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Abstract. Let M be a 3-connected matroid that is not a wheel or a
whirl. In this paper, we prove that M has an element e such that M\e
or M/e is 3-connected and has no 3-separation that is not equivalent to
one induced by M .

1. Introduction

In both matroid representation theory and matroid structure theory, one
frequently encounters situations where connectivity is required to avoid de-
generacies. Because 3-connectivity is so well understood, it would be ideal if
it always sufficed. However, higher connectivity is often required. Typically,
4-connectivity is too strong a condition since, for example, projective ge-
ometries and the cycle matroids of complete graphs are not 4-connected as
matroids. Moreover, developing the necessary technology to make inductive
arguments possible within the class of 4-connected matroids has proved to
be very difficult. What is often required is some type of intermediate connec-
tivity where 3-separations are allowed, but are controlled in some way. The
primary motivation for this paper is to develop master theorems that will
give as corollaries useful results for many of the connectivities intermediate
between 3- and 4-connectivity.

Let M be a matroid with ground set E and rank function r. The con-
nectivity function λM of M is defined on all subsets X of E by λM (X) =
r(X) + r(E − X) − r(M). A subset X or a partition (X,E − X) of E is
k-separating if λM (X) ≤ k − 1. A k-separating partition (X,E − X) is a
k-separation if |X|, |E − X| ≥ k. A k-separating set X, or a k-separating
partition (X,E−X), or a k-separation (X,E−X) is exact if λM (X) = k−1.
A k-separation (X,E − X) is minimal if min{|X|, |E − X|} = k.

A set X in a matroid M is fully closed if it is closed in both M and
M∗, that is, cl(X) = X and cl∗(X) = X. The full closure of X, denoted
fcl(X), is the intersection of all fully closed sets that contain X. One way to
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obtain fcl(X) is to take cl(X) and then cl∗(cl(X)) and so on until neither the
closure nor coclosure operator adds any new elements of M . Two exactly
3-separating partitions (A1, B1) and (A2, B2) of M are equivalent, written
(A1, B1) ∼= (A2, B2), if fcl(A1) = fcl(A2) and fcl(B1) = fcl(B2). If fcl(A1) or
fcl(B1) is E(M), then (A1, B1) is sequential. A 3-connected matroid M is
sequentially 4-connected if it has no non-sequential 3-separations.

Let e be an element of a 3-connected matroid M . When M\e is 3-
connected, a 3-separation (X,Y ) of M\e is well blocked by e if, for all exactly
3-separating partitions (X ′, Y ′) equivalent to (X,Y ), neither (X ′ ∪ e, Y ′)
nor (X ′, Y ′ ∪ e) is exactly 3-separating in M . An element f of M exposes
a 3-separation (U, V ) of M\f if M\f is 3-connected and (U, V ) is a 3-
separation of M\f that is well blocked by f . Evidently, if e exposes an
exactly 3-separating partition (E1, E2) of M\e, then e exposes all exactly
3-separating partitions (E′

1, E
′
2) that are equivalent to (E1, E2). We shall

say that an element g of M exposes a 3-separation in M/g if g exposes a
3-separation in M∗\g.

Next we give a context for the results of this paper. Some of the techni-
cal terms used may be unfamiliar to the reader. These terms are formally
defined in Sections 2 and 3. For a finite field GF (q) with at least seven
elements, Oxley, Vertigan, and Whittle [19] disproved a conjecture of Kahn
[11] by showing that the number of inequivalent representations of a 3-
connected matroid over GF (q) can be arbitrarily large. By contrast, Geelen
and Whittle [5] proved that, when q is prime, the number of inequivalent
GF (q)-representations of 4-connected matroids is bounded. Due to the dif-
ficulty of working with 4-connected matroids, the theorem that is proved in
[5] is necessarily somewhat stronger. For fixed k ≥ 5, a 3-connected matroid
is k-coherent if it has no swirl-like flower of order k. For the uninitiated,
k-coherence is nothing more than a condition that places some control on
the 3-separations that are allowed in the matroid. The notion of k-coherence
is easier to work with than 4-connectivity and it is proved in [5] that, for
a fixed k ≥ 5 and prime p, there is a bound on the number of inequivalent
GF (p)-representations of a k-coherent matroid.

Other intermediate connectivity notions that have also been studied in-
clude weak 4-connectivity [4, 7], internal 4-connectivity [2, 3, 6, 12, 22],
sequential 4-connectivity [4], and fork-connectivity [10]. We anticipate the
need for even more such notions in the future, each one being tailored to the
requirements of a specific problem. Thus it may be that it will be required
to control flowers other than swirl-like flowers or to control the lengths of
paths of inequivalent 3-separations. In each case, theorems will be required
to make inductive arguments possible.

In this paper, we prove the following theorem.
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Theorem 1.1. Let M be a 3-connected matroid that is not a wheel or a
whirl. Then M has an element whose deletion from M or M∗ is 3-connected
but does not expose any 3-separations.

