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Abstract. We show that for any 3-connected matroid M on a
ground set of at least four elements such that M does not con-
tain any 4-element fans, and any basis B of M , there exists a set
K ⊆ E(M) of four distinct elements such that for all k ∈ K,
si(M/k) is 3-connected whenever k ∈ B, and co(M\k) is 3-
connected whenever k ∈ E(M) − B. Moreover, we show that if
no other elements of E(M)−K satisfy this property, then M nec-
essarily has path-width 3.

1. Introduction

If we are given a standard representation of a matroid M over a field,
then we are effectively dealing with a matroid relative to a fixed basis B.
Ideally we would like tools—analogous to Tutte’s Wheels and Whirls
Theorem [4]—that would enable inductive arguments to be made for
such matroids. Valuable information, displayed by the representation,
can be lost by pivoting, so the goal is to either contract elements from
B or delete elements from E(M)−B without losing connectivity.

Recall that a matroid M has path-width 3 if there is an ordering
(e1, ..., en) of E(M) such that {e1, ..., ei} is 3-separating for all i ∈
{1, ..., n}. In this paper we prove the following theorem.

Theorem 1.1. Let M be a 3-connected matroid with no 4-element fans
where |E(M)| ≥ 4. Let B be a basis of M . Then there exists a set K
with |K| ≥ 4 such that for all k ∈ K, either

(i) k ∈ B and si(M/k) is 3-connected, or
(ii) k ∈ E(M)−B and co(M\k) is 3-connected.

Moreover, if |K| = 4, then M has path-width 3.
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This theorem is related to the following theorem of Oxley, Semple
and Whittle [3].

Theorem 1.2. Let M be a 3-connected matroid with no 4-element fans.
Let B be a basis of M . Then either

(i) B contains an element B such that M/b is 3-connected, or
(ii) E(M) − B contains an element b∗ such that M\b∗ is 3-

connected.

In one sense our theorem is stronger that Theorem 1.2 in that we
find at least four elements that can be removed. On the other hand, to
obtain four elements, we do need to weaken the connectivity slightly.
The techniques of this paper are closely related to those in [3].

The paper is structured as follows. The next section deals with the
prerequisite definitions and some necessary results on connectivity. In
Section 3, we begin by showing the existence of key elements which
can removed from a suitable matroid in the appropriate manner whilst
maintaining 3-connectivity. Section 4 then deals with arranging these
elements in such a way as to facilitate the arguments contained in
Section 5, where we work with the notion of path-width; concluding
with our proof of Theorem 1.1. Finally in Section 6, we discuss some
related open problems.

2. Preliminaries

Let M be a matroid with ground set E. The connectivity function
of M ; denoted by λM (or λ when there is no ambiguity), is defined on
subsets X of E by

λM(X) = r(X) + r(E −X)− r(M).

A subset X or a partition (X,E −X) of E is k-separating if λM(X) ≤
k−1. A k-separating partition (X,E−X) is a k-separation if |X|, |E−
X| ≥ k. A k-separating set X, or a k-separating partition (X,E−X),
or a k-separation (X,E − X) is exact if λM(X) = k − 1. M is n-
connected if M has no k-separation for any k < n. A k-separation
(X,E − X) is vertical if r(X), r(E − X) ≥ k, while a k-separation
(X,E−X) is cyclic if both X and E−X contain circuits. If (X, {e}, Y )
is a partition of E where both (X∪{e}, Y ) and (X, Y ∪{e}) are vertical
k-separations of M and e ∈ cl(X)∩ cl(Y ), we also say that (X, {e}, Y )
is a vertical k-separation of M . Similarly, a partition (X, {e}, Y ) of M
is cyclic if both (X ∪ {e}, Y ) and (X, Y ∪ {e}) are cyclic k-separations
and e ∈ cl∗(X) ∩ cl∗(Y ).

Lemma 2.1. Let M be a k-connected matroid. A k-separation (X,E−
X) of M is a vertical k-separation of M if and only if it is a cyclic
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k-separation of M∗. Thus, a partition (P, {e}, Q) of M is a vertical
k-separation of M if and only if it is a cyclic k-separation of M∗.

It is easily verified that the connectivity function λ of M is submod-
ular, that is, for all X, Y ⊆ E,

λ(X) + λ(Y ) ≥ λ(X ∩ Y ) + λ(X ∪ Y ).

From this, the next lemma is readily deduced.

Lemma 2.2. Let M be a 3-connected matroid, and let X and Y be
3-separating subsets of E(M). Then the following hold.

(i) If |X ∩ Y | ≥ 2, then X ∪ Y is 3-separating, and
(ii) If |E(M)− (X ∪ Y )| ≥ 2, then X ∩ Y is 3-separating.

We shall use the phrase “by uncrossing” to refer to an application of
Lemma 2.2.

A path of 3-separations in a matroid M is an ordered partition P =
(P0, P1, ..., Pr) of E(M) with the property that λ(P0 ∪ ... ∪ Pi) = 2 for
all i ∈ {0, ..., r − 1}. The members of P are called steps of P. Empty
steps are permitted. Note that both vertical and cyclic 3-separations
are examples of paths of 3-separations. The following lemma on paths
of 3-separations is elementary.

Lemma 2.3. A 3-connected matroid M has path-width 3 if and only if
there is a path P = (P0, ..., Pr) of 3-separations such that |P0| = |Pr| =
2, and |Pi| = 1 for all i ∈ {1, ..., r − 1}.

A segment in a matroid M is a subset L of E(M) such that M |L ∼=
U2,k for some k ≥ 3, while a cosegment of M is a segment of M∗. We
shall use the notation Γ4 to denote the class of matroids whose ground
set can be partitioned (L4, L

∗
4) where L4 is a 4-element segment and

L∗4 is a 4-element cosegment. A 4-element fan of a matroid M is a
subset F of E(M) with |F | = 4 such that there exists an ordering
(f1, f2, f3, f4) of the elements of F where {f1, f2, f3} is a triangle and
{f2, f3, f4} is a triad. If M is a 3-connected matroid, with some basis
B, and e ∈ E(M), we say that e is removable with respect to B if either:

(i) e ∈ B and si(M/e) is 3-connected, or
(ii) e 6∈ B and co(M\e) is 3-connected.

