equal to L if and only if

$$
\lim _{n \rightarrow \infty} \frac{\left|\mathcal{P}_{l}(n)\right|}{l(n)}
$$

exists and is equal to L.
Thus, if we assume that Conjecture 1.2 holds, then our conjectures about asymptotic behaviour coincide for labeled and unlabeled matroids. This phenomenon has also been noted in the context of graph theory (see [1, p. 1462]). Because the proof of Lemma 1.3 is not central to our arguments, we relegate it to an appendix.

In what follows we assume Conjecture 1.2. The statement that asymptotically almost every matroid has property \mathcal{P} means that both $\left|\mathcal{P}_{u}(n)\right| / u(n)$ and $\left|\mathcal{P}_{l}(n)\right| / l(n)$ tend to one as n tends to infinity.

Conjecture 1.4. Asymptotically almost every matroid is connected.
Recall that a matroid M on the ground set E is k-connected if and only if there is no partition (X, Y) of E such that $|X|,|Y| \geq k^{\prime}$, and $r(X)+$ $r(Y)-r(M)<k^{\prime}$, for some $k^{\prime}<k$.

Conjecture 1.5. For any fixed integer $k>1$, asymptotically almost every matroid is k-connected.

Recall that a rank- r matroid is paving if every circuit contains at least r elements. Welsh [12] was prompted by the catalogue of matroids produced by Blackburn, Crapo, and Higgs [2] to ask whether "most" matroids are paving. We conjecture that this is true in a strong sense:

Conjecture 1.6. Asymptotically almost every matroid is paving.

It is an easy exercise to prove that, if asymptotically almost every matroid belongs to the class \mathcal{P}, then asymptotically almost every matroid belongs to $\mathcal{P} \cap\left\{M^{*} \mid M \in \mathcal{P}\right\}$. A matroid M is sparse paving if both M and M^{*} are paving. Therefore Conjecture 1.6 implies that asymptotically almost every matroid is sparse paving. We conjecture that any fixed sparse paving matroid is present as a minor in asymptotically almost every matroid.

Conjecture 1.7. Let N be a fixed sparse paving matroid. Asymptotically almost every matroid has an N-minor.

Recall that the Vámos matroid, V_{8}, is a self-dual rank-4 paving matroid [11] (see [9, Example 2.1.22]). The next conjecture would be implied by a positive answer to Conjecture 1.7, and is perhaps more approachable.

Conjecture 1.8. Asymptotically almost every matroid has a V_{8}-minor.
A simple counting argument shows that if \mathbb{F} is a finite field, then asymptotically almost every matroid is not representable over \mathbb{F}. It is a relatively straightforward exercise to show that a result due to Ronyai, Babai, and Ganapathy [10] implies that this phenomenon holds for any fixed field \mathbb{F}. We conjecture something stronger:

Conjecture 1.9. Asymptotically almost every matroid is not representable over any field.

Since V_{8} is not representable over any field, a positive answer to Conjecture 1.8 would imply Conjecture 1.9

Welsh asked whether the number of non-isomorphic n-element matroids with rank r is maximum when $r=\lfloor n / 2\rfloor$ (see [12, P20]). We make a stronger conjecture.

Conjecture 1.10. Asymptotically almost every matroid M satisfies

$$
\frac{|E(M)|-1}{2} \leq r(M) \leq \frac{|E(M)|+1}{2}
$$

2. LOOPLESS AND COLOOPLESS MATROIDS PREDOMINATE

We now turn to the proof of Theorem 1.1. Our strategy is to prove that connected matroids make up at least half of the set of loopless and coloopless labeled matroids on n elements. To show that this implies Theorem 1.1, we must establish that loopless and coloopless matroids asymptotically predominate in the set of labeled matroids. This section is devoted to that task.