Theorem 1.1 extends the following result of [4, Theorem 1.2].

Theorem 1.2. Let M be a sequentially 4-connected matroid other than a
wheel or whirl. Then M has an element e whose deletion from M or M∗ is
sequentially 4-connected.

Note that Theorem 1.2 in turn generalizes Tutte’s Wheels and Whirls
Theorem [21], which establishes that if M is a 3-connected matroid other
than a wheel or a whirl, then M has an element that can be deleted or
contracted to maintain 3-connectivity.

On the other hand, Theorem 1.1 implies the following theorem from [5].

Corollary 1.3. Let k be an integer exceeding four and M be a k-coherent
matroid. If M is neither a wheel nor a whirl, then M has an element e such
that either M\e or M/e is k-coherent.

In fact, the main theorem of this paper, Theorem 4.2, is much more
powerful than Theorem 1.1. Theorem 4.2 relies on trees of 3-separations
that can be associated with a 3-connected matroid M . It is shown that if S
is the set of elements corresponding to a leaf of such a tree, then S contains an
element f in its full closure whose deletion from M or M∗ is 3-connected but
does not expose any 3-separations. In many cases, this greatly expands the
number of elements that can be removed without exposing 3-separations.
Moreover, because this result applies to the tree of 3-separations, it can be
applied to all connectivities intermediate between 3- and 4-connectivity.

This paper is the third in a series. In [17], we analyzed when it is not pos-
sible to remove an element from a triangle without exposing a 3-separation.
We make essential use of the results of [17] in this paper. Moreover, the
main result of [18] is, in effect, a lemma for this paper. We also believe
that some of the other results of this paper are of independent interest. For
example, Theorem 7.1 is applied in several places in [5].

Since we now have a wheels-and-whirls theorem for exposing 3-
separations, it is natural to ask if Seymour’s Splitter Theorem [20] has a
similar strengthening. Let N be a 3-connected minor of a 3-connected ma-
troid M . Then it may be that N has 3-separations that are not equivalent
to any induced in M . In moving from M to N via single-element deletions
or contractions, such 3-separations must be exposed at some stage. Taking
this into account, the following conjecture is best-possible.
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Conjecture 1.4. Let N be a 3-connected minor of a 3-connected matroid
M . Then M has an element x such that some M ′ in {M\x,M/x} is 3-
connected with the property that if (A,B) is a 3-separation of M ′ exposed by
x, then (A,B) is induced by a non-sequential 3-separation of N .

2. Preliminaries

Our terminology will follow Oxley [13]. We write x ∈ cl(∗)(Y ) to mean
that x ∈ cl(Y ) or x ∈ cl∗(Y ). A quad is a 4-element set in a matroid that is
both a circuit and a cocircuit. The set {1, 2, . . . , n} will be denoted by [n].

If an exactly 3-separating set X in a matroid M has an ordering
(x1, x2, . . . , xn) such that {x1, x2, . . . , xi} is 3-separating for all i in [n], then
X is sequential and (x1, x2, . . . , xn) is a sequential ordering of X. Thus an
exactly 3-separating partition (X,Y ) of M is sequential if X or Y is a se-
quential 3-separating set. In a 3-connected matroid M , a 3-sequence is an
ordered partition (A,x1, x2, . . . , xn, B) of E(M) such that |A|, |B| ≥ 2 and
(A∪ {x1, x2, . . . , xi}, {xi+1, xi+2, . . . , xn}∪B) is exactly 3-separating for all
i in {0, 1, . . . , n}. If M has a 3-sequence in which |A| = |B| = 2, then M is
sequential.

A triangle T of a 3-connected matroid M is wild if, for all t in T , ei-
ther M\t is not 3-connected, or M\t is 3-connected and t exposes a 3-
separation in M\t. A subset S of a 3-connected matroid M is a fan
in M if |S| ≥ 3 and there is an ordering (s1, s2, . . . , sn) of S such that
{s1, s2, s3}, {s2, s3, s4}, . . . , {sn−2, sn−1, sn} alternate between triangles and
triads beginning with either. We call (s1, s2, . . . , sn) a fan ordering of S. If
n ≥ 4, then s1 and sn, which are the only elements of S that are not in both
a triangle and a triad contained in S, are the ends of the fan. The remaining
elements of S are the internal elements of the fan. An internal triangle of
S is a triangle all of whose elements are internal elements of S.

The connectivity function λM of a matroid M has many attractive prop-
erties. In particular, λM = λM∗ . Moreover, λM (X) = λM (E − X).
We often abbreviate λM as λ. This function is submodular, that is,
λ(X) + λ(Y ) ≥ λ(X ∩ Y ) + λ(X ∪ Y ) for all X,Y ⊆ E(M). The next
lemma is a consequence of this. We make frequent use of it here and write
by uncrossing to mean “by an application of Lemma 2.1”.

Lemma 2.1. Let M be a 3-connected matroid, and let X and Y be 3-
separating subsets of E(M).