The property of being removable is well behaved under duality. We
omit the obvious proof of the next lemma.

Lemma 2.4. Let M be a 3-connected matroid, and let B be a basis of
M . Then e ∈ E(M) is removable with respect to B if and only if e is
removable with respect to the basis E(M)−B in M∗.
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The following eight lemmas will be used throughout the paper. The
first five are elementary, as is the eighth. The sixth appears in [5],
while a proof of the seventh can be found in [3].

Lemma 2.5. Let e be an element of a matroid M , and let X and Y be
disjoint sets whose union is E(M) − {e}. Then e ∈ cl(X) if and only
if e 6∈ cl∗(Y ).

Lemma 2.6. Let X be an exactly 3-separating set in a 3-connected
matroid M , and suppose that e ∈ E(M) − X. Then X ∪ {e} is 3-

separating if and only if e ∈ cl(∗)(X).

Lemma 2.7. Let M be a 3-connected matroid, B a basis of M , and let
K denote the set of elements which are removable with respect to B. If
S is a segment of M with |S| ≥ 4, then |S∩(E(M)−B)∩K| ≥ |S|−2.

Lemma 2.8. Let M be a 3-connected matroid with r(M) ≥ 4. Suppose
that C∗ is a rank-3 cocircuit of M . If there exists some c ∈ C∗ such
that r(C∗ − {c}) = 3, then co(M\c) is 3-connected.

Lemma 2.9. Let M be a 3-connected matroid with a rank-3 cocircuit
C∗ such that |C∗| ≥ 4 and r(M) ≥ 4. Let B be a basis of M . Then there
exists some c ∈ C∗ ∩ (E(M)−B) such that co(M\c) is 3-connected.

Lemma 2.10. Let C∗ be a rank-3 cocircuit of a 3-connected matroid
M . If e ∈ C∗ has the property that clM(C∗) − {e} contains a triangle
of M/e, then si(M/e) is 3-connected.

Lemma 2.11. Let M be a 3-connected matroid with e ∈ E(M). If
si(M/e) is not 3-connected, then there exists a vertical 3-separation
(X, {e}, Y ) of M .

Lemma 2.12. Let M be a 3-connected matroid with e ∈ E(M). If
(X, {e}, Y ) is a vertical 3-separation of M , then (cl(X)−{e}, {e}, Y −
cl(X)) is also a vertical 3-separation of M .

Lemmas 2.11 and 2.12 will be used repeatedly. Use of Lemma 2.11
will be made freely and without reference, while we shall use the phrase
“by closing X” to refer to an application of Lemma 2.12 followed by a
relabelling whereby (cl(X)−{e}, {e}, Y − cl(X)) becomes (X, {e}, Y ).

We require the next technical result.

Lemma 2.13. Let M be a 3-connected matroid with a triad {a, b, c}
and a circuit {a, b, c, d}. Then at least one of the following holds.

(i) Either co(M\a) or co(M\c) is 3-connected.
(ii) There exists a′, c′ ∈ E(M) such that both {a, a′, b} and {c, c′, b}

are triangles.
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(iii) There exists r ∈ E(M) such that {a, b, c, r} is a cosegment.

Proof. We shall assume that neither (i) nor (ii) holds and show that
this forces (iii). As neither co(M\a) nor co(M\c) are 3-connected, it
follows from the dual of Lemma 2.11 that there are cyclic 2-separations
(P,Q) and (V,W ) of M\a and M\c respectively.

Consider (P,Q). We can assume without loss of generality that
d ∈ Q. If {b, c} ⊆ Q, then (P,Q ∪ {a}) is a 2-separation of M as
a ∈ cl({b, c, d}). So assume b ∈ P . Then c ∈ cl∗M\a(P ) by Lemma 2.5,
and it follows that (P ∪ {c}, Q− {c}) is a cyclic 2-separation of M\a.
Thus, relabelling for clarity, we have a cyclic 2-separation (X∪{b, c}, Y )
of M\a where d ∈ Y . Similarly, we obtain a cyclic 2-separation (S ∪
{b, a}, T ) of M\c where d ∈ T .

2.13.1. Neither {b, c} nor {b, a} is contained in a triangle.

Proof. Suppose {b, c, c′} is a triangle. Then by our original assumption,
{b, a} is not contained in a triangle. Consider the 2-separation (S ∪
{b, a}, T ) of M\c. As S ∪ {a, b} contains a circuit and {b, a} is not in
a triangle, we have |S| ≥ 2. If c′ ∈ S, then c ∈ clM(S ∪ {b, a}), so that
(S ∪ {a, b, c}, T ) is a 2-separation of M . Thus c′ ∈ T . Now we have

λM\c/b(T ) = rM\c/b(T ) + rM\c/b(S ∪ {a})− r(M\c/b)
= rM\c(T ) + rM\c(S ∪ {a, b})− r(M)

= r(M\c) + 1− r(M) = 1

Note that rM\c({a, b, c′, d}) = 3, hence rM\c/b({a, c′, d}) = 2. Also,
rM\c/b({c′, d}) = 2, so a ∈ clM\c/b({c′, d}) ⊆ clM\c/b(T ). Therefore it
must be that λM\c/b(T ∪ {a}) = 1. From this, we can deduce that
λM\c(T ∪ {a, b}) = 1. But then c ∈ cl({a, b, d}) implying that λM(T ∪
{a, b, c}) = 1; contradicting the fact that M is 3-connected. Therefore
{b, c}, and similarly {b, a} cannot be contained in a triangle. �

From the fact that neither {b, a} nor {b, c} is contained in a triangle
and the fact that both X ∪ {b, c} and S ∪ {b, a} contain circuits, we
deduce that |X| ≥ 2 and |S| ≥ 2. Let M ′ = M\{a, b, c}.