Let M be a matroid. Recall that a modular cut of M is a collection, \mathcal{F}, of flats of M such that:
(i) if $F_{0} \in \mathcal{F}$ and F_{1} is a flat containing F_{0}, then $F_{1} \in \mathcal{F}$; and,
(ii) if $F_{0}, F_{1} \in \mathcal{F}$, and $r\left(F_{0}\right)+r\left(F_{1}\right)=r\left(F_{0} \cap F_{1}\right)+r\left(F_{0} \cup F_{1}\right)$, then $F_{0} \cap F_{1} \in \mathcal{F}$.

A single-element extension of M is a matroid M_{0} on the ground set $E(M) \cup e$, where $e \notin E(M)$, such that $M_{0} \backslash e=M$. It is well-known that the single-element extensions of M are in bijective correspondence with the modular cuts of M [9, Section 7.2]. If F is a flat of M, then the set of flats that contain F is a modular cut of M. The single-element extension that corresponds to this modular cut is said to be a principal extension.

Proposition 2.1. Let M be a rank-r matroid. Then M has at least 2^{r} flats.
Proof. Simply take any basis of M and form the closures of every subset of that basis.

Proposition 2.2. Let $n \geq 2$ be an integer. Then $l(n) \geq 2^{(n-3) / 2} l(n-1)$.
Proof. Consider the $l(n-1)$ matroids on the ground set $\{1, \ldots, n-1\}$. By duality, at least $l(n-1) / 2$ of these have rank no less than $(n-1) / 2$. Each of these matroids has at least $2^{(n-1) / 2}$ flats, by Proposition 2.1. We construct the principal extensions on $\{1, \ldots, n\}$ corresponding to these flats. These extensions are all distinct, as two distinct matroids on the set $\{1, \ldots, n-1\}$ cannot have identical single-element extensions on the set $\{1, \ldots, n\}$. Thus there are at least $2^{(n-1) / 2} l(n-1) / 2$ distinct matroids on the ground set $\{1, \ldots, n\}$. The result follows.

Theorem 2.3. For a positive integer n, let $l^{\circ}(n)$ be the number of matroids on the ground set $\{1, \ldots, n\}$ that have at least one loop or coloop. If $n \geq 2$, then

$$
\frac{l^{\circ}(n)}{l(n)} \leq \frac{n}{2^{(n-5) / 2}}
$$

and hence $l^{\circ}(n) / l(n) \rightarrow 0$ as $n \rightarrow \infty$.
Proof. Suppose that i is an integer in $\{1, \ldots, n\}$, and that M is a matroid on $\{1, \ldots, n\}$ in which i is a loop. Let $l_{i}^{\circ}(n)$ be the number of such matroids. We claim that $l_{i}^{\circ}(n)=l(n-1)$. Consider the function which takes each such M to the matroid obtained from M by deleting i and relabeling every element $j \in\{i+1, \ldots, n\}$ with $j-1$. This is clearly a bijection between the matroids on $\{1, \ldots, n\}$ in which i is a loop, and the matroids on the set $\{1, \ldots, n-1\}$. Hence we have established the claim.

Exactly the same argument shows that $l(n-1)$ is the number of matroids on $\{1, \ldots, n\}$ in which i is a coloop. By taking the sum as i ranges over $\{1, \ldots, n\}$, we see that $l^{\circ}(n)$ is at most $2 n l(n-1)$. Now Proposition 2.2 shows that

$$
\frac{l^{\mathrm{o}}(n)}{l(n)} \leq \frac{2 n l(n-1)}{2^{(n-3) / 2} l(n-1)}=\frac{n}{2^{(n-5) / 2}}
$$

3. The loopless and coloopless case

In this section we show that connected matroids make up at least half of the loopless and coloopless matroids on $\{1, \ldots, n\}$. As a first step, we
partition the disconnected but loopless and coloopless matroids on $\{1, \ldots, n\}$ into two classes.

Let \mathcal{M}_{1} be the set of loopless and coloopless disconnected matroids on $\{1, \ldots, n\}$ that either have at least three connected components, or that have no connected component of rank one. Let \mathcal{M}_{2} be the set of loopless and coloopless disconnected matroids on $\{1, \ldots, n\}$ that have precisely two connected components, at least one of which has rank one.