(i) If |X ∩ Y | ≥ 2, then X ∪ Y is 3-separating.
(ii) If |E(M) − (X ∪ Y )| ≥ 2, then X ∩ Y is 3-separating.
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Another consequence of the submodularity of λ is the following very useful
result for 3-connected matroids known as Bixby’s Lemma [1].

Lemma 2.2. Let M be a 3-connected matroid and e be an element of M .
Then either M\e or M/e has no non-minimal 2-separations. Moreover, in
the first case, co(M\e) is 3-connected while, in the second case, si(M/e) is
3-connected.

A useful companion function to the connectivity function is the local con-
nectivity, )(X,Y ), defined for sets X and Y in a matroid M by

)(X,Y ) = r(X) + r(Y ) − r(X ∪ Y ).

Clearly )(X,E − X) = λM (X). For a field F, when M is simple and F-
representable, and hence viewable as a subset of the vector space V (r(M), F),
the local connectivity )(X,Y ) is precisely the rank of the intersection of
those subspaces in V (r(M), F) that are spanned by X and Y .

An attractive link between connectivity and local connectivity is provided
by the following easily verified result [15, Lemma 2.6].

Lemma 2.3. Let X and Y be disjoint sets in a matroid M . Then

λM (X ∪ Y ) = λM (X) + λM (Y ) −)M (X,Y ) − )M∗(X,Y ).

The first part of the next lemma [15, Lemma 2.3] simply restates [13,
Lemma 8.2.10]. The second part, which follows from the first, is the well-
known fact that the connectivity function is monotone under taking minors.

Lemma 2.4. Let M be a matroid.

(i) Let X1,X2, Y1 and Y2 be subsets of E(M). If X1 ⊆ Y1 and X2 ⊆ Y2,
then )(X1,X2) ≤ )(Y1, Y2).

(ii) If N is a minor of M and X ⊆ E(M), then

λN (X ∩ E(N)) ≤ λM (X).

Next we note a useful consequence of part (i) of the last lemma, along
with some basic properties of 3-separating sets.

Lemma 2.5. In a matroid M , let X,Y, and Z be sets such that X ⊆ Y . If
)(Y,Z) = )(X,Z) and e ∈ cl(Z) ∩ cl(Y ), then e ∈ cl(Z) ∩ cl(X).

Proof. Since e ∈ cl(Z)∩ cl(Y ), we have )(Y ∪ e, Z ∪ e) = )(Y,Z). Thus, by
the last lemma,

)(Y,Z) = )(Y ∪ e, Z ∪ e) ≥ )(X ∪ e, Z ∪ e) ≥ )(X,Z) = )(Y,Z).

Hence )(X ∪ e, Z ∪ e) = )(X,Z). As e ∈ cl(Z), it follows that r(X ∪ e) =
r(X), so e ∈ cl(X). !
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Lemma 2.6. In a 3-connected matroid M , suppose that A and B are
disjoint sets such that A and A ∪ B are 3-separating in M and B ⊆
fcl(A) *= E(M). Then there is an ordering (b1, b2, . . . , bn) of B such that
A ∪ {b1, b2, . . . , bi} is 3-separating for all i in [n].

Proof. There is an ordering (z1, z2, . . . , zm) of fcl(A) − A such that A ∪
{z1, z2, . . . , zj} is 3-separating for all j in [m]. Then, by Lemma 2.1, the
intersection of A ∪ B with A ∪ {z1, z2, . . . , zj} is also 3-separating for each
j, and the lemma follows without difficulty. !

Lemma 2.7. In a 3-connected matroid M, let X and Y be 3-separating sets
such that |E(M) − X| ≥ 2 and Y ⊆ X. If X is sequential, then so is Y .

Proof. Take a sequential ordering (x1, x2, . . . , xn) of X. Then, by
Lemma 2.1, for all i in [n], the set Y ∩ {x1, x2, . . . , xi} is 3-separating. !

Lemma 2.8. Let M be a sequential 3-connected matroid. If M has a quad
Q, then, for every sequential ordering (x1, x2, . . . , xn) of E(M), both |Q ∩
{x1, x2, x3}| and |Q ∩ {xn−2, xn−1, xn}| are two.

Proof. Assume that |Q∩ {xn−2, xn−1, xn}| ≤ 1. Note that if this cardinality
is one, we may assume that xn−2 ∈ Q. Let xj be the third element of Q
in the ordering (x1, x2, . . . , xn) of X. Then {x1, x2, . . . , xj} and Q are 3-
separating, so, by uncrossing, their intersection is too. This intersection has
three elements, so Q contains a triangle or a triad; a contradiction. !

The next lemma is from [17, Lemma 2.4].

Lemma 2.9. Let M be a 3-connected matroid. If f exposes a 3-
separation (U, V ) in M , then (U, V ) is non-sequential. In particular,
|U |, |V | ≥ 4. Moreover, if |V | = 4, then V is a quad of M\f .