2.13.2. c ∈ cl(X ∪ {b}) and a ∈ cl(S ∪ {b}).

Proof. Suppose that c 6∈ cl(X ∪ {b}). Then r(X) = r(X ∪ {b, c}) − 2.
But r(M ′) = r(M) − 1. We have r(X ∪ {b, c}) + r(Y ) ≤ r(M) + 1,
meaning that r(X) + r(Y ) ≤ r(M ′) so that (X, Y ) is a separation of
M ′. But r(Y ∪ {a, b, c}) ≤ r(Y ) + 2 so that r(X) + r(Y ∪ {a, b, c}) ≤
r(M)+1, giving (X, Y ∪{a, b, c}) a 2-separating partition of M ; which
is contradictory as |X| ≥ 2. Similarly a ∈ cl(S ∪ {b}). �
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2.13.3. λM ′(X) = λM ′(Y ) = λM ′(S) = λM ′(T ) = 1.

Proof. Using 2.13.2,

λM ′(X) = rM ′(X) + rM ′(Y )− r(M) + 1

= rM\a(X ∪ {b}) + rM\a(Y )− r(M)

= rM\a(X ∪ {b, c}) + rM\a(Y )− r(M) = 1 = λM ′(Y ).

The result that λM ′(S) = λM ′(T ) = 1 follows similarly. �

2.13.4. If Z ⊆ X or Z ⊆ S, then λM(Z) ≤ λM ′(Z) + 1.

Proof. Suppose Z ⊆ X. Let Z ′ = E(M ′) − Z. Note that d ∈ Z ′ so
r(Z ′ ∪ {a, b, c}) ≤ r(Z ′) + 2. Then

λM(Z) = rM ′(Z) + r(Z ′ ∪ {a, b, c})− r(M ′)− 1

≤ rM ′(Z) + rM ′(Z ′)− r(M ′) + 1 = λM ′(Z) + 1,

and similarly, if Z ⊆ S, then λM(Z) ≤ λM ′(Z) + 1. �

2.13.5. If Z ⊆ Y − {d} or Z ⊆ T − {d}, then λM(Z) = λM ′(Z).

Proof. Suppose Z ⊆ Y − {d}. Let Z ′ = E(M ′)− Z. Note that d ∈ Z ′
and X ⊂ Z ′. By 2.13.2, c ∈ cl(Z ′ ∪ {b}), but a ∈ cl(Z ′ ∪ {b, c})
so r(Z ′ ∪ {a, b, c}) = r(Z ′) + 1. Therefore λM(Z) = r(Z) + r(Z ′ ∪
{a, b, c}) − r(M) = r(Z) + r(Z ′) − r(M ′) = λM ′(Z). as required.
Similarly, if Z ⊆ T − {d}, then λM(Z) = λM ′(Z).. �

2.13.6. T ∩X 6= ∅, and S ∩ Y 6= ∅.

Proof. If T ∩X = ∅, then X ⊆ S, and by 2.13.2, {a, c} ⊆ cl(S∪{b}), so
that (S ∪ {a, b, c}, T ) is a 2-separation of M . Similarly S ∩ Y 6= ∅. �

Applying submodularity of the connectivity function together
with 2.13.3, we have λM ′(T ∪ X) + λM ′(T ∩ X) ≤ λM ′(T ) + λM ′(X),
so that λM ′(S ∩ Y ) + λM ′(T ∩X) ≤ 2.

But by 2.13.5, λM ′(S∩Y ) = λM(S∩Y ) and λM ′(T∩X) = λM(T∩X).
This result combined with 2.13.6 implies that we must have |S ∩ Y | =
|T ∩X| = 1. As (X ∪ {b, c}, Y ) is cyclic, it follows that |Y ∩ T | ≥ 2.

2.13.7. λM ′(T ∩ Y ) ≥ 2.

Proof. By 2.13.2, {a, c} ⊆ cl(S ∪ X ∪ {b}), so r(S ∪ X ∪ {a, b, c}) =
r(S∪X)+1. Hence λM(T∩Y, S∪X∪{a, b, c}) = λM ′(T∩Y, S∪X). �

Now λM ′(S∩X)+λM ′(T∩Y ) ≤ λM ′(S)+λM ′(X) ≤= 2. So by 2.13.7,
λM ′(S∩X) = 0. By 2.13.4, we deduce that |S∩X| = 1. Let S∩X = {r}
and A = {a, b, c}. As λM ′(T ∪ Y ) = 0, rM(T ∪ Y ) = rM ′(T ∪ Y ) =
r(M ′) − 1 = r(M) − 2. Thus λM(T ∪ Y ) = r(A ∪ {r}) − 2 ≤ 2, and
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(T ∪ Y,A ∪ {r}) is a 3-separation of M . If r ∈ cl(A), then M must
contain a 2-separation. So r 6∈ cl(A) and by Lemma 2.6, r ∈ cl∗(A),
which implies that {a, b, c, r} is a cosegment, which gives (iii). �

3. The Existence of Removable Elements

Lemma 3.1. Let M be a 3-connected matroid with no 4-element fans.
Let B be a basis of M , and let K denote the set of elements which are
removable with respect to B. Suppose b ∈ B − K. Let (X, {b}, Y ) be
a vertical 3-separation of M . If X ∩ B ∩K = ∅, then |X ∩ (E(M) −
B) ∩K| ≥ 2.