Suppose that M is a matroid with rank at least one. Let $\mathcal{I}(M)$ be the family of independent sets of M. The truncation of M, denoted by $T(M)$, is the matroid on the ground set $E(M)$ with $\{I \in \mathcal{I}(M):|I| \leq r(M)-1\}$ as its independent sets.

Proposition 3.1. Let M be a loopless matroid with rank at least two. Then $T(M)$ is connected. In particular, if $M \in \mathcal{M}_{1}$ then $T(M)$ is connected.

Proof. Let e and f be elements of $E(M)$. Since M has no loops, either $\{e, f\}$ is a circuit, or it is independent. If $\{e, f\}$ is a circuit of M, then it is a circuit of $T(M)$, as $r(M) \geq 2$. If $\{e, f\}$ is independent in M, then it is contained in a basis B of M. The set B is a circuit of $T(M)$. Thus e and f are contained in a common circuit of $T(M)$ in either case. Therefore $T(M)$ is connected. As each member of \mathcal{M}_{1} is loopless and has rank at least two, the result follows.

Lemma 3.2. Let M_{1} and M_{2} be members of \mathcal{M}_{1}. If $T\left(M_{1}\right)=T\left(M_{2}\right)$, then $M_{1}=M_{2}$.

Proof. Suppose that $T\left(M_{1}\right)=T\left(M_{2}\right)$. We will show that M_{1} and M_{2} have exactly the same set of circuits. Note that M_{1} and M_{2} must have the same rank. Let r be this common rank. As M_{1} and M_{2} both belong to \mathcal{M}_{1}, it follows that each connected component of M_{i} has rank at most $r-2$, for $i=1,2$. Thus every circuit of M_{i} has rank at most $r-2$, and is therefore a non-spanning circuit of $T\left(M_{i}\right)$. On the other hand, a non-spanning circuit of $T\left(M_{i}\right)$ is also a circuit of M_{i}.

The previous paragraph establishes that the circuits of M_{i} are precisely the non-spanning circuits of $T\left(M_{i}\right)$. Since $T\left(M_{1}\right)=T\left(M_{2}\right)$, it follows that $T\left(M_{1}\right)$ and $T\left(M_{2}\right)$ have the same set of non-spanning circuits, and hence M_{1} and M_{2} have the same set of circuits.

Suppose that M_{1} and M_{2} are matroids on the ground set E and that $\mathcal{I}\left(M_{1}\right)$ and $\mathcal{I}\left(M_{2}\right)$ are their families of independent sets respectively. Recall that the union of M_{1} and M_{2}, denoted $M_{1} \vee M_{2}$, is the matroid on the ground set E, with $\left\{I_{1} \cup I_{2}: I_{1} \in \mathcal{I}\left(M_{1}\right), I_{2} \in \mathcal{I}\left(M_{2}\right)\right\}$ as its family of independent sets.

Next we assume that M is a member of \mathcal{M}_{2}. Thus M has no loops or coloops, and M has precisely two connected components, N_{1} and N_{2}. Let E, E_{1}, and E_{2} be the ground sets of M, N_{1} and N_{2} respectively. By relabeling as necessary, we assume that N_{1} is the connected component of M with
rank one. (Recall that $E=\{1, \ldots, n\}$. If both N_{1} and N_{2} have rank one, we assume that N_{1} is the component containing the element 1.)

Let N_{1}^{\prime} be the rank-one uniform matroid on the ground set E. Let N_{2}^{\prime} be obtained from N_{2} by adding the elements of E_{1} as loops. Thus N_{1}^{\prime} and N_{2}^{\prime} are both matroids on the ground set E. We define $\Psi(M)$ to be $N_{1}^{\prime} \vee N_{2}^{\prime}$. We remark here that $\Psi(M)$ can also be defined using the free product of Crapo and Schmidt [4]. Alternatively, $\Psi(M)$ can be obtained by freely coextending N_{2} by an element $e \in E_{1}$, and then adding $E_{1}-e$ in parallel to e.
Proposition 3.3. Suppose that C is a circuit of N_{2} and that e is an element in E_{1}. Then $C \cup e$ is a circuit of $\Psi(M)$. Conversely, if C^{\prime} is a circuit of $\Psi(M)$ that contains e, then $C^{\prime}-e$ is a circuit of N_{2}.

