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Is the missing axiom of matroid theory lost forever?

Dillon Mayhew, Mike Newman, and Geo↵ Whittle

Abstract

We conjecture that it is not possible to finitely axiomatize matroid representability in monadic

second-order logic for matroids, and we describe some partial progress towards this conjecture.

We present a collection of sentences in monadic second-order logic and show that it is possible

to finitely axiomatize matroids using only sentences in this collection. Moreover, we can also

axiomatize representability over any fixed finite field (assuming Rota’s conjecture holds). We

prove that it is not possible to finitely axiomatize representability, or representability over any

fixed infinite field, using sentences from the collection.

1. Introduction

The problem of characterizing representable matroids is an old one. (When we say that
a matroid is representable, we mean that it is representable over at least one field.) Whitney
discusses the task of ‘characterizing systems which represent matrices’ in his foundational paper
[17]. From the context, it seems likely that he means characterizing via a list of axioms. We
believe that this task will never be completed. In other words, we conjecture that ‘the missing
axiom of matroid theory is lost forever’.

Conjecture 1.1. It is not possible to finitely axiomatize representability for (finite)
matroids, using the same logical language as the matroid axioms.

Of course, this conjecture is not well-posed, unless we specify exactly what the language of
matroid axioms is. Certainly, a logic powerful enough to express the existence of a matrix over
a field whose columns have the required pattern of independence would su�ce to axiomatize
representability, but this logic would need to be much more powerful than the language typically
used to axiomatize matroids. Conjecture 1.2 is an attempt to make Conjecture 1.1 more precise.
In our main result (Theorem 1.3), we demonstrate that a weakened version of Conjecture 1.2
is true.
In Section 2 we develop monadic second-order logic for matroids (MSOL). Hliněný [4]

introduced a logical language with the same name. It is easy to see that any sentence in
Hliněný’s language can be translated into a sentence in our language. In MSOL we are allowed
to quantify over variables that are intended to represent elements or subsets of a ground set.
We admit the function that takes a subset to its cardinality. We allow ourselves the relations
of equality, element containment, set inclusion, and the ‘less than or equal’ order on integers.
In addition, we also include a function, r, that takes subsets of the ground set to non-negative
integers. This is intended to be interpreted as a rank function. As an example of the expressive
capabilities of MSOL, a matroid is paving if and only if its rank function obeys the following
sentence.
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| < r(E) ! r(X
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) = |X
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|
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The matroid rank axioms can be stated as sentences in MSOL. (Throughout the article
we consider a matroid to be a finite set equipped with a rank function.) Moreover, for any
matroid N , we can construct a sentence in MSOL that will be true for a matroid M if and
only if M has an N -minor (Proposition 3.2). This means that if Rota’s conjecture is true,
then GF(q)-representability can be finitely axiomatized in MSOL, for any prime power q
(Lemma 3.1). We conjecture that it is impossible to finitely axiomatize representability in
MSOL.

Conjecture 1.2. There is no finite set of sentences, K, in MSOL with the following prop-
erty: a finite set, EM, equipped with a function rM : P(EM) ! Z+ [ {0}, is a representable
matroid if and only if (EM, rM) satisfies the rank axioms and every sentence in K.

Our main result (Theorem 1.3) shows that Conjecture 1.2 is true if we insist that the
sentences in K must come from a restricted subset of MSOL. We use the terminology M -logic
to describe a set of formulas in MSOL with constrained quantification. A formula in M -logic
must have the following property: all variables representing subsets receive the same type of
quantifier (universal or existential), and the same constraint applies to variables representing
elements. M -logic is defined formally in Section 2.3.
If F is a collection of fields, let M(F) be the set of matroids that are representable over at

least one field in F . Note that if F is the set of all fields, then M(F) is the set of representable
matroids.

Theorem 1.3. Let F be a set of fields that contains at least one infinite field. There
does not exist a finite set, K, of sentences in M -logic with the following property: a finite set,
EM, equipped with a function rM : P(EM) ! Z+ [ {0}, is a matroid in M(F) if and only if
(EM, rM) satisfies the rank axioms and every sentence in K.

We are interested in M -logic because it provides a separation between representability over
finite fields and infinite fields. The axioms for matroid rank functions, independent sets, bases,
and spanning sets can all be expressed using sentences in M -logic (Section 3.1). Moreover,
if Rota’s conjecture holds, then representability over a finite field can be finitely axiomatized
using sentences in M -logic (Corollary 3.3). Theorem 1.3 shows this is not the case for any
infinite field.
The reader may be puzzled by our titular question, since it is seemingly answered by a well-

known article due to Vámos’s [14]. His article has the dramatic title ‘The missing axiom of
matroid theory is lost forever’. When we examined the article, we were surprised to discover
that the words ‘matroid’ and ‘axiom’ in his title were not used in the way we expected. Vamos’s
result has been interpreted as making a statement about finite matroids [2]; this is certainly
what we anticipated. But in the title of his paper, ‘matroid’ refers to a potentially infinite
object. Furthermore, it seems natural to use ‘axiom’ to mean a sentence constructed in the
same language as the other matroid axioms, but Vámos uses it to mean a sentence in a language
which we call V -logic. This logic is not capable of expressing the matroid axioms (as they are
presented in [10, 16, 17]).
A V -matroid is a (possibly infinite) set E, along with a family, I, of finite subsets such

that: (I1) ; 2 I, (I2) if I 2 I and I 0 ✓ I, then I 0 2 I, and (I3) if I, I 0 2 I and |I| = |I 0|+ 1,
then there is an element x 2 I � I 0 such that I 0 [ x 2 I. Note that every finite V -matroid is a
matroid.
The first-order language that we call V -logic features, for every positive integer n, an

n-ary predicate, I
n

. The statement I
n

(x
1

, . . . , x
n

) is designed to be interpreted as saying that
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{x
1

, . . . , x
n

} is in I. Then V -matroids can be axiomatized in V -logic. Let A be a set of sentences
in V -logic that has the set of V -matroids as its models. For example, A might contain, for every
n, the sentence
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· · · 8x
n
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n
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n

) !
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I
n
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�(n)

)

to ensure that I consists of unordered sets. It could also contain, for every n, the sentence
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)

to ensure that (I3) holds.
Vámos declares a V -matroid, (E, I), to be representable if there is a function from E to a

vector space that preserves the rank of finite subsets. His theorem is as follows.

Theorem 1.4 [14]. There is no sentence, S, in V -logic, such that a V -matroid is
representable if and only if it satisfies S.

In our opinion, the most interesting questions about axiomatizing representability (including
the question posed by our title) are left unanswered by Theorem 1.4. Here are three reasons
why we hold this opinion.

V -matroids cannot be finitely axiomatized. We are accustomed to matroids being
axiomatized with two, or three, or four sentences. A language that requires an infinite number of
sentences to axiomatize matroids (or matroid-like objects) seems unnatural. Clearly A contains
an infinite number of sentences. It is an easy exercise to show that no finite set of sentences
in V -logic has the class of V -matroids as its set of models. Therefore V -matroids cannot be
finitely axiomatized in V -logic.
Given that characterizing V -matroids requires infinitely many axioms in V -logic, we are not

surprised to learn from Theorem 1.4 that representable V -matroids cannot be characterized
with a single additional sentence. In fact, we would go further, and conjecture that no ‘natural’
class of V -matroids can be characterized by adding a single sentence to the list of V -matroid
axioms. (We are being deliberately vague about the meaning of the word ‘natural’.)