Next we show that an element in a sequential 3-separating set does not
expose any 3-separations.

Lemma 2.10. Let M be a 3-connected matroid with ground set E and let
X be a sequential 3-separating set with |X| ≥ 4. If e ∈ X and M\e is
3-connected, then e does not expose any 3-separations in M .

Proof. Suppose a 3-separation (Y,Z) is exposed in M\e. Then, by
Lemma 2.9, both Y and Z are non-sequential and |Y |, |Z| ≥ 4. If M is
sequential, then, by [9, Lemmas 4.2 and 4.1], M\e is sequential, and Y or
Z is sequential; a contradiction. Thus M is non-sequential, so |E −X| ≥ 4.

Now e *∈ cl(Y )∪cl(Z). As (X,E−X) and (X−e,E−X) are 3-separations
of M and M\e, we have e ∈ cl(X−e). Thus neither Y nor Z contains X−e.
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As X − e is sequential in M\e, Lemma 2.7 implies that neither Y nor Z
is contained in X − e, so Y ∩ (E − X) *= ∅ *= Z ∩ (E − X). Suppose that
|Y ∩ (E − X)| = 1. Then |Y ∩ (X − e)| ≥ 3 and |(E − X) ∩ Z| ≥ 3. Thus,
by Lemma 2.1, Y ∪ (X − e) is 3-separating in M\e. As X − e is sequential,
so is Y ∪ (X − e). Hence, by Lemma 2.7, so is Y ; a contradiction. Thus
|Y ∩ (E − X)| ≥ 2 and, similarly, |Z ∩ (E − X)| ≥ 2.

From above, Y ∩ (X − e) *= ∅. Suppose |Y ∩ (X − e)| = 1. Then |Z ∩
(X − e)| ≥ 2 so, by Lemma 2.1, Z ∪ (X − e) is 3-separating. Moreover,
(Z ∪ (X − e), (E − X) ∩ Y ) ∼= (Z, Y ). But e ∈ cl(Z ∪ (X − e)), so (Z, Y ) is
not exposed by e. Thus |Y ∩(X−e)| ≥ 2. Hence (X−e)∪Y is 3-separating.
By symmetry, so is (X − e) ∪ Z.

Now X − e has a sequential ordering (x1, x2, . . . , xn). By interchanging
Y and Z if necessary, we may assume that two of x1, x2, and x3 are in Y .
Then, by possibly reordering the first three elements, we may assume that
x1, x2 ∈ Y . Then, by uncrossing, Y ∪{x1, x2, . . . , xi} is 3-separating in M\e
for all i in {0, 1, . . . , n}. Hence (Y,Z) ∼= (Y ∪ (X − e), (E − X) ∩ Z), a
contradiction as e ∈ cl(Y ∪ (X − e)). !

The next lemma establishes that Theorem 1.1 holds if M has a fan with
four or more elements.

Lemma 2.11. Let M be a 3-connected matroid that is not a wheel or a
whirl. Let F be a maximal fan in M having at least four elements and let z
be an end of F . Then the deletion of z from M or M∗ is 3-connected but
does not expose any 3-separations.

Proof. Let (z, x2, . . . , xn) be a fan ordering of F and assume, by switching to
the dual if necessary, that {z, x2, x3} is a triangle. Then, by [14, Lemma 1.5],
M\z is 3-connected. But F is a sequential set with at least four elements.
Thus, by Lemma 2.10, z does not expose any 3-separations in M . !

Lemma 2.12. Let {a, b, c} be a triangle in a 3-connected matroid M such
that {a, b, c} is not in a 4-element fan. If c exposes a 3-separation in M ,
then {a, b, c} is fully closed in M .

Proof. Let (C1, C2) be a 3-separation of M\c that is exposed. If d ∈
cl({a, b, c}) − {a, b, c}, then at least two of a, b, and d are in C1 or C2,
say C1. Hence c ∈ cl(C1); a contradiction. Thus {a, b, c} is closed. If
e ∈ cl∗({a, b, c}) − {a, b, c}, then, as {a, b, c} is not in a 4-element fan,
{a, b, c, e} is a cocircuit of M . Thus {a, b, e} is a cocircuit of M\c. Hence
we may assume that at least two and therefore all three of a, b, and e are in
C1. Then c ∈ cl(C1); a contradiction. Thus {a, b, c} is coclosed. !
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By combining the last lemma with [17, Corollary 4.3], we immediately
obtain the following.

Corollary 2.13. If {a, b, c} is a wild triangle in a 3-connected matroid and
{a, b, c} is not in a 4-element fan, then {a, b, c} is fully closed.

We shall use the next lemma [17, Lemma 2.9] in the proof that Theo-
rem 1.1 holds if M has a quad.

Lemma 2.14. Let Q be a quad in a 3-connected matroid M . If e ∈ Q, then
si(M/e) is 3-connected.