Proof. Suppose that $C \cup e$ is independent in $\Psi(M)$. Then $C \cup e$ is the disjoint union of I_{1} and I_{2}, where I_{i} is independent in N_{i}^{\prime} for $i=1,2$. Note that I_{2} cannot contain any element of E_{1}, for any such element is a loop of N_{2}^{\prime}. Thus I_{2} must be a proper subset of C. It follows that I_{1} contains e and at least one element of C. But such a pair is a circuit of N_{1}^{\prime}. Thus we have a contradiction and we conclude that $C \cup e$ is dependent in $\Psi(M)$.

However, if $x \in C$, then $C-x$ is independent in N_{2}^{\prime} and both $\{e\}$ and $\{x\}$ are independent in N_{1}^{\prime}. It follows easily that $C \cup e$ is indeed a circuit of $\Psi(M)$.

To prove the converse, we note that if $C^{\prime}-e$ were independent in N_{2}, then C^{\prime} would be independent in $\Psi(M)$. Thus $C^{\prime}-e$ contains a circuit of N_{2}. The arguments in the previous paragraphs show that $C^{\prime}-e$ must in fact be a circuit of N_{2}, for otherwise C^{\prime} properly contains a circuit of $\Psi(M)$.
Proposition 3.4. There are no loops in $\Psi(M)$, and E_{1} is the unique nontrivial parallel class of $\Psi(M)$.
Proof. Let e be a member of E. Then $\{e\}$ is independent in N_{1}^{\prime}, and hence in $\Psi(M)$. Thus $\Psi(M)$ has no loops.

Suppose that e and f are contained in E_{1} and that $\{e, f\}$ is independent in $\Psi(M)$. Then $\{e, f\}$ is the disjoint union of I_{1} and I_{2}, independent sets of N_{1}^{\prime} and N_{2}^{\prime} respectively. Note that I_{2} is non-empty, as $\{e, f\}$ is dependent in N_{1}^{\prime}, so I_{2} contains either e or f. But both these elements are loops of N_{2}^{\prime}, so we have a contradiction. Thus $\{e, f\}$ is a circuit of $\Psi(M)$. Suppose that $x \in E_{2}$. If $e \in E_{1}$, then $\{e\}$ is independent in N_{1}^{\prime}, and $\{x\}$ is independent in N_{2}^{\prime}. Therefore $\{e, x\}$ is independent in $\Psi(M)$, so E_{1} is indeed a parallel class of $\Psi(M)$.

Suppose that P is a non-trivial parallel class of $\Psi(M)$ other than E_{1}, and let $\{x, y\}$ be a parallel pair in P. Then $\{x, y\}$ must be dependent in N_{2}, and as N_{2} is loopless, $\{x, y\}$ is a parallel pair of N_{2}. Now Proposition 3.3 implies that $\{x, y, e\}$ is a circuit of $\Psi(M)$, where e is any member of E_{1}. Since this circuit properly contains $\{x, y\}$ we have a contradiction and deduce that E_{1} is the only non-trivial parallel class in $\Psi(M)$.

Proposition 3.5. Let M be a member of \mathcal{M}_{2}. Then $\Psi(M)$ is connected.

Proof. It suffices to show that if $e \in E_{1}$ and $f \in E_{2}$, then there is a circuit of $\Psi(M)$ that contains $\{e, f\}$. As M has no coloops, there is a circuit C of N_{2} that contains f. Proposition 3.3 says that $C \cup e$ is a circuit of $\Psi(M)$, so we are done.

Lemma 3.6. The function that takes each member M of \mathcal{M}_{2} to $\Psi(M)$ is injective.