V -matroids are not matroids. V -matroids have not been studied nearly as much as
(finite) matroids or independence spaces. An independence space is a possibly infinite set E,
along with a family, I, of possibly infinite subsets such that (I1) and (I2) hold, and (I3) holds
when I and I 0 are finite sets. In addition, for every X ✓ E, if all finite subsets of X ✓ E are
in I, then X is in I [9].
The fact that representability for V -matroids cannot be finitely axiomatized in V -logic does

not tell us if the same statement applies for matroids or independence spaces. In fact, Vámos’s
proof strategy is intrinsically unable to prove that Theorem 1.4 holds for either of these two
classes. The strategy relies upon the Compactness Theorem of first-order logic, so it can only be
used to prove statements about classes that contain infinite objects. Furthermore, independence
spaces cannot be axiomatized in V -logic, since first-order languages cannot distinguish between
finite and infinite sets.
For a peculiar example of a V -matroid, consider an infinite set E, and let I be the collection

of all finite subsets of E (c.f. [9, Example 3.1.1]). This is a V -matroid that has no maximal
independent sets, and no minimal dependent sets. Perhaps examples such as this explain why
V -matroids have not attracted much attention. In fact, so far as we are aware, Theorem 1.4 is
the only result specifically about V -matroids that appears in the mathematical literature.
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The proof is incomplete. Vámos’s proof of Theorem 1.4 contains a gap. The proof
depends on the statement that every non-representable V -matroid contains a finite restriction
that is non-representable ([14, Lemma 0]). To support this claim, Vámos relies on [12], [13],
and [15]. However these sources contain no results about V -matroids. All the statements they
make are about independence spaces. As we have seen, not every V -matroid is an independence
space.
We conclude this introduction by briefly describing the strategy for proving Theorem 1.3. The

first step involves developing an infinite family of matroids, each of which is representable over
all infinite fields (Section 4). Each matroid in the family has a number of circuit-hyperplanes,
and relaxing any one produces a non-representable matroid, while relaxing two produces
another matroid representable over all infinite fields. If there is a finite axiomatization of
representability, then that set of axioms must be able to distinguish between these matroids.
Roughly speaking, we obtain a contradiction by showing that, for large enough matroids in the
family, the number of circuit-hyperplanes is so great that an axiom with a bounded number of
variables cannot detect all the potential relaxations.

2. A language for matroids

In this section we develop monadic second-order logic for matroids, and we describe M -logic
as a set of formulas in MSOL.

2.1. Monadic second-order logic

Monadic second-order logic for matroids is a formal language constructed from the following
symbols: the variables {x

1

, x
2

, x
3

, . . .} and {X
1

, X
2

, X
3

, . . .}; the constants {0, 1, 2, . . .}, ;, and
E; the function symbols | · |, {·}, ·, r(·), +, [, and \; the relation symbols =, 2, ✓, and ; and
the logical symbols ¬, _, ^, 9, and 8.

Terms. We divide the terms in MSOL into three classes, E , S, and N . Let E be the infinite
set of variables {x

1

, x
2

, x
3

, . . .}. The terms in E are intended to represent elements of a ground
set.
The set of terms in S is the smallest collection of expressions satisfying:
(1) the constants E and ; are terms in S,
(2) every variable X

i

is a term in S,
(3) if x

i

is a variable in E , then {x
i

} is a term in S,
(4) if X and Y are terms in S, then so are X, X [ Y , and X \ Y .

The terms in S are intended to represent subsets of a ground set.
Finally, we define the terms in N . These are intended to represent non-negative integers.

The set of terms in N is the smallest set of expressions satisfying:
(1) every constant in {0, 1, 2, . . .} is a term in N ,
(2) if X is a term in S, then |X| and r(X) are terms in N ,
(3) if p and q are terms in N , then p+ q is a term in N .
If T is a term, then we recursively define Var(T ) to be the set of variables in T :
(1) Var(E) and Var(;) are empty, and so is Var(p), for any constant p 2 {0, 1, 2, . . .},
(2) Var(X

i

) = {X
i

},
(3) Var(x

i

) = Var({x
i

}) = {x
i

},
(4) Var(X) = Var(|X|) = Var(r(X)) = Var(X), for any term X 2 S,
(5) Var(X [ Y ) = Var(X \ Y ) = Var(X) [Var(Y ), for any terms X,Y 2 S,
(6) Var(p+ q) = Var(p) [Var(q), for any terms p, q 2 N .
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Formulas. Now we recursively define formulas in MSOL, and simultaneously define their
sets of variables. An atomic formula is one of the following expressions:
(1) if x, y 2 E , then x = y is an atomic formula, and Var(x = y) = {x, y}.
(2) if X,Y 2 S, then X = Y and X ✓ Y are atomic formulas, and Var(X = Y ) = Var(X ✓

Y ) = Var(X) [Var(Y ),
(3) if p, q 2 N , then p = q and p  q are atomic formulas, and Var(p = q) = Var(p  q) =

Var(p) [Var(q),
(4) if x 2 E and X 2 S, then x 2 X is an atomic formula, and Var(x 2 X) = Var(X) [ {x},
A formula is an expression generated by a finite application of the following rules. Every

formula has an associated set of variables and free variables:
(1) every atomic formula P is a formula, and Fr(P ) = Var(P ),
(2) if P is a formula and X

i

2 Fr(P ), then 9X
i

P and 8X
i

P are formulas, and Var(9X
i

P ) =
Var(8X

i

P ) = Var(P ), while Fr(9X
i

P ) = Fr(8X
i

P ) = Fr(P )� {X
i

},
(3) if P is a formula and x

i

2 Fr(P ), then 9x
i

P and 8x
i

P are formulas, and Var(9x
i

P ) =
Var(8x

i

P ) = Var(P ), while Fr(9x
i

P ) = Fr(8x
i

P ) = Fr(P )� {x
i

},
(4) if P is a formula, then ¬P is a formula, and Var(¬P ) = Var(P ) while Fr(¬P ) = Fr(P ),
(5) if P and Q are formulas, and Fr(P ) \ (Var(Q)� Fr(Q)) = ; = (Var(P )� Fr(P )) \

Fr(Q), then P _Q and P ^Q are formulas, and Var(P _Q) = Var(P ^Q) = Var(P ) [
Var(Q), while Fr(P _Q) = Fr(P ^Q) = Fr(P ) [ Fr(Q).

A sentence in MSOL is a formula P satisfying Fr(P ) = ;.

Remark 1. In (5) we insist that no variable is free in exactly one of P and Q when we
construct the formulas P _Q and P ^Q. This is standard (see, for example, [7, p. 10]) and
imposes no real di�culties, since a variable that is not free can always be relabeled. For example,
(X

1

= X
2

) ^ (9X
1

|X
1

| = 1) is not a formula, but we can rewrite it as (X
1

= X
2

) ^ (9X
3

|X
3

| =
1).

Abbreviations. We allow several standard shorthands. If P and Q are formulas then
P ! Q is a shorthand for ¬P _Q. If x 2 E and X 2 S, then x /2 X is shorthand for ¬(x 2 X).
If p, q 2 N , then p < q is shorthand for p  q ^ ¬(p = q). If X,Y 2 S, then X � Y is shorthand
for the term X \ Y , and X * Y is shorthand for the formula ¬(X ✓ Y ). In addition, we are
casual with the use of parentheses, inserting them freely to reduce ambiguity, and omitting
them when this will cause no confusion.