Two sets A and B in a matroid are a modular pair if r(A) + r(B) =
r(A ∪ B) + r(A ∩ B). Such pairs of sets will be useful in proving our main
results. The next two lemmas concern such pairs. The first is elementary.

Lemma 2.15. Let z be an element of the matroid M and let X and Y
be a modular pair of sets in M\z. If z ∈ clM (X) and z ∈ clM (Y ), then
z ∈ clM (X ∩ Y ).

Lemma 2.16. Let A and B be sets of elements in a matroid M . If λ(A) +
λ(B) = λ(A ∪ B) + λ(A ∩ B), then A and B are a modular pair.

Proof. Let A′ = E(M) − A and B′ = E(M) − B. Since λ(A) + λ(B) =
λ(A ∪ B) + λ(A ∩ B), we have

r(A)+ r(A′)+ r(B)+ r(B′) = r(A∪B)+ r(A′∩B′)+ r(A∩B)+ r(A′∪B′),

so

r(A)+ r(B)− r(A∪B)− r(A∩B) = r(A′∪B′)+ r(A′∩B′)− r(A′)− r(B′).

The lemma now follows from the submodularity of the rank function. !

The following well-known result is straightforward to prove.

Lemma 2.17. Let M be a matroid, X ⊆ E(M), and e ∈ E(M)−X. Then

(i) λ(X ∪ e) = λ(X) if and only if e is in exactly one of cl(X) and
cl∗(X); and

(ii) λ(X ∪ e) < λ(X) if and only if e is in both cl(X) and cl∗(X)

Let {X,Y, {e}} be a partition of the ground set of a matroid M . Then
e blocks (X,Y ) if (X,Y ) is not induced in M , that is, if λM (X ∪ e, Y ) >
λM\e(X,Y ), and λM (X,Y ∪ e) > λM\e(X,Y ). In addition, we say that e
blocks X if e blocks (X,E(M) − (X ∪ e)). The element e coblocks (X,Y ) if
λM∗(X ∪ e, Y ) > λM∗\e(X,Y ), and λM∗(X,Y ∪ e) > λM∗\e(X,Y ). Equiva-
lently, e coblocks (X,Y ) if λM (X∪e, Y ) > λM/e(X,Y ), and λM (X,Y ∪e) >
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λM/e(X,Y ). If U, V , and W are sets in a matroid M such that U and V
are disjoint, we say that (U, V ) crosses W if both U ∩ W and V ∩ W are
non-empty. The next lemma is routine and well known.

Lemma 2.18. The following are equivalent for a partition {X,Y, {e}} of
the ground set of a matroid M .

(a) e blocks (X,Y ).
(b) e ∈ cl∗(X) and e ∈ cl∗(Y ).
(c) e *∈ cl(X) and e *∈ cl(Y ).

Lemma 2.19. In a matroid M , let (X,Y, {s}, {t}) be a partition of E(M).
If t ∈ cl∗M\s(X) and s ∈ clM (Y ), then t ∈ cl∗M (X).

Proof. Under the hypotheses, t is a coloop of M |(Y ∪ {s, t}). !

3. A Matroid Garden

In this section, we recall some definitions from [15, 16]. Let
(P1, P2, . . . , Pn) be a flower Φ in a 3-connected matroid M , that is,
(P1, P2, . . . , Pn) is an ordered partition of E(M) such that λM (Pi) = 2 =
λM (Pi ∪Pi+1) for all i in [n], where all subscripts are interpreted modulo n.
The sets P1, P2, . . . , Pn are the petals of Φ. Each has at least two elements.
It is shown in [15, Theorem 4.1] that every flower in a 3-connected matroid
is either an anemone or a daisy. In the first case, all unions of petals are 3-
separating; in the second, a union of petals is 3-separating if and only if the
petals are consecutive in the cyclic ordering (P1, P2, . . . , Pn). A 3-separation
(X,Y ) is displayed by a flower if X is a union of petals of the flower.

Let Φ1 and Φ2 be flowers in a matroid M . A natural quasi ordering on
the set of flowers of M is obtained by setting Φ1 , Φ2 if every non-sequen-
tial 3-separation displayed by Φ1 is equivalent to one displayed by Φ2. If
Φ1 , Φ2 and Φ2 , Φ1, then Φ1 and Φ2 are equivalent flowers. Such flowers
display, up to equivalence of 3-separations, exactly the same non-sequential
3-separations of M . Let Φ be a flower of M . The order of Φ is the minimum
number of petals in a flower equivalent to Φ. We say that Φ is maximal if
Φ is equivalent to Φ′ whenever Φ , Φ′.

An element e of M is loose in Φ if e ∈ fcl(Pi) − Pi for some petal Pi of
Φ; otherwise e is tight. A petal Pi is loose if all its elements are loose; and
Pi is tight otherwise. A flower of order at least 3 is tight if all of its petals
are tight. A flower of order 2 or 1 is tight if it has two petals or one petal,
respectively.
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The next two lemmas exemplify how we will use flowers in this paper.
The first corrects [17, Lemma 2.10].