Proof. We will prove this fact by demonstrating that M can be canonically recovered from $\Psi(M)$. Proposition 3.4 says that E_{1} is the unique non-trivial parallel class of $\Psi(M)$. Suppose that $e \in E_{1}$. If C is a circuit of N_{2}, then $C \cup e$ is a circuit of $\Psi(M)$, so C is a circuit of $\Psi(M) / e$. Suppose that $C \subseteq E_{2}$ is a circuit of $\Psi(M) / e$. If C is a circuit of $\Psi(M)$, then C must be a dependent set of N_{2}. Let C^{\prime} be a circuit of N_{2} that is contained in C. Then $C^{\prime} \cup e$ is a circuit of $\Psi(M)$, so C^{\prime} must be properly contained in C. But then C^{\prime} is a circuit of $\Psi(M) / e$ that is properly contained in C. This contradiction means that $C \cup e$ is a circuit of $\Psi(M)$. Now Proposition 3.3 asserts that C is a circuit of N_{2}.

We have shown that the matroid obtained from $\Psi(M) / e$ by deleting $E_{1}-e$ is equal to N_{2}. Thus M can be recovered from $\Psi(M)$ by contracting any element from its unique parallel class, deleting the resulting loops, and adding the unique parallel class of $\Psi(M)$ to the resulting matroid as a connected component. This completes the proof.

Proposition 3.7. Suppose that M is a member of \mathcal{M}_{2} on the ground set E. If $f \in E$ is contained in a non-spanning circuit of $\Psi(M)$, then there is a non-spanning circuit of $\Psi(M)$ that contains f and an element from the unique non-trivial parallel class of $\Psi(M)$.

Proof. Suppose that f is contained in a non-spanning circuit C of $\Psi(M)$. If $f \in E_{1}$ then the result is obvious, as E_{1} is a non-trivial parallel class of $\Psi(M)$. Therefore we suppose that $f \in E_{2}$. Assume that there is no nonspanning circuit of $\Psi(M)$ that both contains f and meets E_{1}. In particular, C contains no element of E_{1}.

Let e be an element of E_{1}. The set C is not a circuit of N_{2}, for otherwise Proposition 3.3 implies that $C \cup e$ is a circuit of $\Psi(M)$ that properly contains C. However C must be dependent in N_{2}, so C properly contains at least one circuit of N_{2}. Suppose that C contains two distinct circuits C_{1} and C_{2} of N_{2}. Then $C_{1} \cup e$ and $C_{2} \cup e$ are circuits of $\Psi(M)$ by Proposition 3.3. As $\left|C_{1} \cup e\right| \leq|C|$ and $\left|C_{2} \cup e\right| \leq|C|$, it follows that $C_{1} \cup e$ and $C_{2} \cup e$ are non-spanning circuits of $\Psi(M)$. Thus f is contained in neither C_{1} nor C_{2}. Now $\left(\left(C_{1} \cup e\right) \cup\left(C_{2} \cup e\right)\right)-e$ contains a circuit of $\Psi(M)$, by circuit-exchange, and this circuit must be C. Thus $C_{1} \cup C_{2}=C$. But this is a contradiction, as $f \notin C_{1} \cup C_{2}$. Therefore C contains precisely one circuit C_{1} of N_{2}.

Let x be an element of C_{1}. Then $C-x$ is independent in N_{2}^{\prime}. However $\{x\}$ is independent in N_{1}^{\prime}, so C is independent in $\Psi(M)$. This contradiction completes the proof.

Lemma 3.8. Suppose that $M_{1} \in \mathcal{M}_{1}$ and that $M_{2} \in \mathcal{M}_{2}$. Then $T\left(M_{1}\right) \neq$ $\Psi\left(M_{2}\right)$.

Proof. Suppose that $T\left(M_{1}\right)=\Psi\left(M_{2}\right)$. Proposition 3.4 implies that $T\left(M_{1}\right)$ contains a unique non-trivial parallel class E_{1}. As the members of \mathcal{M}_{1} have rank at least three, E_{1} is a parallel class of M_{1}. Let f be an element from a connected component of M_{1} that does not contain E_{1}. Now f is contained in a circuit of M_{1}. We remarked in the proof of Lemma 3.2 that the circuits of M_{1} are the non-spanning circuits of $T\left(M_{1}\right)$. Therefore f is in a nonspanning circuit of $T\left(M_{1}\right)$, and by Proposition 3.7 must be contained in a non-spanning circuit of $T\left(M_{1}\right)$ that also contains a member of E_{1}. This means that f is contained in a circuit of M_{1} that meets E_{1}, which is a contradiction.