2.2. Structures and satisfiability

We have constructed MSOL as a collection of formally defined strings. In this section we are
going to consider how to interpret these strings as statements about a set system. A structure,
M, consists of a pair (EM, rM), where EM is a finite set and rM is a function from P(EM),
the power set of EM, to the non-negative integers.
Let M = (EM, rM) be a structure, and let P be a formula in MSOL. Let �S be a function

from Fr(P ) \ S to P(EM) and let �E be a function from Fr(P ) \ E to EM. We call the pair
(�S ,�E) an interpretation of P . Note that an interpretation of a sentence necessarily consists
of two empty functions. We are going to recursively define what it means for the structure M
to satisfy P (�S ,�E).

First, we create a correspondence between terms in E , S, and N , and elements of EM,
subsets of EM, and non-negative integers. If x

i

is a term in E , and x
i

is in the domain of
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�E , then the notation† xM
i

stands for �E(xi

). Similarly, if X is a term in S, and Var(X) ✓
Dom(�S) [Dom(�E), then XM is the corresponding subset of EM, recursively defined as
follows:
(1) if X = E, then XM = EM, and if X = ;, then XM is the empty subset,
(2) if X is the variable X

i

, then XM
i

= �S(Xi

),
(3) if X = {x

i

} for some variable x
i

, then XM = {�E(xi

)},
(4) if X = Y , for some Y 2 S, then XM = EM � Y M, and if X is equal, respectively, to

Y [ Z or Y \ Z, where Y, Z 2 S, then XM is, respectively, Y M [ ZM or Y M \ ZM.
Now let p be a term in N such that Var(p) ✓ Dom(�S) [Dom(�E). Then pM is the
corresponding non-negative integer, defined as follows:
(1) if p is a constant in N , then pM is the corresponding non-negative integer,
(2) if p is |X| or r(X), where X is a term in S, then pM is, respectively, |XM|, or rM(XM),
(3) if p is q + r, for some terms q, r 2 N , then pM is qM + rM.
Now we are able to recursively define when M satisfies P (�S ,�E). First we consider the case

that P is an atomic formula:
(1) if P is x = y, then P (�S ,�E) is satisfied if xM = yM,
(2) if P is, respectively, X = Y or X ✓ Y , then P (�S ,�E) is satisfied if, respectively, XM =

Y M or XM ✓ Y M,
(3) if P is, respectively, p = q or p  q, then P (�S ,�E) is satisfied if, respectively, pM = qM

or pM  qM,
(4) if P is x 2 X, then P (�S ,�E) is satisfied if xM 2 XM.
Next we consider the case that P is not atomic:
(1) if P = 9X

i

Q, then P (�S ,�E) is satisfied if there is some subset X 0
i

✓ EM such that
Q(�S [ (X

i

, X 0
i

),�E) is satisfied; and if P = 8X
i

Q, then P (�S ,�E) is satisfied if Q(�S [
(X

i

, X 0
i

),�E) is satisfied for every subset X 0
i

✓ EM,
(2) if P = 9x

i

Q, then P (�S ,�E) is satisfied if there is some element x0
i

2 EM such that
Q(�S ,�E [ (x

i

, x0
i

)) is satisfied; and if P = 8x
i

Q, then P (�S ,�E) is satisfied ifQ(�S ,�E [
(x

i

, x0
i

)) is satisfied for every element x0
i

2 EM,
(3) if P = ¬Q is a formula, then P (�S ,�E) is satisfied if Q(�S ,�E) is not satisfied,
(4) if P = Q _R, then P (�S ,�E) is satisfied if either Q(�S |

Fr(Q)\S ,�E |
Fr(Q)\E) or

R(�S |
Fr(R)\S ,�E |

Fr(R)\E) is satisfied; and if P = Q ^R, then P (�S ,�E) is satisfied if
both Q(�S |

Fr(Q)\S ,�E |
Fr(Q)\E) and R(�S |

Fr(R)\S ,�E |
Fr(R)\E) are satisfied.

Let M be a structure, and let P be a sentence in MSOL. We say that M satisfies P if
it satisfies P (;, ;); that is, if it satisfies P under the empty interpretation. If T is a set of
sentences, then M satisfies T if it satisfies every sentence in T .

2.3. M -logic

Now we describe M -logic as a set of formulas from MSOL. Let a be a variable. Note that
¬9aP is equivalent to 8a¬P , in the sense that a structure satisfies one of these formulas if and
only if it satisfies both. Similarly, ¬8aP is equivalent to 9a¬P . Now suppose that P _ (9aQ)
is a formula. Then a is not free in P , and P _ (9aQ) is equivalent to 9a(P _Q). Similarly,
P ^ (8aQ) is equivalent to 8a(P ^Q). This discussion means that every formula in MSOL is
equivalent to a formula of the form Q

1

a
1

· · ·Q
t

a
t

P , where each Q
i

is in {9, 8}, each a
i

is a
variable, and P is a formula that contains no quantifiers.
A formula of the form 9xQ

1

a
1

· · ·Q
t

a
t

P , where x is a variable in E , is equivalent to
9XQ

1

a
1

· · ·Q
t

a
t

8x(X = {x}) ! P

†Technically, we should write x

(M,�E )
i , since the element corresponding to xi depends on the interpretation

as well as the structure.
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where X is a new variable in S. Similarly, 8xQ
1

a
1

· · ·Q
t

a
t

P is equivalent to
8XQ

1

a
1

· · ·Q
t

a
t

8x(X = {x}) ! P . From this discussion we see that every formula in MSOL
is equivalent to a formula of the form

Q
i1Xi1 · · ·QimX

imQ
j1xj1 · · ·QjnxjnP

where X
i1 , . . . , Xim and x

j1 , . . . , xjn are variables in S and E respectively, where each Q
k

is in {9, 8}, and Var(P ) = Fr(P ) (c.f. [1, p. 39]). We say that this formula is in M -logic if
{Q

i1 , . . . , Qim} is either {9} or {8}, and similarly {Q
j1 , . . . , Qjn} is either {9} or {8}. That

is, M -logic is the collection of formulas in MSOL that are equivalent to a formula of the
form Q

i1Xi1 · · ·QimX
imQ

j1xj1 · · ·QjnxjnP , where P is quantifier-free, and Q
k

= Q
l

for all
k, l 2 {i

1

, . . . , i
m

} and all k, l 2 {j
1

, . . . , j
n

}.

3. Matroid axioms

In this section we show that M -logic is expressive enough to make natural statements
about matroids. Some common axiom schemes for matroids can be expressed using sentences
in M -logic. Furthermore, if N is a fixed matroid, then there is a sentence in M -logic
that characterizes having a minor isomorphic to N . Throughout the section, we will let
M = (EM, rM) be a structure (recall this implies EM is finite).

3.1. Axioms

We consider a matroid to be a finite set equipped with a function obeying the rank axioms.
Thus (EM, rM) is a matroid if and only if M satisfies the following sentences in M -logic.
R1 8X

1

r(X
1

)  |X
1

|
R2 8X

1

8X
2

X
1

✓ X
2

! r(X
1

)  r(X
2

)
R3 8X

1

8X
2

r(X
1

[X
2

) + r(X
1

\X
2

)  r(X
1

) + r(X
2

)
Let I(X) be shorthand for r(X) = |X|, where X 2 S. Then (EM, rM) is a matroid with

{X ✓ EM | rM(X) = |X|} as its family of independent sets if and only if M satisfies the
following sentences.