Lemma 3.1. Let (P1, P2, . . . , Pk) be a flower in a 3-connected matroid. If
P2 is loose and P1 is tight, then P2 ⊆ fcl(P1).

Proof. Since P2 is loose, for some i *= 2, there is a sequence
z1, z2, . . . , zm, zm+1 where {z1, z2, . . . , zm+1} ∩ P2 = {zm+1} = {z} and
Pi ∪ {z1, z2, . . . , zj} is 3-separating for all j in [m + 1]. Now move the ele-
ments z1, z2, . . . , zm one at a time in order from their original petals into Pi.
When such a move reduces the size of a petal to one, add that one remaining
element to an adjacent petal other than P2 before continuing. This ensures
that, after each step, we still have a flower. Throughout the process, each
petal retains its label unless it is absorbed into an adjacent petal in which
case the resulting petal takes the name of the absorbing petal. Each petal
in the final flower has the same full closure as the petal with the same name
in the original flower. Because P1 was tight originally, it remains tight and
so still labels a petal in the final flower.

We relabel this final flower as (R1, R2, . . . , Rt) where Rs = Pi and
(P1, P2) = (R1, R2). Then z ∈ cl(∗)(Rs) − Rs. We argue by induction on
|R2|. Suppose |R2| = 2. If s = 1, then, by Lemma 5.2 of [15], R2 ⊆ fcl(R1),
as required. If s *= 1, then R3 ∪ R4 ∪ · · · ∪ Rt ∪ z is 3-separating. Thus
so is R1 ∪ y where R2 − z = {y}, and Lemma 5.2 of [15] again implies
that R2 ⊆ fcl(R1). Now assume the result holds for |R2| < n and let
|R2| = n ≥ 3. If s = 1, then (Rs ∪ z,R2 − z,R3, . . . , Rt) is a flower in
which R2 − z is loose and R1 ∪ z is tight so, by the induction assumption,
R2 − z ⊆ fcl(R1 ∪ z). Hence R2 ⊆ fcl(R1) as z ∈ fcl(R1). Now suppose
s *= 1. Then (R1, R2−z,R3, . . . , Rs∪z, . . . , Rt) is a flower in which R2−z is
loose and R1 is tight. Hence, by the induction assumption, R2−z ⊆ fcl(R1).
Moreover, as both R2 − z and R2 are 3-separating, z ∈ cl(∗)(R2 − z). Hence
z ∈ fcl(R1) and so R2 ⊆ fcl(R1). The lemma follows by induction. !

Lemma 3.2. Let (P,Q) be a 3-separation of a 3-connected matroid M where
P is sequential and Q is a quad. Then M is sequentially 4-connected.

Proof. Let (R,G) be a non-sequential 3-separation of M . Then |R|, |G| ≥
4, so P ∩ R *= ∅ *= P ∩ G, otherwise Q is R or G. As P is sequential,
neither R nor G is contained in P . If R contains a single element of P ,
then, as |R| ≥ 4 and |Q| = 4, but R does not contain Q, we deduce that
|R| = 4. By Lemma 2.1, R ∩ Q is 3-separating. Hence R is sequential;
a contradiction. Thus |R ∩ P | ≥ 2 and, similarly, |G ∩ P | ≥ 2. Again,
by Lemma 2.1, |R ∩ Q| *= 1 otherwise G ∩ Q is a triangle or a triad; a
contradiction. Hence, by symmetry, |R ∩ Q| = 2 = |G ∩ Q|. Thus M has
a flower (Q ∩ G,P ∩ G,P ∩ R,Q ∩ R). Let F be the set consisting of the
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first three elements in a sequential ordering of P . Then we may assume that
P∩R contains at least two elements of F . As P ∩R is 3-separating, it follows
by repeatedly uncrossing that there is a sequential ordering of P whose first
|P ∩R| elements are the elements of P ∩R. Thus P ∩G ⊆ fcl(P ∩R). Hence
P ∩ G is a loose petal. Therefore, by Lemma 3.1,

(i) P ∩ G ⊆ fcl(Q ∩ G), or
(ii) Q ∩ G is a loose petal of the flower (Q ∩ G,P ∩ G,P ∩ R,Q ∩ R).

We show next that

(1) E(M) ∈ {fcl(Q ∩ G), fcl(Q ∩ R)}.