Recall that $l_{c}(n)$ is the number of connected matroids on the ground set $\{1, \ldots, n\}$.

Lemma 3.9. Let n be a positive integer, and let $l^{\phi}(n)$ be the number of loopless and coloopless matroids on the ground set $\{1, \ldots, n\}$. Then $l_{c}(n) \geq$ $l^{\varnothing}(n) / 2$.

Proof. We note that $l^{\varnothing}(1)=0$, so the result is true if $n=1$. Henceforth we assume that $n>1$. Let M be a loopless and coloopless matroid that is not connected, and consider the function that takes each such M to $T(M)$ if $M \in \mathcal{M}_{1}$ and to $\Psi(M)$ if $M \in \mathcal{M}_{2}$. The image of M is connected by Propositions 3.1 and 3.5. Moreover this function is injective by Lemmas 3.2, 3.6 , and 3.8. Therefore the number of connected matroids on $\{1, \ldots, n\}$ is at least as large as the number of disconnected but loopless and coloopless matroids on $\{1, \ldots, n\}$. Since the sum of these two numbers is $l^{\varnothing}(n)$ the result follows.

Now we can prove our main result. We recall that $l(n), l_{c}(n), l^{\circ}(n)$, and $l^{\phi}(n)$ are, respectively, the number of: matroids; connected matroids; matroids with at least one loop or coloop; and loopless and coloopless matroids, on the ground set $\{1, \ldots, n\}$.

Theorem 1.1. For every $\epsilon>0$, there exists an integer N such that $l_{c}(n) / l(n) \geq 1 / 2-\epsilon$ whenever $n \geq N$.

Proof. We start by observing that

$$
\begin{aligned}
\frac{l(n)}{l^{\varnothing}(n)} & =\frac{l(n)}{l(n)-l^{\circ}(n)} \\
& =\frac{1}{1-l^{\circ}(n) / l(n)}
\end{aligned}
$$

so Theorem 2.3 implies that $l(n) / l^{\phi}(n)$ tends to 1 from above as $n \rightarrow \infty$. Now, by applying Lemma 3.9, we see that

$$
\begin{aligned}
\frac{l_{c}(n)}{l(n)} & =\frac{l_{c}(n) / l^{\varnothing}(n)}{l(n) / l^{\varnothing}(n)} \\
& \geq \frac{1 / 2}{l(n) / l^{\varnothing}(n)}
\end{aligned}
$$

so the result follows.

4. Appendix

In this section we prove Lemma 1.3. Recall that $l(n)$ and $u(n)$ stand respectively for the number of labeled and unlabeled n-element matroids. Moreover $A_{l}(n)$ and $A_{u}(n)$ are respectively the number of labeled and unlabeled n-element matroids with no automorphism other than the trivial one. We shall use $\bar{A}_{l}(n)$ and $\bar{A}_{u}(n)$ to denote the sets of labeled and unlabeled n-element matroids with at least one non-trivial automorphism.

Throughout this section we assume that Conjecture 1.2 holds. In other words, we use the following hypothesis.

Hypothesis 1. The limit $\lim _{n \rightarrow \infty}\left|A_{u}(n)\right| / u(n)$ exists and is equal to one.
We will make frequent use of the following fact:
Fact 1. Let $\left\{X_{n}\right\}_{n \geq 1}$ be a sequence of sets. For every positive integer n, let Y_{n} and Z_{n} be subsets of X_{n}. Suppose that $\lim _{n \rightarrow \infty}\left|Y_{n}\right| /\left|X_{n}\right|$ and $\lim _{n \rightarrow \infty}\left|Z_{n}\right| /\left|X_{n}\right|$ exist, and are equal to L and 1 respectively. Then

$$
\lim _{n \rightarrow \infty} \frac{\left|Y_{n} \cap Z_{n}\right|}{\left|X_{n}\right|}=L
$$