I1 I(;)
I2 8X

1

8X
2

I(X
2

) ^X
1

✓ X
2

! I(X
1

)
I3 8X

1

8X
2

9x
1

I(X
1

) ^ I(X
2

) ^ |X
1

| < |X
2

| ! x
1

/2 X
1

^ x
1

2 X
2

^ I(X
1

[ {x
1

})
Let B(X) be shorthand for r(X) = |X| ^ r(X) = r(E), where X 2 S. Then (EM, rM) is a

matroid with {X ✓ EM | rM(X) = |X| = rM(EM)} as its family of bases if and only if M
satisfies the following sentences.
B1 9X

1

B(X
1

)
B2 8X

1

8X
2

8X
3

9x
1

B(X
1

) ^B(X
2

) ^ |X
3

| = 1 ^X
3

✓ X
1

^X
3

* X
2

!
x
1

/2 X
1

^ x
1

2 X
2

^B((X
1

�X
3

) [ {x
1

})
Note that the natural form of the basis-exchange axiom is

‘for every basis B, and for every basis B

0
, and for every element x 2 B �B

0
, there exists

an element y 2 B

0 �B such that . . .’

This statement cannot be expressed directly in M -logic. We sidestep this problem by using the
set variable, X

3

, to represent the single element x.
Let S(X) be shorthand for r(X) = r(E). Then (EM, rM) is a matroid with {X ✓ EM |

rM(X) = rM(EM)} as its set of spanning sets if and only ifM satisfies the following sentences.
S1 9X

1

S(X
1

)
S2 8X

1

8X
2

S(X
1

) ^X
1

✓ X
2

! S(X
2

)
S3 8X

1

8X
2

9x
1

S(X
1

) ^ S(X
2

) ^ |X
1

| < |X
2

| ! x
1

/2 X
1

^ x
1

2 X
2

^ S(X
2

� {x
1

})
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3.2. Axiomatising GF(q)-representability

M -logic is strong enough so that representability over any finite field can be axiomatized
with a finite number of sentences, assuming that Rota’s conjecture is true. This assumption
implies that there is a finite number of excluded minors for GF(q)-representability, for any
prime power q. In this section we prove the following result.

Lemma 3.1. Assume that Rota’s conjecture is true. For every finite field GF(q), there is a
finite set of sentences, Q, inM -logic, with the following property: the structureM = (EM, rM)
is a GF(q)-representable matroid if and only if M satisfies {R1,R2,R3} [Q.

Indeed, any minor-closed class with finitely many excluded minors can be finitely axiomatized
in M -logic (Corollary 3.3). However, the converse is not obviously true. There may be a minor-
closed class with infinitely many excluded minors that can be finitely axiomatized in M -logic.
Theorem 1.3 shows that this is not the case with the class of matroids representable over an
infinite field. Any such class has an infinite number of excluded minors [10, Theorem 6.5.17],
and by Theorem 1.3, any such class is impossible to finitely axiomatize using M -logic.
Lemma 3.1 follows immediately from the next two results.

Proposition 3.2. Let N be a matroid. There is a sentence, S
N

, in M -logic, such that
the structure M = (EM, rM) is a matroid with an N -minor if and only if M satisfies
{R1,R2,R3,S

N

}.

Proof. Let the ground set of N be T = {1, . . . ,m}. For every subset S ✓ T , let r
N

(S)
denote the rank of S in N . Let P

N

be the formula

(r(X
1

) = |X
1

|) ^
 
X

1

\
m[

i=1

{x
i

} = ;
!

^
 �����

m[

i=1

{x
i

}
����� = m

!
^

^

S✓T

r

 
X

1

[
[

i2S

{x
i

}
!

= r(X
1

) + r
N

(S).

Assume that M satisfies {R1,R2,R3}, so that (EM, rM) is a matroid. Then M satisfies
P
N

(�S ,�E) if and only if �S(X1

) is independent, the set {�E(x1

), . . . ,�E(xm

)} contains m
distinct elements and is disjoint from �S(X1

), and the matroid produced by contracting
�S(X1

) and restricting to {�E(x1

), . . . ,�E(xm

)} has the same rank function as N . Thus
S

N

= 9X
1

9x
1

· · · 9x
m

P
N

is the desired sentence.

Corollary 3.3. If N is a minor-closed class of matroids with a finite number of excluded
minors, then there is a finite set of sentences, S(N ), in M -logic, with the following property: the
structure M = (EM, rM) is a matroid in N if and only if M satisfies {R1,R2,R3} [ S(N ).

Proof. Let N
1

, . . . , N
t

be the list of excluded minors for M. Notice that the negation
of a sentence in M -logic is equivalent to another sentence in M -logic. We let S(N ) =
{¬S

N1 , . . . ,¬SNt}.
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4. Kinser matroids

In this section we construct an infinite family of matroids, which we call Kinser matroids.
Let r � 4 be an integer. Then Kin(r) is a rank-r matroid with r2 � 3r + 4 elements. For our
purposes, the most important property of Kinser matroids is that they are representable over
any infinite field, but can be made non-representable by relaxing a single circuit-hyperplane.
To prove this fact, we are going to use the family of inequalities discovered by Kinser [6].

Lemma 4.1. Let M be a matroid that is representable over a field. If X
1

, . . . , X
n

is any
collection of subsets of E(M), where n � 4, then

r(X
1

[X
2

) + r(X
1

[X
3

[X
n

) + r(X
3

) +
nX

i=4

(r(X
i

) + r(X
2

[X
i�1

[X
i

)) 

r(X
1

[X
3

) + r(X
1

[X
n

) + r(X
2

[X
3

) +
nX

i=4

(r(X
2

[X
i

) + r(X
i�1

[X
i

)).

Proof. Since M is representable, there is a function, �, from E(M) to some vector
space, such that r

M

(S) = dimh{�(s) | x 2 S}i for all subsets S ✓ E(M). If S
1

, . . . , S
t

is some
collection of subsets of E(M), then

r
M

(S
1

[ · · · [ S
t

) = dimh{�(s) | s 2 S
1

[ · · · [ S
t

}i = dim
tX

i=1

h{�(s) | s 2 S
i

}i

where the sum in the last expression is the direct sum of vector subspaces. Now the result
follows immediately from [6, Theorem 1].

We note here that if n = 4, then the inequality in Lemma 4.1 is identical to Ingleton’s
inequality for representable matroids [5].
As an intermediate step for constructing Kin(r), we define a rank-(r + 1) transversal matroid,

M
r+1

. The transversal system that describes M
r+1

contains r + 1 sets: A
1

, . . . ,A
r�1

,A,A0.
Let H

1

, . . . , H
r

be pairwise disjoint sets such that

|H
1

| = · · · = |H
r�1

| = r � 2

and H
r

= {e, f}. The ground set of M
r+1

is H
1

[ · · · [H
r

. Let A = E(M
r+1

), and let A0 = H
r

.
For i 2 {1, . . . , r � 1}, let

A
i

= (H
1

[ · · · [H
r�1

)� (H
i�1

[H
i

)

(when appropriate we interpret subscripts modulo r � 1). ThenM
r+1

is the transversal matroid
M [A

1

, . . . ,A
r�1

,A,A0]. We define Kin(r) to be the truncation, T (M
r+1

), of M
r+1

.
Thus, for example, Kin(4) is a rank-4 matroid with 8 elements, and its non-spanning circuits

are all the 4-element subsets of the form H
i

[H
j

, where i 6= j. In fact, Kin(4) is also known
as the rank-4 tipless free spike (see [3, page 136]).