This holds in case (i) by Lemma 2.6, otherwise G is sequential. In case (ii),
Q ∩ G is also loose in the flower (Q ∩ G,P,Q ∩ R). But, as Q is a quad, no
element of Q is in fcl(P ), so fcl(Q ∩ R) ⊇ Q ∩ G. Thus there is a sequence
y1, y2, . . . , yt+1 such that (Q∩R)∪ {y1, y2, . . . , yi} is 3-separating for all i in
[t+1] where {y1, y2, . . . , yt} ⊆ P while yt+1 ∈ Q∩G. Assume this sequence is
chosen to maximize t. Suppose {y1, y2, . . . , yt} *= P . If P −{y1, y2, . . . , yt} =
{z} for some element z, then (Q∩R)∪ {y1, y2, . . . , yt, z} is 3-separating and
the choice of t is contradicted. Thus |P − {y1, y2, . . . , yt}| ≥ 2. Then, by
Lemma 2.1, [(Q ∩ R) ∪ {y1, y2, . . . , yt+1}] ∩ Q is a 3-element 3-separating
subset of the quad Q; a contradiction. Therefore {y1, y2, . . . , yt} = P and
so, in case (ii), E(M) = fcl(Q ∩ R), so (1) holds.

By (1) and symmetry, we may assume that fcl(Q ∩ G) = E(M). Then
M has a sequential ordering whose first two elements are in Q ∩ G. By
Lemma 2.8, we may assume that the last two elements in this sequential
ordering are in Q∩R. Then G avoids the last two elements of this ordering,
so, by Lemma 2.7, G is sequential; a contradiction. !

Next we note a corollary for flowers of Lemma 2.16 together with an
extension of this corollary.

Corollary 3.3. Let (R1, R2, R3, R4) be a flower in a 3-connected matroid
M . Then R1 ∪ R2 and R2 ∪ R3 are a modular pair.

Lemma 3.4. Let (R1, R2, R3, R4) be a flower in a 3-connected matroid M ,
and let z ∈ R4. If z ∈ cl∗(R1 ∪ R2) and z ∈ cl∗(R2 ∪ R3), then z ∈ cl∗(R2).

Proof. Note that (R1, R2, R3, R4) is a flower in M∗. By Corollary 3.3, R1∪R2

and R2 ∪ R3 are a modular pair. Thus, by Lemma 2.15, z ∈ clM∗(R2). !

The classes of anemones and daisies can be further refined using local
connectivity. Let (P1, P2, . . . , Pn) be a flower Φ with n ≥ 3. If Φ is
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an anemone, then )(Pi, Pj) takes a fixed value k in {0, 1, 2} for all dis-
tinct i, j in [n]. We call Φ a paddle if k = 2, a copaddle if k = 0, and
a spike-like flower if k = 1 and n ≥ 4. Similarly, if Φ is a daisy, then
)(Pi, Pj) = 1 for all consecutive i and j. We say Φ is swirl-like if n ≥ 4 and
)(Pi, Pj) = 0 for all non-consecutive i and j; and Φ is Vámos-like if n = 4
and {)(P1, P3),)(P2, P4)} = {0, 1}.

If (P1, P2, P3) is a flower Φ and )(Pi, Pj) = 1 for all distinct i and j,
we call Φ ambiguous if it has no loose elements, spike-like if there is an
element in cl(P1)∩cl(P2)∩cl(P3) or cl∗(P1)∩cl∗(P2)∩cl∗(P3), and swirl-like
otherwise. Every flower with at least three petals is of one of these six types:
a paddle, a copaddle, spike-like, swirl-like, Vámos-like, or ambiguous [15].

Let Φ be a flower. By replacing two petals P and P ′ of Φ by their union,
we obtain another flower provided that, when Φ is a daisy, P and P ′ are
consecutive petals. Any flower that can be obtained from Φ by repeated
application of this process is said to have been obtained from Φ by concate-
nating petals or is called a concatenation of Φ. It will also be convenient
to view Φ as a concatenation of itself. We shall repeatedly use concatena-
tion of flowers throughout this paper along with the following lemma whose
elementary proof we omit.

Lemma 3.5. If Φ′ is a concatenation of Φ, and Φ′ has at least three petals,
then the local connectivity between pairs of consecutive petals in Φ′ equals
the local connectivity between pairs of consecutive petals in Φ.

Flowers provide a way of representing 3-separations in a 3-connected ma-
troid M . It was shown in [15] that, by using a certain type of tree, one
can simultaneously display a representative of each equivalence class of non-
sequential 3-separations of M . We now describe the type of tree that is
used. Let π be a partition of a finite set E. Let T be a tree such that ev-
ery member of π labels a vertex of T ; some vertices may be unlabelled but
no vertex is multiply labelled. We say that T is a π-labelled tree; labelled
vertices are called bag vertices and members of π are called bags.

Let G be a subgraph of T with components G1, G2, . . . , Gm. Let Xi be
the union of those bags that label vertices of Gi. Then the subsets of E
displayed by G are X1,X2, . . . ,Xm. In particular, if V (G) = V (T ), then
{X1,X2, . . . ,Xm} is the partition of E displayed by G. Let e be an edge of
T . The partition of E displayed by e is the partition displayed by T\e. If
e = v1v2 for vertices v1 and v2, then (Y1, Y2) is the (ordered) partition of
E(M) displayed by v1v2 if Y1 is the union of the bags in the component of
T\v1v2 containing v1. Let v be a vertex of T that is not a bag vertex. The
partition of E displayed by v is the partition displayed by T − v. The edges
incident with v correspond to the components of T − v, and hence to the
members of the partition displayed by v. In what follows, if a cyclic ordering
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(e1, e2, . . . , en) is imposed on the edges incident with v, this cyclic ordering
is taken to represent the corresponding cyclic ordering on the members of
the partition displayed by v.