Proof. Recall that when we use the phrase “by closing Y ” we refer to an
application of Lemma 2.12 followed by an appropriate labelling. Firstly,
we may assume; by closing Y , that Y ∪ {b} is closed. Note also that
X ∩B 6= ∅ as Y is non-spanning. Suppose that X ∩B ∩K = ∅. Then
for each bx ∈ X ∩B, there exists a vertical 3-separation (Xbx , {bx}, Ybx)
of M . If, for some bx ∈ X ∩ B, there is such a vertical 3-separation
where either Xbx or Ybx is contained in X ∪ {b}, then, by switching
Xbx and Ybx if necessary, and closing Ybx , there exists such a vertical
3-separation where Xbx ⊆ X ∪ {b} and Ybx ∪ {bx} is closed. Then
Xbx ⊆ (X − {bx}) ∪ {b}. If equality holds here, then Ybx = Y , but
then bx ∈ cl(Ybx) = cl(Y ); a contradiction. Hence Xbx ⊂ (X − {bx}) ∪
{b}. Now relabel so that (Xbx , {bx}, Ybx) becomes (X, {b}, Y ). By an
iteration of this procedure, we eventually obtain a vertical 3-separation
(X, {b}, Y ) of M with Y ∪ {b} closed such that if (Xbx , {bx}, Ybx) is a
vertical 3-separation of M with bx ∈ X ∩ B, then neither Xbx nor Ybx
is contained in X ∪ {b}. Moreover, we maintain the property that
X ∩B ∩K = ∅.

Let bx be an element of X ∩ B, and let (P, {bx}, Q) be a vertical
3-separation of M . Without loss of generality, b ∈ Q. Moreover, by we
may assume that Q ∪ {bx} is closed by closing Q.

3.1.1. X ∩ P,X ∩Q, Y ∩ P and Y ∩Q are all non-empty.

Proof. If X ∩P or X ∩Q is empty, then P or Q is contained in Y ∪{b}
and so bx ∈ cl(Y ∪ {b}); which contradicts the fact that Y ∪ {b} is
closed. If Y ∩ P or Y ∩ Q is empty, then P or Q is contained in
X ∪ {b}; contradicting our construction of (X, {b}, Y ). �

3.1.2. X ∩ P is 3-separating with r((X ∩ P ) ∪ {bx}) = 2.

Proof. As E(M)−(X∪P ) = (Y ∩Q)∪{b}, we have |E(M)−(X∪P )| ≥
2, and thus, by uncrossing, λ(X ∩ P ) ≤ 2. If |X ∩ P | = 1, the second
claim is immediate. So assume |X ∩ P | ≥ 2. Now |E(M)− (X ∪ (P ∪
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{bx}))| = |(Y ∩Q)∪{b}| ≥ 2, so that, by uncrossing, λ(X∩(P∪{bx})) ≤
2. We deduce that λ(X ∩P ) = λ((X ∩P )∪{bx}) = 2. By Lemma 2.6,

bx ∈ cl(∗)(X∩P ). If bx ∈ cl∗(X∩P ), then by Lemma 2.5, bx 6∈ cl(Y ∪Q);
a contradiction. So bx ∈ cl(X ∩ P ). If r((X ∩ P ) ∪ {bx}) ≥ 3, then
(X ∩P, {bx}, Y ∪Q) is a vertical 3-separation of M ; a contradiction to
our earlier construction of (X, {b}, Y ). So r((X ∩ P ) ∪ {bx}) = 2. �

Suppose |Y ∩P | = 1. If |X∩P | = 2, then P is a triad, which implies
that P ∪{bx} is a contradictory 4-element fan by 3.1.2. So |X∩P | ≥ 3,
and (X ∩ P )∪ {bx} is a segment containing at least four elements. By
Lemma 2.7 |X∩(E(M)−B)∩K| ≥ 2 and the lemma holds. So assume
that |Y ∩ P | ≥ 2.

3.1.3. r((X ∩Q) ∪ {b, bx}) = 2.

Proof. Since |E− ((X ∪{b})∪ (Q∪{bx}))| = |Y ∩P | ≥ 2, it follows by
uncrossing that λ((X∩Q)∪{b, bx}) ≤ 2. But |(X∩Q)∪{b, bx}| ≥ 3 and
so λ((X∩Q)∪{b, bx}) = 2. Noting that P ⊆ E−((X∩Q)∪{b, bx}), we
have bx ∈ cl(E − ((X ∩Q) ∪ {b, bx})), and it follows from Lemmas 2.6
and 2.5 that bx ∈ cl((X ∪ {b}) ∩Q). If r((X ∩Q) ∪ {b, bx}) ≥ 3, then
((X ∪ {b})∩Q, {bx}, E − ((X ∩Q)∪ {b, bx})) is a vertical 3-separation
of M ; a contradiction. Therefore, r((X ∩Q) ∪ {b, bx}) = 2. �

Now let L1 = (X ∩ Q) ∪ {b} and L2 = (X ∩ P ) ∪ {bx}. By 3.1.1
and 3.1.3, |cl(L1)| ≥ 3. If |cl(L1)| ≥ 4, then the result holds by
Lemma 2.7. So assume |cl(L1)| = 3 and let cl(L1) − {b, bx} = {a}.
If (L2 − {bx}) ∩ B = {b′}, then, as {a, b, bx} is a triangle of M/b′, it
follows by Lemma 2.10 that si(M/b′) is 3-connected: a contradiction.
So (L2−{bx})∩B = ∅. If |L2| ≥ 4, then Lemma 2.7 again implies that
|X ∩ (E(M)−B)∩K| ≥ 2 as required. So assume |L2| ∈ {2, 3}. Since
Y ∪ {b} is closed and M contains no 4-element fans, it must be that
|L2−{bx}| = 2. Let L2−{bx} = {x1, x2} ⊂ E(M)−B. An application
of Lemma 2.8 now reveals that {x1, x2} ⊆ X ∩ (E(M)−B) ∩K. �

Lemma 3.2. Let M be a 3-connected matroid with no 4-element fans.
Let B be a basis of M , and let K denote the set of elements which are
removable with respect to B. Suppose b ∈ B −K. Let (X, {b}, Y ) be a
vertical 3-separation of M . Then either:

(i) |X ∩B ∩K| ≥ 2, or
(ii) |X ∩ (E(M)−B) ∩K| ≥ 2, or

(iii) |X ∩B ∩K| ≥ 1 ≤ |X ∩ (E(M)−B) ∩K|, or
(iv) X ∪{b} is a circuit and there exists bk, γ1, γ2 ∈ E(M) such that