We will use the next result in our proof that Kinser matroids are representable over infinite
fields.

Proposition 4.2. Let r � 3 be an integer. Let P be the projective geometry PG(r � 1,K),
where K is an infinite field, and let S

1

, . . . , S
t

be a finite collection of proper subspaces of P .
If S is a subspace of P that is not contained in any of S

1

, . . . , S
t

, then S is not contained in
S
1

[ · · · [ S
t

.
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Proof. Assume that the result is false, and that S
1

, . . . , S
t

have been chosen so that none
of these subsets contains S, and yet S

1

[ · · · [ S
t

does. Assume also that S
1

, . . . , S
t

has been
chosen so that t is as small as possible. The hypotheses imply that t > 1. The minimality of t
means that there is a point, p, in S � (S

2

[ · · · [ S
t

) and another point, p0, in S � (S
1

[ · · · [
S
t�1

). Let l be the line spanned by p and p0. Then l is contained in S, but every subspace
S
i

contains at most one point of l, for otherwise S
i

contains l, and hence contains p and p0.
Therefore l contains at most t points, contradicting the fact that K is infinite.

Proposition 4.3. Let K be an infinite field. Then Kin(r) is K-representable for any r � 4.

Proof. Certainly M
r+1

is K-representable, as it is transversal (see [10, Corollary 11.2.17]).
Consider a K-representation of M

r+1

as an embedding of E(M
r+1

) in the projective space
PG(r,K).
The non-spanning subsets of M

r+1

span a finite number of proper subspaces of PG(r,K).
We let S = PG(r,K), and apply Proposition 4.2. Thus there is a point p 2 PG(r,K) that is
not spanned by any non-spanning subset of E(M

r+1

). Consider the K-representable matroid,
M 0

r+1

, represented by the subset E(M
r+1

) [ p of PG(r,K). Then M 0
r+1

is a free extension of
M

r+1

; that is, the only circuits that contain p are spanning circuits. Contracting p produces
the truncation T (M

r+1

) = Kin(r). Since M 0
r+1

/p = Kin(r) is K-representable, the proof is
complete.

Proposition 4.4. Let r � 4 be an integer. Then H
s

[H
r

is a circuit-hyperplane of Kin(r)
for any s 2 {1, . . . , r � 1}.

Proof. Let G be the bipartite graph that corresponds to the transversal system
(A

1

, . . . ,A
r�1

,A,A0). In G, the r � 2 vertices in H
s

are each adjacent to the r � 2 vertices

{A
1

, . . . ,A
r�1

,A}� {A
s

,A
s+1

},
while the two vertices in H

r

are adjacent only to A and A0. Thus H
s

[H
r

contains r vertices
and has a neighbourhood set of r � 1 vertices. Therefore H

s

[H
r

is dependent, and in fact it
is very easy to confirm that it is a circuit of M

r+1

. Since it has cardinality r, it is also a circuit
in T (M

r+1

) = Kin(r).
Let x be an element in E(M

r+1

)� (H
s

[H
r

). Then x is adjacent to either A
s

or A
s+1

in
G. Thus the vertices in H

s

[H
r

[ x are adjacent to r vertices, so

r
Mr+1(Hs

[H
r

[ x) > r
Mr+1(Hs

[H
r

).

This shows that H
s

[H
r

is a flat in M
r+1

. As r
Mr+1(Hs

[H
r

) = r � 1 = r(M
r+1

)� 2, it
follows that H

s

[H
r

is also a flat in T (M
r+1

) = Kin(r), and is therefore a hyperplane of
this matroid. Thus H

s

[H
r

is a circuit-hyperplane of Kin(r).

Proposition 4.5. Let r � 4 be an integer, and let s be in {1, . . . , r � 1}. The matroid
obtained from Kin(r) by relaxing the circuit-hyperplane H

s

[H
r

is not representable over any
field.

Proof. By relabeling A
i

and H
i

as A
i�s+1

and H
i�s+1

(modulo r � 1) for each i 2
{1, . . . , r � 1}, we can assume that s = 1. Let M be the matroid obtained from Kin(r) by
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relaxing H
1

[H
r

. We prove that M is non-representable by setting n = r and setting

(X
1

, X
2

, X
3

, . . . , X
n

) = (H
1

, H
r

, H
2

, . . . , H
r�1

),

and then applying Lemma 4.1 to M . Since X
1

[X
2

is a relaxed circuit-hyperplane in M ,
it follows that r(X

1

[X
2

) = r. Note that H
i

[H
r

is a circuit-hyperplane of M for any
i 2 {2, . . . , r � 1}. Thus, any set X

i

, where i 2 {3, . . . , n}, is a (r � 2)-element subset of a
circuit-hyperplane. This means that r(X

i

) = r � 2. In particular, r(X
3

) = r(H
2

) = r � 2. In the
bipartite graph G, the vertices in H

2

are adjacent to the r � 2 vertices A
1

,A
4

, . . . ,A
r�1

,A.
Each vertex in H

1

is adjacent to A
3

, while every vertex in H
r�1

is adjacent to A
2

. These
considerations imply that H

1

[H
2

[H
r�1

has rank at least r in M
r+1

, and hence in M .
Thus r(X

1

[X
3

[X
n

) = r. For i 2 {4, . . . , n}, the set X
2

[X
i�1

= H
r

[H
i�2

is a circuit-
hyperplane of M . It follows that r(X

2

[X
i�1

[X
i

) = r. Now the left-hand side of the
inequality in Lemma 4.1 evaluates to

r + r + (r � 2) + (r � 3)[(r � 2) + r] = 2r2 � 5r + 4.

On the other hand, if i 2 {1, . . . , r � 1}, then the neighbourhood in G of H
i

[H
i+1

contains
the r � 1 vertices {A

1

, . . . ,A
r�1

,A}�A
i+1

. Thus H
i

[H
i+1

has rank at most r � 1 in M
r+1

.
In fact it has rank exactly r � 1, as H

i

as rank r � 2, and any vertex in H
i+1

is adjacent to A
i

,
while no vertex in H

i

is. Thus H
i

[H
i+1

has rank r � 1 in M . This shows that r(X
1

[X
3

),
r(X

1

[X
n

), and r(X
i�1

[X
i

) for i 2 {4, . . . , n} are all equal to r � 1. Furthermore, X
2

[X
i

is
a circuit-hyperplane for all i 2 {3, . . . , n}, so has rank r � 1. Now every term in the right-hand
side of the inequality in Lemma 4.1 is equal to r � 1, so this side evaluates to (2(r � 3) + 3)(r �
1) = 2r2 � 5r + 3. Thus the inequality in Lemma 4.1 does not hold, so M is not representable
over any field.

If r � 4 is an integer, then we define Kin(r)� to be the matroid obtained from Kin(r)
by relaxing the circuit-hyperplane H

1

[H
r

. The previous result shows that Kin(r)� is non-
representable. Since Kin(4) is isomorphic to the rank-4 tipless free spike, it is easy to see that
Kin(4)� is the Vámos matroid (see [10, page 84] or [11]). In fact, we can think of Kin(n)� as
exemplifying matroids that fail the inequality in Lemma 4.1, in exactly the same way that the
Vámos matroid exemplifies matroids that fail the Ingleton inequality [5].
Relaxing a single circuit-hyperplane in Kin(r) produces a non-representable matroid. We

show in the next result that by relaxing two, we can recover representability over any infinite
field.