Proof. If $\lim _{n \rightarrow \infty}\left|Z_{n}\right| /\left|X_{n}\right|=1$, then $\lim _{n \rightarrow \infty}\left|Y_{n} \cup Z_{n}\right| /\left|X_{n}\right|=1$, so writing $\left|Y_{n} \cap Z_{n}\right| /\left|X_{n}\right|$ as

$$
\frac{\left|Y_{n}\right|}{\left|X_{n}\right|}+\frac{\left|Z_{n}\right|}{\left|X_{n}\right|}-\frac{\left|Y_{n} \cup Z_{n}\right|}{\left|X_{n}\right|}
$$

and taking the limit as n tends to infinity gives the result.

Fact 2.

$$
\lim _{n \rightarrow \infty} \frac{l(n)}{n!u(n)}=1
$$

Proof. The number of labeled matroids associated with the unlabeled n-element matroid M is $n!/|\operatorname{Aut}(M)|$, where $\operatorname{Aut}(M)$ is the automorphism group of M. Let \mathcal{M}_{n} be the set of unlabeled n-element matroids. Then

$$
l(n)=\sum_{M \in \mathcal{M}_{n}} \frac{n!}{|\operatorname{Aut}(M)|}
$$

On the other hand,

$$
n!u(n)=\sum_{M \in \mathcal{M}_{n}} n!
$$

so $l(n) \leq n!u(n)$, and thus $l(n) / n!u(n) \leq 1$. Now

$$
l(n) \geq \sum_{M \in A_{u}(n)} \frac{n!}{|\operatorname{Aut}(M)|}=n!\left|A_{u}(n)\right|
$$

Therefore

$$
1 \geq \frac{l(n)}{n!u(n)} \geq \frac{n!\left|A_{u}(n)\right|}{n!u(n)}=\frac{\left|A_{u}(n)\right|}{u(n)}
$$

The last expression tends to one as $n \rightarrow \infty$, by our hypothesis, so the result follows.

The last fact implies that $\lim _{n \rightarrow \infty} n!u(n) / l(n)=1$.
Fact 3. The limit $\lim _{n \rightarrow \infty}\left|A_{l}(n)\right| / l(n)$ exists and is equal to one.
Proof. Note that both $\lim _{n \rightarrow \infty}\left|A_{u}(n)\right| / u(n)$ and $\lim _{n \rightarrow \infty} n!u(n) / l(n)$ exist and are equal to one. Therefore

$$
\begin{aligned}
1 & =\lim _{n \rightarrow \infty} \frac{n!\left|A_{u}(n)\right|}{n!u(n)} \cdot \lim _{n \rightarrow \infty} \frac{n!u(n)}{l(n)} \\
& =\lim _{n \rightarrow \infty} \frac{n!\left|A_{u}(n)\right|}{n!u(n)} \cdot \frac{n!u(n)}{l(n)} \\
& =\lim _{n \rightarrow \infty} \frac{n!\left|A_{u}(n)\right|}{l(n)} \\
& =\lim _{n \rightarrow \infty} \frac{\left|A_{l}(n)\right|}{l(n)}
\end{aligned}
$$

Proof of Lemma 1.3. Suppose that $\lim _{n \rightarrow \infty}\left|\mathcal{P}_{u}(n)\right| / u(n)=L$. Then

$$
\lim _{n \rightarrow \infty} \frac{\left|\mathcal{P}_{u}(n) \cap A_{u}(n)\right|}{u(n)}=L
$$

by Hypothesis 1 and Fact 1. Now

$$
\frac{\left|\mathcal{P}_{l}(n) \cap A_{l}(n)\right|}{l(n)}=\left(\frac{n!\left|\mathcal{P}_{u}(n) \cap A_{u}(n)\right|}{n!u(n)}\right)\left(\frac{n!u(n)}{l(n)}\right) .
$$