X = {bk, γ1, γ2} with X ∩K = X ∩B = {bk}.
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Proof. We shall assume that (i) does not hold. If X ∩B ∩K = ∅, then
(ii) holds by Lemma 3.1. So we may assume that |X ∩B∩K| = 1. Let
X∩B∩K = {bk}. Suppose firstly that (X∩B)−{bk} 6= ∅. Now if, for
any bx ∈ (X∩B)−{bk}, there is a vertical 3-separation (Xbx , {bx}, Ybx)
of M such that Xbx ⊆ (X ∪ {b}) − {bk}, then by Lemma 3.1, we can
deduce that (ii) holds in addition to si(M/bk) being 3-connected. So,
taking some bx ∈ (X ∩B)−{bk}, and letting (P, {bx}, Q) be a vertical
3-separation of M , we may assume that neither P nor Q is contained
in (X ∪ {b}) − {bk}. Without loss of generality, we may also assume
that b ∈ Q and Q ∪ {bx} is closed. Now observe that 3.1.1, 3.1.2,
and 3.1.3 of Lemma 3.1 all hold. We deduce that bk ∈ X ∩ P . Letting
L1 = (X ∩ Q) ∪ {b} and L2 = (X ∩ P ) ∪ {bx} as per the argument
following 3.1.3, we again deduce that |cl(L1)| = |L2| = 3. Letting
L2 − {bk, bx} = {x1}, it follows by an application of Lemma 2.8 that
co(M\x1) is 3-connected. Thus (iii) is satisfied.

The final possibility to consider is when (X ∩B)−{bk} = ∅. In this
case, X is a cocircuit of rank 3. If |X| ≥ 4, then Lemma 2.9 gives (iii).
So assuming |X| = 3, X is a triad, and as M does not contain any
4-element fans, X ∪ {b} must be a circuit. Let X − {bk} = {γ1, γ2}. If
co(M\γ1) or co(M\γ2) is 3-connected, then (iii) holds. Otherwise, we
have (iv). We conclude that the lemma holds. �

Lemma 3.3. Let M be a 3-connected matroid with no 4-element fans.
Let B be a basis of M , and let K denote the set of elements which are
removable with respect to B. Suppose b ∈ B −K. Let (X, {b}, Y ) be a
vertical 3-separation of M . Then either:

(i) |X ∩K| ≥ 2, or
(ii) |X ∩ K| = 1, and there exists γ ∈ Y such that X ∪ {γ} is a

4-element cosegment.

Proof. Assume that (i) does not hold. Then by Lemma 3.2, there
exists bk, γ1, γ2 ∈ E(M) such that X = {bk, γ1, γ2} is a triad with
X ∩ K = X ∩ B = {bk}, while X ∪ {b} is a circuit. Now apply
Lemma 2.13. As neither co(M\γ1) nor co(M\γ2) are 3-connected and
M contains no 4-element fans, we are left to deduce the existence of
some γ ∈ Y such that X ∪ {γ} is a 4-element cosegment. �

Lemma 3.4. Let M be a 3-connected matroid with no 4-element fans.
Let B be a basis of M , and let K denote the set of elements which are
removable with respect to B. For any b ∈ B−K, there exists a path of
3-separations (X, {b}, Y ) such that |X ∩K| ≥ 2 ≤ |Y ∩K|. Moreover,
if |K| = 4, then (X, {b}, Y ) is a vertical 3-separation unless M ∈ Γ4;
in which case X is a 4-element cosegment.
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Proof. Take any b ∈ B−K and let (P, {b}, Q) be a vertical 3-separation
of M . If |P ∩ K| < 2, then by Lemma 3.3, there exists γ ∈ Q such
that P ∪ {γ} is a 4-element cosegment. Now |(P ∪ {γ}) ∩ K| ≥ 2
by the dual of Lemma 2.7. If b ∈ cl∗(X ∪ {γ}), then X ∪ {b, γ} is a
5-element cosegment, which; by Lemma 2.7, would imply that si(M/b)
is 3-connected. So, by Lemma 2.5, it must be that b ∈ cl(Y − {γ}).
Now suppose r(Q − {γ}) = 2. If |Q − {γ}| = 2, then Q is a triad; so
that Q∪ {b} is a contradictory 4-element fan. So |Q−{γ}| ≥ 3, hence
|(Q − {γ}) ∩ K| ≥ 2 by Lemma 2.7. Here (P ∪ {γ}, {b}, Q − {γ}) is
a path of 3-separations which satisfies the requirements of the Lemma;
in particular, if |K| = 4, then M ∈ Γ4. Therefore we may assume
that r(Q − {γ}) ≥ 3, so that (P ∪ {γ}, {b}, Q − {γ}) is a vertical 3-
separation of M . If |(Q−{γ})∩K| ≥ 2, the result is immediate, or else,
by Lemma 3.3, there exists some γ′ ∈ P∪{γ} such that (Q−{γ})∪{γ′}
is a 4-element cosegment. Certainly, E(M)−{b} cannot be a 7-element
cosegment by Lemma 2.7, so it must be that P ∪ {γ} and (Q−{γ})∪
{γ′} are two 4-element cosegments; each containing two basis elements,
which intersect at exactly one point γ′ ∈ B; which is absurd. Similarly
if |Q ∩K| < 2. Otherwise, by Lemma 3.3, |P ∩K| ≥ 2 ≤ |Q ∩K| as
taken is a suitable path of 3-separations. �

Theorem 3.5. Let M be a 3-connected matroid with no 4-element
fans. Let B be a basis of M . Let K denote the set of elements which
are removable with respect to B. If |E(M)| ≥ 4, then |K| ≥ 4.

Proof. Suppose |K| ≤ 3. Then by Lemma 3.4, together with its dual,
B −K = (E(M)−B)−K = ∅. �

4. Arranging Removable Elements

For clarity of exposition, we begin this section by proving a weaker
version of Proposition 4.2.