Lemma 4.6. Let K be an infinite field, let r � 4 be an integer, and let s and t be distinct
members of {1, . . . , r � 1}. The matroid that is obtained from Kin(r) by relaxing the circuit-
hyperplanes H

s

[H
r

and H
t

[H
r

is K-representable.

Proof. We assume that s < t. By relabeling A
i

and H
i

as A
i�t+r�1

and H
i�t+r�1

for
every i 2 {1, . . . , r � 1}, we can assume that t = r � 1. Relabel s� t+ r � 1 as s. Let M be
the matroid obtained from Kin(r) by relaxing H

s

[H
r

and H
r�1

[H
r

. We aim to show that
M is K-representable.
We start by constructing a rank-r transversal matroid, M 0, on the ground set

E(M
r+1

\{e, f}) [ {p, p0},
where p and p0 are distinct elements, neither of which is in E(M

r+1

). Let A
0

be
E(M

r+1

\{e, f}) [ {p, p0}. For i 2 {1, . . . , s}, let A0
i

be A
i

[ p. For i 2 {s+ 1, . . . , r � 1}, let
A0

i

be A
i

[ p0. Let M 0 be the transversal matroid M [A0
1

, . . . ,A0
r�1

,A
0

].
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It is clear thatM 0\{p, p0} = M
r+1

\{e, f}. Moreover, it is straightforward to verify that {e, f}
is a series pair in M

r+1

, and from this it follows easily that

M
r+1

\{e, f} = T (M
r+1

)\{e, f} = Kin(r)\{e, f}.
Thus M 0\{p, p0} = Kin(r)\{e, f}.
Since M 0 is transversal, it is K-representable. We consider it as a subset of points in the

projective space P = PG(r � 1,K). Let l be the line of P that is spanned by p and p0.

4.6.1. Let X be a subset of E(M
r+1

\{e, f}) that is non-spanning in M 0. Then X does
not span l.

Proof. Assume otherwise. Then there is a subset of E(M
r+1

\{e, f}) that spans l and is
independent and non-spanning in M 0. Let X be such a subset. Thus X spans p and p0. Let
C ✓ X [ p be a circuit that contains p. Let c be an element in C � p. Then in G0, the bipartite
graph corresponding to the system (A0

1

, . . . ,A0
r�1

,A
0

), the vertex c has r � 2 neighbours. Since
the neighbourhood set of C is one element smaller than C, this means that |C| � r � 1. Let
C 0 ✓ X [ p0 be a circuit that contains p0. The same argument shows that |C 0| � r � 1. Since

r > |X| � |(C � p) [ (C 0 � p0)| � (2r � 4)� |(C � p) \ (C 0 � p0)|
and r � 4, this means that there is an element, x, in (C � p) \ (C 0 � p0). Assume that x is in one
ofH

1

, . . . , H
s�1

. As p is adjacent to the vertices A
0

,A0
1

, . . . ,A0
s

, and x is adjacent to all vertices,
other than two in A0

1

, . . . ,A0
s

, it follows that the neighbourhood set of C contains r vertices.
This means that |C| � r + 1, which is impossible as X is non-spanning. Similarly, if x is in one
of H

s+1

, . . . , H
r�2

, then, as p0 is adjacent to A0
s+1

, . . . ,A0
r�1

, and x is adjacent to every vertex
other than two in A0

s+1

, . . . ,A0
r�1

, we deduce that |C 0| � r + 1. This contradiction means that
(C � p) \ (C 0 � p) is contained in H

s

[H
r�1

. If (C � p) \ (C 0 � p0) contains elements from
both H

s

and H
r�1

, then the neighbourhood set of either C or C 0 contains all r vertices, and
this leads to the same contradiction as before. Thus (C � p) \ (C 0 � p0) is contained in either
H

s

or H
r�1

. Thus the neighbourhood set of C includes every vertex other than either A0
s+1

or
A0

r�1

, meaning that |C| � r, and hence |C| = r. Similarly, the neighbourhood set of C 0 contains
every vertex other than either A0

1

or A0
s

, so |C 0| = r. As r > |X| and X ◆ (C � p) [ (C 0 � p0),
we deduce that C � p = C 0 � p0. Our earlier arguments show that C is contained in either
H

s

[ p or H
r�1

[ p. But this means that |C|  r � 1, and the neighbourhood set of C contains
all of the r vertices other than either A0

s+1

or A0
r�1

. This contradicts the fact that C is a
circuit, and completes the proof of the claim.

Consider all the subspaces of P that are spanned by non-spanning subsets of E(M
r+1

\{e, f}).
This is a finite collection of subspaces, and the previous claim says that none of them contains
l. By Proposition 4.2, there is a point, f , on l that is not spanned by any non-spanning subset
of E(M

r+1

\{e, f}). We can apply the same argument, augmenting the collection of subspaces
with h{f}i, and find another, distinct, point, e, on l that is not spanned by any non-spanning
subset of E(M

r+1

\{e, f}). Consider the K-representable matroid corresponding to the subset
H

1

[ · · · [H
r�1

[ {e, f} of P . Let this matroid be N . We will show that N = M , and this will
complete the proof of Lemma 4.6.
Certainly N\{e, f} = M 0\{p, p0}, and we deduced earlier that M 0\{p, p0} = Kin(r)\{e, f}.

As e and f are contained in the circuit-hyperplanes H
s

[H
r

and H
r�1

[H
r

, deleting them
from M e↵ectively undoes the relaxations that produced M (see [10, Proposition 3.3.5]); that
is, M\{e, f} = Kin(r)\{e, f}. Now we have shown that N\{e, f} = M\{e, f}. Moreover, in
N\e, the element f is freely placed by construction, so N\e is a free extension of N\{e, f}.
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On the other hand, as e is in H
s

[H
r

and H
r�1

[H
r

, it follows that

M\e = Kin(r)\e = T (M
r+1

)\e = T (M
r+1

\e).
But f is a coloop in M

r+1

\e, so it is freely placed in T (M
r+1

\e) = M\e. Therefore M\e is a
free extension of M\{e, f}. As N\{e, f} = M\{e, f}, this means that N\e = M\e.

Assume that N 6= M . Then there is a set, X, which is a non-spanning circuit in one of
{M,N}, and independent in the other. As N\e = M\e, it follows that e is in X. We will show
that f is also in X. If X is a non-spanning circuit of N , then f 2 X, for otherwise X � e is
a non-spanning subset of E(M

r+1

\{e, f}) that spans e, and N was constructed so that no
such subset exists. Therefore assume that X is a non-spanning circuit in M . Then X is also a
non-spanning circuit in Kin(r) = T (M

r+1

), and hence in M
r+1

. But {e, f} is a series pair in
M

r+1

, so any circuit that contains e also contains f . Thus X contains {e, f} in either case.
First we assume that X is a non-spanning circuit of M , and hence of Kin(r) and M

r+1

.
Since |X|  r, the neighbourhood set of X in G, the bipartite graph corresponding to
(A

1

, . . . ,A
r�1

,A,A0), has at most r � 1 vertices. If X � {e, f} contains elements from two
distinct sets in {H

1

, . . . , H
r�1

}, then the neighbourhood set of these two elements contains all
but at most one vertex from {A

1

, . . . ,A
r�1

}. As e and f are adjacent to A and A0, this means
that X has a neighbourhood set containing r vertices. It follows that X � {e, f} is contained in
one of H