The limits, as $n \rightarrow \infty$, of the bracketed expressions exist, and are equal to L and 1 respectively. Therefore

$$
\lim _{n \rightarrow \infty} \frac{\left|\mathcal{P}_{l}(n) \cap A_{l}(n)\right|}{l(n)}=L
$$

But

$$
\frac{\left|\mathcal{P}_{l}(n)\right|}{l(n)}=\frac{\left|\mathcal{P}_{l}(n) \cap A_{l}(n)\right|}{l(n)}+\frac{\left|\mathcal{P}_{l}(n) \cap \bar{A}_{l}(n)\right|}{l(n)}
$$

and it follows easily from Fact 3 that $\left|\bar{A}_{l}(n)\right| / l(n)$, and hence $\mid \mathcal{P}_{l}(n) \cap$ $\bar{A}_{l}(n) \mid / l(n)$, tends to zero as $n \rightarrow \infty$. Therefore

$$
\lim _{n \rightarrow \infty} \frac{\left|\mathcal{P}_{l}(n)\right|}{l(n)}=\lim _{n \rightarrow \infty} \frac{\left|\mathcal{P}_{l}(n) \cap A_{l}(n)\right|}{l(n)}=L
$$

as desired. The proof of the converse is similar.

5. Acknowledgements

We thank Noga Alon, Douglas Kelly, Steve Noble, and James Oxley for helpful discussions.

References

[1] L. Babai. Automorphism groups, isomorphism, reconstruction. In Handbook of combinatorics, Vol. 1, 2, pp. 1447-1540. Elsevier, Amsterdam (1995).
[2] J. E. Blackburn, H. H. Crapo, and D. A. Higgs. A catalogue of combinatorial geometries. Math. Comp. 27 (1973), 155-166; addendum, ibid. 27 (1973), no. 121, loose microfiche suppl. A12-G12.
[3] T. Brylawski and D. Kelly. Matroids and combinatorial geometries. University of North Carolina Department of Mathematics, Chapel Hill, N.C. (1980). Carolina Lecture Series.
[4] H. Crapo and W. Schmitt. A unique factorization theorem for matroids. J. Combin. Theory Ser. A 112 (2005), no. 2, 222-249.
[5] D. G. Kelly and J. G. Oxley. Threshold functions for some properties of random subsets of projective spaces. Quart. J. Math. Oxford Ser. (2) 33 (1982), no. 132, 463-469.
[6] D. G. Kelly and J. G. Oxley. On random representable matroids. Stud. Appl. Math. 71 (1984), no. 3, 181-205.
[7] W. Kordecki. Small submatroids in random matroids. Combin. Probab. Comput. 5 (1996), no. 3, 257-266.
[8] W. Kordecki. Random matroids. Dissertationes Math. (Rozprawy Mat.) 367 (1997), 56.
[9] J. G. Oxley. Matroid theory. Oxford University Press, New York (1992).
[10] L. Rónyai, L. Babai, and K. M Ganapathy. On the number of zero-patterns of a sequence of polynomials. J. Amer. Math. Soc. 14 (2001), no. 3, 717-735 (electronic).
[11] P. Vámos. On the representation of independence structures (1968). Unpublished.
[12] D. J. A. Welsh. Combinatorial problems in matroid theory. In Combinatorial Mathematics and its Applications (Proc. Conf., Oxford, 1969), pp. 291-306. Academic Press, London (1971).

School of Mathematics, Statistics, and Operations Research, Victoria University of Wellington, Wellington, New Zealand

E-mail address: dillon.mayhew@msor.vuw.ac.nz
Department of Mathematics and Statistics, University of Ottawa, Ottawa, Canada

E-mail address: mnewman@uottawa.ca
Merton College, Oxford University, Oxford, United Kingdom
E-mail address: dwelsh@maths.ox.ac.uk
School of Mathematics, Statistics, and Operations Research, Victoria University of Wellington, Wellington, New Zealand

E-mail address: geoff.whittle@msor.vuw.ac.nz

[^0]: The first author was supported by a FRST Science \& Technology post-doctoral fellowship. The second and fourth authors were supported by the Marsden Fund of New Zealand.