Proposition 4.1. Let M be a 3-connected matroid with no 4-element
fans. Let B be a basis of M , and let K denote the set of elements which
are removable with respect to B. Suppose |K| = 4. If M contains a
4-element segment, then there exists a set {α1, α2} ⊂ K such that for
every e ∈ E(M) −K, there exists a path of 3-separations (X, {e}, Y )
with X ∩K = {α1, α2}.
Proof. Let L be a 4-element segment and α1, α2 ∈ L∩K. We begin by
showing that the result holds for any element of the basis which is not
removable with respect to B. Taking any b ∈ B −K, by Lemma 3.4,
there exists a path of 3-separations (P, {b}, Q) such that |P ∩ K| =
|Q∩K| = 2. If M ∈ Γ4, then Lemma 3.4 implies that Q∩K = {α2, α2}
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as required. So we may assume that M 6∈ Γ4, hence that (P, {b}, Q) is
a vertical 3-separation of M . Without loss of generality, |P ∩ L| ≥ 2
and P ∩ L ∩ K = {α1}. Now (P ∪ {α2}, {b}, Q − {α2}) is a vertical
3-separation of M by Lemma 2.12. Letting (P ∩K)− {α1, α2} = {γ},
Lemma 3.3 implies that (Q − {α2}) ∪ {γ} is a 4-element cosegment.
As b 6∈ K, b 6∈ cl∗((Q− {α2}) ∪ {γ}), so b ∈ cl((P ∪ {α2})− {γ}), and
((P ∪ {α2}) − {γ}, {b}, (Q − {α2}) ∪ {γ}) is a path of 3-separations
which satisfies the requirements of the lemma.

Now let c be any element of (E(M) − B) − K. By Lemma 3.4,
there exists a path of 3-separations (V, {c},W ) such that |V ∩ K| =
|W ∩ K| = 2. If M ∈ Γ4, the result is again immediate. So we may
assume that (V, {c},W ) is a cyclic 3-separation of M . Without loss of
generality, |V ∩ L| ≥ 2 and V ∩ L ∩ K = {α1}. If |W − {α}| = 2,
then, as (W −{α})∪{c} is 3-separating by Lemma 2.6, it follows that
(W − {α}) ∪ {c} is a triad, whereas W is a triangle; however M does
not contain any 4-element fans. So |W − {α}| ≥ 3. Lemma 2.6 now
implies that (V ∪ {α2}, {c},W − {α2}) is a cyclic 3-separation of M
unless W − {α2} is independent; in which case (W − {α2}) ∪ {c} is a
cosegment of M containing at least 4-elements; which, by Lemma 2.7
contradicts the fact that |W∩K| = 2. ThereforeW−{α2}must contain
a circuit, and by the dual of Lemma 3.3, there exists ζ ∈ (V ∪{α2})∩K
such that (W − {α2}) ∪ {ζ} is a 4-element segment. If ζ ∈ {α1, α2},
then either (V ∩ L) ∪ W is a 6-element segment containing exactly
three elements which are removable with respect to B, or L and W
are distinct 4-element segments, each containing two elements of B,
whose intersection is {ζ} ∈ E(M)−B; both possibilities being entirely
incongruous. So ζ 6∈ {α1, α2}. With appropriate use of Lemma 2.6,
and by letting X = (V − {ζ}) ∪ {α2}, and Y = (W − {α2}) ∪ {ζ}, we
arrive at a suitable path of 3-separations. �

Proposition 4.2. Let M be a 3-connected matroid with no 4-element
fans. Let B be a basis of M , and let K denote the set of elements which
are removable with respect to B. Suppose |K| = 4. Then there exists
a set {α1, α2} ⊂ K such that for every e ∈ E(M) −K, there exists a
path of 3-separations (X, {e}, Y ) with X ∩K = {α1, α2}.

Proof. If M contains a 4-element segment or a 4-element cosegment,
then the result follows immediately from Proposition 4.1 and its dual.
So assume that M holds no such substructures. By Lemma 3.4, for
each e ∈ E(M) − K, there exists a path of 3-separations (X, {e}, Y )
with |X ∩ K| = |Y ∩ K| = 2 which is either a vertical or a cyclic
3-separation according to whether or not e ∈ B. We shall proceed to
show that in this case, for each element of E(M) − K, the paths of
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3-separations obtained from Lemma 3.4 and its dual do indeed already
satisfy the requirements of the current proposition.

Take any distinct e1, e2 ∈ E(M)−K with corresponding paths of 3-
separations (X, {e1}, Y ) and (P, {e2}, Q) as stated. To prove the result,
it suffices to show that X ∩ K ∈ {P ∩ K,Q ∩ K}, so suppose this is
not the case. Then |X ∩ P | = |X ∩ Q| = |Y ∩ P | = |Y ∩ Q| = 1, and
without loss of generality, e1 ∈ Q, e2 ∈ X.

4.2.1. For all S ∈ {X ∩ P,X ∩Q, Y ∩ P}, λ(S) ≤ 2.

Proof. As |E − (Y ∪ P )| ≥ 2, by uncrossing, Y ∩ P is 3-separating.
Similarly, λ(X ∩Q) ≤ 2. Suppose |Y ∩Q| = 1. Then |Y ∩ P | ≥ 2 and
so λ(Y ∩ P ) = λ((Y ∩ P ) ∪ {e1}) = 2, which, by Lemma 2.6, means

that e1 ∈ cl(∗)(Y ∩ P ). If |Y ∩ P | ≥ 3 and e1 ∈ cl(Y ∩ P ), then as
M does not contain any 4-element segments, r(Y ∩ P ) ≥ 3. But then
(X∪Q, {e1}, Y ∩P ) is a vertical 3-separation of M with |Y ∩P∩K| = 1;
which by Lemma 3.3 implies the contradictory existence of a 4-element
cosegment. Similarly it cannot be that |Y ∩P | ≥ 3 and e1 ∈ cl∗(Y ∩P ).
So |Y ∩ P | = 2. Now either (X, {e1}, Y ) is a vertical 3-separation of
M , meaning that (Y ∩ P ) ∪ {e1} is a triangle and Y is a triad, or
(X, {e1}, Y ) is a cyclic 3-separation, giving (Y ∩ P ) ∪ {e1} as a triad
and Y as a triangle. Each case revealing a 4-element fan in M . We
conclude that |Y ∩ Q| = |E − (X ∪ P )| ≥ 2, so that by uncrossing,
X ∩ P is 3-separating. �

We shall use 4.2.1 implicitly in what follows. Suppose now that
e1, e2 ∈ B so that (X, {e1}, Y ) and (P, {e2}, Q) are vertical 3-
separations of M . If r(X ∩ P ) ≥ 3, then as e1 ∈ cl(X ∩ P ) by Lem-
mas 2.6 and 2.5, it must be the case that (X ∩P, {e1}, Y ∪Q∪{e2}) is
a vertical 3-separation of M . This then contradicts Lemma 3.3, as M
contains no 4-element cosegments. So r(X ∩ P ) = 2. If |X ∩ P | ≥ 2,
then {e1, e2} ∈ cl(X ∩ P ) again by Lemmas 2.6 and 2.5, but such a 4-
point segment cannot exist. Hence |X ∩P | = 1, and (X ∩P )∪{e1, e2}
is a triangle. If Y ∩ P is then a singleton, P is a triad, giving a 4-
element fan P ∪ {e2} in M . So |Y ∩ P | ≥ 2. If r(Y ∩ P ) ≥ 3, we
again obtain a vertical 3-separation (X ∪Q, {e1}, Y ∩P ) which contra-
dicts Lemma 3.3. So r(Y ∩ P ) = 2, and to avoid a 4-element segment,
|Y ∩ P | = 2; so that (Y ∩ P ) ∪ {e1} is a triangle. Let X ∩ P = {k}
and Y ∩ P = {z1, z2}. By Lemma 2.8, both co(M\z1) and co(M\z2)
are 3-connected. But |Y ∩P ∩K| = 1, so we may assume that z1 ∈ B.
But then {e1, e2, k} is a triangle of M/z1, so that; by Lemma 2.10,
si(M/z1) is 3-connected; a contradiction. By duality, we arrive at the
same contradiction if e1, e2 ∈ E(M)−B.
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We now examine the case where e1 ∈ B and e2 ∈ E(M) − B, so
that (X, {e1}, Y ) is a vertical 3-separation and (P, {e2}, Q) is cyclic.
Provided |X ∩ P | ≥ 2, e1 ∈ cl(X ∩ P ) and e2 ∈ cl∗(X ∩ P ). If
|X ∩ P | ≥ 3, then r(X ∩ P ) = 2 or else (X ∩ P, {e1}, Y ∪ Q ∪ {e2})
is a vertical 3-separation of M with |X ∩ P ∩ K| = 1, contradicting
Lemma 3.3. But then X ∩ P must be also be independent, otherwise
(X ∩ P, {e2}, Y ∪ Q ∪ {e1}) is a cyclic 3-separation of M which again
contradicts Lemma 3.3. Hence |X ∩ P | ∈ {1, 2}. If |X ∩ P | = 2, then
(X∩P )∪{e1} is a triangle, whereas (X∩P )∪{e2} is a triad, giving a 4-
element fan. Finally, if |X ∩P | = 1 with X ∩P = {ψ}, then {e1, e2, ψ}
is 3-separating so is either a triad or a triangle. Using Lemma 2.5, the
first possibility contradicts the fact that e1 ∈ cl(Y ), and the second,
the fact that e2 ∈ cl∗(Q). The case where e1 ∈ E(M)− B and e2 ∈ B
is essentially identical. We conclude that X ∩ K ∈ {P ∩ K,Q ∩ K},
and the result holds. �

5. Removable Elements and Path Width

We begin this section by noting a simple result on paths of 3-
separations.

Lemma 5.1. Let P = (P0, ..., Pr) be a path of 3-separations in a ma-
troid M . If, for some i ∈ {1, ..., r − 1}, |Pi| = 1 with Pi = {ei}, then
either

(i) ei ∈ cl(P0 ∪ ... ∪ Pi−1) ∩ cl(Pi+1 ∪ ... ∪ Pr), or
(ii) ei ∈ cl∗(P0 ∪ ... ∪ Pi−1) ∩ cl∗(Pi+1 ∪ ... ∪ Pr).

Lemma 5.2. Let P = (P0, ..., Pr) be a path of 3-separations in a ma-
troid M . Suppose i ∈ {1, ..., r − 1}, e ∈ Pi, and that there exists
a path of 3-separations (X, {e}, Y ) of M with P0 ⊆ X, Pr ⊆ Y and
e ∈ cl(X)∩cl(Y ). Then there exists a path of 3-separations (X ′, {e}, Y ′)
with P0 ∪ ... ∪ Pi−1 ⊆ X ′, Pi+1 ∪ ... ∪ Pr ⊆ Y ′, and e ∈ cl(X ′) ∩ cl(Y ′).

Proof. Let S = P0 ∪ ... ∪ Pi−1 and T = Pi+1 ∪ ... ∪ Pr.

5.2.1. There exists a path of 3-separations (X0, {e}, Y0) of M such that
S ⊆ X0, Pr ⊆ Y0, and e ∈ cl(X0) ∩ cl(Y0).

Proof. We have λ(Y ∪ {e}) = λ(Pi ∪ T ) = 2. Note that P0 ⊆ X ∩ S,
and P0 contains at least two elements. Now

|E(M)− ((Y ∪ {e}) ∪ (Pi ∪ T ))| = |X ∩ S| ≥ |P0| ≥ 2

and it follows by uncrossing that λ((Y ∪ {e}) ∩ (Pi ∪ T )) ≤ 2. So
(X ∪S, (Y ∪{e})∩ (Pi∪T )) is a 3-separating partition of M . We know
that |P0| ≥ 2 and |Pr| ≥ 2. Also, P0 ⊆ X ∪ S and Pr ⊆ (Y ∪ {e}) ∩
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(Pi ∪ T ). Therefore (X ∪ S, (Y ∪ {e}) ∩ (Pi ∪ T )) is a 3-separation of
M . But e ∈ cl(X) ⊆ cl(X ∪ S), and it follows from Lemma 2.5 that
e ∈ cl(((Y ∪{e})∩ (Pi ∪ T ))−{e}) and that (X ∪S, {e}, Y ∩ (Pi ∪ T ))
is a path of 3-separations. Letting X0 = X ∪ S and Y0 = Y ∩ (Pi ∪ T ),
the result follows. �

Now λ(X0 ∪ {e}) = λ(Pi ∪ S) = 2, and |E(M) − ((X0 ∪ {e}) ∪
(Pi ∪ S))| = |Y0 ∩ T | ≥ |Pr| ≥ 2, so that, by uncrossing, λ((X0 ∪
{e}) ∩ (Pi ∪ S)) ≤ 2. As P0 ⊆ (X0 ∪ {e}) ∩ (Pi ∪ S), it must be that
λ((X0 ∪ {e})∩ (Pi ∪ S)) = 2. Therefore ((X0 ∪ {e})∩ (Pi ∪ S), Y0 ∪ T )
is an exact 3-separation of M . As e ∈ cl(Y0 ∪ T ), it then follows
from Lemma 2.5 that e ∈ cl(((X0 ∪ {e}) ∩ (Pi ∪ S)) − {e}) and that
(X0 ∩ (Pi ∪ S), {e}, Y0 ∪ T ) is a path of 3-separations. Observing that
S ⊆ X0 ∩ (Pi ∪ S) and T ⊆ Y0 ∪ T , we conclude that the lemma
holds. �

The next result is an immediate consequence of Lemmas 5.1 and 5.2.

Corollary 5.3. Let P = (P0, ..., Pr) be a path of 3-separations in a
matroid M . Suppose i ∈ {1, ..., r − 1}, e ∈ Pi, and that there exists a
path of 3-separations (X, {e}, Y ) of M with P0 ⊆ X and Pr ⊆ Y . Then
P refines to a path (P0, ..., Pi−1, P

′
i , {e}, P ′′i , Pi+1, ..., Pr) of 3-separations

where P ′i ∪ {e} ∪ P ′′i = Pi.

Lemma 5.4. Let M be a 3-connected matroid with disjoint sets
{a1, a2} ⊂ E(M) and {z1, z2} ⊂ E(M). Suppose that for every e ∈
E(M)−{a1, a2, z1, z2}, there exists a path of 3-separations (X, {e}, Y )
in M such that {a1, a2} ⊆ X and {z1, z2} ⊆ Y . Then M has path-width
3.

Proof. As M is 3-connected, ({a1, a2}, E(M)−{a1, a2, z1, z2}, {z1, z2})
is a path of 3-separations. If E(M) = {a1, a2, z1, z2}, the result is im-
mediate. So suppose that e ∈ E(M)−{a1, a2, z1, z2}. Applying Corol-
lary 5.3, we obtain a refinement of our original path of 3-separations.
Now successively applying Corollary 5.3 to each of the other elements
of E(M) − {a1, a2, z1, z2}; each time with respect to our new refined
path of 3-separations, we eventually obtain a path of 3-separations
P = ({a1, a2}, P1, ..., Pq, {z1, z2}) where, for all i ∈ {1, ..., q}, the step
Pi is either a singleton or empty. Removing all empty steps from P, we
then obtain a path of 3-separations P′ = ({a1, a2}, P ′1, ..., P ′n, {z1, z2})
in which Pi is a singleton for all i ∈ {1, ..., n}. By Lemma 2.3, M has
path-width 3. �

Now we are ready to prove our main result.
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Proof of Theorem 1.1. Let K denote the set of elements which are re-
movable with respect to B. By Theorem 3.5, |K| ≥ 4. Suppose now
that |K| = 4. By Proposition 4.2, there exists k1, k2 ∈ K such that for
each ei ∈ E(M)−K, there exists a path of 3-separations (Xi, {ei}, Yi)
of M with {k1, k2} ⊂ Xi and K − {k1, k2} ⊂ Yi. By Lemma 5.4, M
has path-width 3. �

6. Future Directions for Research

Let M be a 3-connected matroid with no 4-element fans. For the
sake of this discussion, we shall say that M has minimal removability
if there exists a basis B of M such that there exists exactly four ele-
ments of E(M) which are removable with respect to B. In the present
paper, we have shown that if M has minimal removability, then M
necessarily has path-width 3. However, the class of matroids with min-
imal removability is certainly a proper subclass of the class of matroids
with path-width 3. This knowledge, together with the fact that the
class of matroids with path-width 3 is very well understood (see [1]
and [2]), implies that one should be able to give a stronger and more
explicit description of the class of matroids with minimal removability.
For now, we leave this as an open problem.

An intriguing aspect of Theorem 1.1 is the fact that while the notion
of being removable with respect to a basis is one which is relative to the
choice of basis one makes, we are still able to deduce global structural
information about the matroid itself. It is certainly possible that if M
is a matroid and B is a basis of M which reveals that M has minimal
removability, then upon switching to a different basis B′ of M , we
obtain more than four elements which are removable with respect to
B′. We pose the following question. Does there exist a 3-connected
matroid M with no 4-element fans such that for every basis B of M ,
there exists exactly four elements of E(M) which are removable with
respect to B? If so, what additional structure much such an M have?

Finally, while we have provided a new analogue of the Wheels and
Whirls Theorem, we would very much like to see it extended to an
analogue of the Splitter Theorem. We make the following conjecture:

Conjecture 6.1. Let M be a 3-connected matroid with no 4-element
fans, and let B be a basis of M . Let N be a 3-connected minor of M .
If there exists some b ∈ B such that M/b has an N-minor, or there
exists some c ∈ E(M)−B such that M\c has an N-minor, then there
exists distinct k1, k2 ∈ E(M) such that for i ∈ {1, 2}, either

(i) ki ∈ B and si(M/ki) is 3-connected with an N-minor, or
(ii) ki ∈ E(M)−B and co(M\ki) is 3-connected with an N-minor.
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