1

, . . . , H
r�1

. Thus the neighbourhood set of X contains exactly r � 1 vertices. Thus X
has cardinality r, so X = H

i

[ {e, f}, for some i 2 {1, . . . , r � 1}. However, i is not s or r � 1,
as H

s

[ {e, f} and H
r�1

[ {e, f} are bases in M . If i 2 {1, . . . , s� 1}, then in the bipartite
graph G0, the r � 1 vertices in H

i

[ p0 are adjacent to the r � 2 vertices in

{A0
1

, . . . ,A0
r�1

,A
0

}� {A0
i

,A0
i+1

}.
Thus H

i

[ p0 is dependent in M 0. But {e, f, p0} is dependent in P |E(M 0) [ {e, f}. It follows
easily that H

i

[ {e, f} = X is dependent in P |E(M 0) [ {e, f}, and hence in N . Similarly, if
i 2 {s+ 1, . . . , r � 2}, then the neighbourhood set of H

i

[ p is

{A0
1

, . . . ,A0
r�1

,A
0

}� {A0
i

,A0
i+1

},
so H

i

[ p and {e, f, p} are dependent. This leads to the contradiction that X is dependent in
N . Hence we now assume that X is a non-spanning circuit of N .

Note that X and {e, p, p0} are both circuits of P |E(N) [ {p, p0}. We apply strong-circuit
elimination, and deduce that there is a circuit, C, contained in (X � e) [ {p, p0} that contains
p. If f 2 C, then we apply strong circuit-elimination to C and {f, p, p0}, and find a circuit that
contains p but not f . Thus we lose no generality in assuming that C ✓ (X � {e, f}) [ {p, p0} is
a circuit of M 0 that contains p. If p0 is in C, then the neighbourhood set of C in G0 contains all
r vertices A0

1

, . . . ,A0
r�1

,A
0

. Thus |X| � |C| � r + 1, which is impossible. Hence p0 /2 C. If C
contains an element fromH

1

[ · · · [H
s

orH
r�1

, then the neighbourhood set of C inG0 contains
all but at most one vertex from A0

1

, . . . ,A0
r�1

,A
0

. Thus |C| � r. As p0 /2 X implies |X| � |C|+
1, this leads to a contradiction. Therefore C � p is contained inH

s+1

[ · · · [H
r�2

. If C contains
elements from two of H

s+1

, . . . , H
r�2

, then its neighbourhood set again contains at least r � 1
elements, leading to a contradiction. Therefore C � p is contained in one of H

s+1

, . . . , H
r�2

, so
the neighbourhood set of C contains r � 2 elements. It follows that |C| = r � 1, so C = H

i

[ p
for some i 2 {s+ 1, . . . , r � 2}. As |X|  r, this implies that X = H

i

[ {e, f}. But then X is
a circuit-hyperplane in M , contradicting the fact that it is independent in this matroid.

We conclude that N = M , so M is K-representable, as desired.

Recall that Kin(r)� is the matroid obtained from Kin(r) by relaxing H
1

[H
r

. If r 2
{2, . . . , r � 1}, then we will let Kin(r)=

i

be the matroid obtained from Kin(r)� by relaxing
H

i

[H
r

. Thus the results in this section show that Kin(r) and Kin(r)=
i

are representable over
any infinite field, and that Kin(r)� is representable over no field.
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5. Proof of the main theorem

In this section we prove our main theorem. Theorem 5.1 is a restatement of Theorem 1.3
that uses slightly di↵erent language. If F is a set of fields, then define M(F) to be

[

F2F
{M | M is an F -representable matroid}.

Theorem 5.1. Let F be a set of fields that contains at least one infinite field. There does
not exist a finite set,K, of sentences inM -logic with the following property: ifM = (EM, rM) is
a structure, then (EM, rM) is a matroid in M(F) if and only if M satisfies {R1,R2,R3} [K.

Before we prove this theorem, we discuss some preliminaries. Assume that M = (EM, rM)
is a structure. For every function, �, into P(EM), there is an induced family of subsets of EM

that we call definable subsets (relative to �). Let us say that a minterm is a subset of EM that
can be expressed in the form \

X2Dom(�)

f(X),

where f(X) is either �(X) or EM � �(X), and the intersection ranges over the domain of �.
Note that distinct minterms are disjoint, and that every element of EM is in a minterm. We
say that a subset of EM is definable if it is a union of minterms. Note that if the domain of
� has size m, then there are at most 2m possible minterms, and hence at most 22

m
definable

subsets.
Now assume that {X

i

}
i2I

and {x
j

}
j2J

are sets of variables in S and E respectively, and that
�S : {Xi

}
i2I

! P(EM) and �E : {xj

}
j2J

! EM are assignments of set and element variables
to subsets and elements of EM. We say that a set is definable relative to (�S ,�E) if it is
definable relative to the function that takes X

i

to �S(Xi

) for every i 2 I, and x
j

to {�E(xj

)}
for every j 2 J .
Let P be a formula in M -logic such that Var(P ) = Fr(P ). Let (�S ,�E) be an interpretation

of P . Observe that any set �S(Xi

) is definable relative to (�S ,�E), since it is the union of all
minterms in which f(X

i

) = �S(Xi

). Similarly, any set {�E(xj

)} is definable. Both EM and
the empty set are definable (the former as the union of all possible minterms, the latter as the
empty union). Furthermore, if X and Y are definable sets, then EM �X, X [ Y , and X \ Y
are also definable. It follows that, if X 2 S is a term that appears in P , then XM is one of the

22
|Var(P )|

definable subsets of EM.

Proposition 5.2. Let P be a formula in M -logic such that Var(P ) = Fr(P ). Let (�S ,�E)
be an interpretation of P , and let T = �E(Var(P ) \ E) be the image of �E . Every definable set
relative to (�S ,�E) can be expressed in the form (A� T ) [B, where A is definable relative to
�S , and B is a subset of T .

Proof. Consider a minterm

Z =
\

xj2Var(P )\E

f(x
j

),

relative to the function that takes every variable x
j

to {�E(xj

)}. If f(x
j1) = {�E(xj1)} and

f(x
j2) = {�E(xj2)}, for variables x

j1 and x
j2 such that �E(xj1) 6= �E(xj2), then Z = ;. If all

the variables x
j

satisfying f(x
j

) = {�E(xj

)}, have the same image under �E , then Z is either
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the empty set, or a singleton subset of T . Finally, if f(x
j

) = EM � {�E(xj

)} for every variable
x
j

, then Z = EM � T .
Every minterm relative to (�S ,�E) is the intersection of a minterm relative to �S with a

minterm relative to the function x
j

7! {�E(xj

)}. Thus every minterm relative to (�S ,�E) is
either the empty set, a singleton subset of T , or the intersection of EM � T with a minterm
relative to �S . Now it is clear that any union of such minterms is the union of a subset of T ,
and the intersection of A, a definable subset relative to �S , with EM � T . Thus the proposition
holds.

Proof of Theorem 5.1. We assume for a contradiction that K is a finite set of sentences
in M -logic having the property that M = (EM, rM) is a matroid in M(F) if and only if M
satisfies {R1,R2,R3} [K.
Let L be an integer such that |Var(S)|  L for every sentence S 2 K. Let

N = 22
L

+ 3,

and let EM = E(Kin(N)).
Since Kin(N)� is not representable, by Proposition 4.5, there is a sentence in K that is not

satisfied when rM is the rank function of Kin(N)�. Let S be such a sentence. We can assume
S is a formula with one of the following forms:
(1) 9X

i1 · · · 9Xim9x
j1 · · · 9xjnP

(2) 9X
i1 · · · 9Xim8x

j1 · · · 8xjnP
(3) 8X

i1 · · · 8Xim8x
j1 · · · 8xjnP

(4) 8X
i1 · · · 8Xim9x

j1 · · · 9xjnP
where P is a formula such that Var(P ) \ S = Fr(P ) \ S = {X

i1 , . . . , Xim} and Var(P ) \ E =
Fr(P ) \ E = {x

j1 , . . . , xjn}. Let I and J be the index sets {i
1

, . . . , i
m

} and {j
1

, . . . , j
n

}. Note
that m+ n  L.

Case 1. We first assume that S has the form

9X
i1 · · · 9Xim9x

j1 · · · 9xjnP.

Since Kin(N) is representable over at least one field in F (Proposition 4.3), there is an
interpretation, (�S ,�E), such that P (�S ,�E) is satisfied when rM is the rank function of
Kin(N). Consider the definable subsets relative to (�S ,�E). There are at most 22

m+n  22
L

such subsets. As

N � 1 = 22
L

+ 2

is greater than the number of definable subsets, there is an index s 2 {1, . . . , N � 1} such that
H

s

[H
N

is not definable. Let M be the matroid obtained from Kin(N) by relaxing H
s

[H
N

.
The rank functions of M and Kin(N) di↵er only on the set H

s

[H
N

. Since this set is not
definable, we see that if X is any set term appearing in P , then the rank of XM in M is the
same as its rank in Kin(N). Thus P (�S ,�E) is satisfied when rM is the rank function of M .
For k 2 {1, . . . , N � 1}, let p

k

be an arbitrary bijection from H
k

to H
k�s+1

. These bijections
clearly induce an isomorphism from M to Kin(N)�. By composing this isomorphism with �S
and �E , we obtain an interpretation that satisfies P when rM is the rank function of Kin(N)�.
Thus S is satisfied when rM is the rank function of Kin(N)�, contrary to our assumption.

Case 2. Next we assume that S has the form

9X
i1 · · · 9Xim8x

j1 · · · 8xjnP.

As Kin(N) is representable over a field in F , there is some function

�S : {Xi

}
i2I

! P(EM),
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such that for every possible function

�E : {xj

}
j2J

! EM,

P (�S ,�E) is satisfied when rM is the rank function of Kin(N).
For every k 2 {1, . . . , N � 1}, let

H
k

= {(H
k

[H
N

)4Z | Z ✓ EM, |Z|  2n},
where 4 denotes symmetric di↵erence. If some subset of EM is contained in H

k1 and H
k2 ,

where k
1

6= k
2

, then (H
k1 [H

N

)4Z
1

= (H
k2 [H

k

)4Z
2

, for some sets Z
1

and Z
2

satisfying
|Z

1

|, |Z
2

|  2n. Thus

; = ((H
k1 [H

N

)4Z
1

)4((H
k2 [H

N

)4Z
2

) = (H
k14H

k2)4(Z
1

4Z
2

).

But H
k14H

k2 = H
k1 [H

k2 , and this set has cardinality 2N � 4. Thus

22
L
+1 + 2 = 2N � 4 = |Z

1

4Z
2

|  |Z
1

[ Z
2

|  |Z
1

|+ |Z
2

|  4n,

and this is impossible as n  L. This shows that no subset of EM lies in two distinct families
in H

1

, . . . ,H
N�1

. The number of definable subsets relative to �S is 22
m
, which is less than

N � 1. Let s be an index in {1, . . . , N � 1} such that no member of H
s

is definable relative to
�S .
Let �E : {xj

}
j2J

! EM be an arbitrary assignment of element variables. Proposition 5.2
tells us that a definable set relative to (�S ,�E) is obtained from a definable set relative to �S
by removing at most n elements and then adding at most n elements. That is, a definable
set relative to (�S ,�E) is the symmetric di↵erence of a definable set relative to �S , and a set
of cardinality at most 2n. Thus H

s

[H
N

is not definable in (�S ,�E), for any choice of the
assignment �E , or else some definable set relative to �S would be in H

s

.
Let M be the matroid obtained from Kin(N) by relaxing the circuit-hyperplane H

s

[H
N

.
Then the rank functions of Kin(N) and M di↵er only in H

s

[H
N

. Since P (�S ,�E) is satisfied
by Kin(N) for any choice of the function �E , it follows that P (�S ,�E) is also satisfied by M
for any assignment �E . Thus S is satisfied when rM is the rank function of M . Clearly M is
isomorphic to Kin(N)�, and it is easy to show that S is satisfied when rM is the rank function
of Kin(N)�, contradicting our assumption.

Case 3. Assume that S has the form

8X
i1 · · · 8Xim8x

j1 · · · 8xjnP.

Then there are functions, �S and �E , such that P (�S ,�E) is not satisfied when rM is the rank
function of Kin(N)�. Choose s 2 {2, . . . , N � 1} so that H

s

[H
N

is not definable relative to
(�S ,�E). Then P (�S ,�E) is also not satisfied when rM is the rank function of Kin(N)=

s

. This
means that S is not satisfied by Kin(N)=

s

, and this is a contradiction as Lemma 4.6 implies
that Kin(N)=

s

is representable over at least one field in F .

Case 4. In the final case, we assume that S has the form

8X
i1 · · · 8Xim9x

j1 · · · 9xjnP.

Let

�S : {Xi

}
i2I

! P(EM),

be an assignment so that P (�S ,�E) is not satisfied by Kin(N)� for every choice of assignment

�E : {xj

}
j2J

! EM.

For k 2 {2, . . . , N � 1}, we define H
k

exactly as we did in Case 2. Choose the index s 2
{2, . . . , N � 1} so that no subset in H

s

is definable relative to �S . Then H
s

[H
N

is not
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definable relative to (�S ,�E), for any choice of assignment �E . This means that P (�S ,�E) is
not satisfied by Kin(N)=

s

, for the assignment �S and any choice of assignment �E . Thus S is
not satisfied when rM is the rank function of Kin(N)=

s

, and as this matroid is in M(F), we
have reached a contradiction that completes the proof of Theorem 1.3.

Remark 2. We developed MSOL using the function r, which has an intended interpretation
as a rank function. If we add a unary independence predicate, I, for set terms, it is still
not possible to finitely axiomatize representability over any infinite field, using sentences in
M -logic. To see this, note that if there were such an axiomatization, we could simply replace
every occurrence of I(X) with the predicate r(X) = |X|. Then we would have a contradiction
to Theorem 1.3. The same comment applies when we add a predicate for bases or spanning
sets.

Remark 3. The authors of [8] conjecture that if F is a collection of finite fields, then
M(F) has a finite number of excluded minors. This would imply that membership in M(F)
can always be finitely axiomatized using sentences in M -logic when F contains no infinite field.
In other words, if the conjecture is true, then the constraint in Theorem 1.3 that F contains
an infinite field is always necessary.

We conclude with a conjecture that strengthens Conjecture 1.2.

Conjecture 5.3. Theorem 5.1 holds even if we replace the words ‘M -logic’ with ‘MSOL’.

Acknowledgements. We thank Rod Downey, Jim Geelen, Rob Goldblatt, Noam Greenberg,
Martin Grohe, and Johann Makowsky for valuable discussions.
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11. P. Vámos. On the representation of independence structures (1968). Unpublished.
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