Let M be a 3-connected matroid with ground set E. An almost partial
3-tree T for M is a π-labelled tree, where π is a partition of E such that:

(i) For each edge e of T , the partition (X,Y ) of E displayed by e is
3-separating, and, if e is incident with two bag vertices, then (X,Y )
is a non-sequential 3-separation.

(ii) Every non-bag vertex v is labelled either D or A; if v is labelled D,
then there is a cyclic ordering on the edges incident with v.

(iii) If a vertex v is labelled A, then the partition of E displayed by v is
a tight maximal anemone of order at least 3.

(iv) If a vertex v is labelled D, then the partition of E displayed by v,
with the cyclic order induced by the cyclic ordering on the edges
incident with v, is a tight maximal daisy of order at least 3.

By conditions (iii) and (iv), a vertex v labelled D or A corresponds to a
flower of M . The 3-separations displayed by this flower are the 3-separations
displayed by v. A vertex of a partial 3-tree is referred to as a daisy vertex or
an anemone vertex if it is labelled D or A, respectively. A vertex labelled
either D or A is a flower vertex. A 3-separation is displayed by an almost
partial 3-tree T if it is displayed by some edge or some flower vertex of T .

A 3-separation (R,G) of M conforms with an almost partial 3-tree T if
either (R,G) is equivalent to a 3-separation that is displayed by a flower
vertex or an edge of T , or (R,G) is equivalent to a 3-separation (R′, G′)
with the property that either R′ or G′ is contained in a bag of T .

An almost partial 3-tree for M is a partial 3-tree if every non-sequential
3-separation of M conforms with T . We now define a quasi order on the
set of partial 3-trees for M . Let T1 and T2 be two partial 3-trees for M .
Then T1 , T2 if all of the non-sequential 3-separations displayed by T1 are
displayed by T2. If T1 , T2 and T2 , T1, then T1 is equivalent to T2. A
partial 3-tree is maximal if it is maximal with respect to this quasi order.
We shall call a maximal partial 3-tree a 3-tree. Note that this terminology
differs from that used in [16] where we use the term ‘3-tree’ for a particular
type of maximal 3-tree defined in that paper.

The following theorem is the main result of [15, Theorem 9.1].

Theorem 3.6. Let M be a 3-connected matroid with |E(M)| ≥ 9. Then
M has a 3-tree T . Moreover, every non-sequential 3-separation of M is
equivalent to a 3-separation displayed by T .
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This paper will rely on the results from [17] that specify how wild triangles
can arise. Let {a, b, c} be a triangle of a 3-connected matroid M . Then
{a, b, c} is a standard wild triangle if there is a partition P = (P1, P2, . . . , P6)
of E(M) − {a, b, c} such that |Pi| ≥ 2 for all i and the following hold:

(i) M\a, M\b, and M\c are 3-connected, M\a, b, c is connected, and
co(M\a, b, c) is 3-connected.

(ii) (P1 ∪ P2 ∪ a, P3 ∪ P4 ∪ b, P5 ∪ P6 ∪ c) is a flower in M .
(iii) (P2 ∪P3 ∪P4 ∪ b, P5 ∪P6 ∪P1 ∪ c), (P4 ∪P5 ∪P6 ∪ c, P1 ∪P2 ∪P3 ∪a),

and (P6 ∪P1 ∪P2 ∪ a, P3 ∪P4 ∪P5 ∪ b) are 3-separations exposed in
M by a, b, and c, respectively.

A partition P satisfying these conditions is a partition associated to {a, b, c}.

Now denote the triangle {a, b, c} of matroid M by ∆ and take a copy of
M(K4) having ∆ as a triangle and {a′, b′, c′} as the complementary triad,
where e′ is the element of M(K4) that is not in a triangle with e. Let
P∆(M(K4),M) be the generalized parallel connection of M(K4) and M .
We write ∆M for P∆(M(K4),M)\∆ and say that ∆M is obtained from
M by a ∆ − Y exchange on ∆. Note that ∆M has ground set (E(M) −
{a, b, c}) ∪ {a′, b′, c′}. It is common to relabel a′, b′, and c′ as a, b, and c so
that M and ∆M have the same ground set, and we do this unless specified
otherwise. We say that ∆ is a costandard wild triangle in M if ∆ is a
standard wild triangle in (∆M)∗. Let P = (P1, P2, . . . , P6) be a partition of
E(M)− {a, b, c}. Then P is associated to the costandard wild triangle ∆ in
M if P is associated to the standard wild triangle ∆ in (∆M)∗.

Let X be a 3-separating set {a, b, c, s, t, u, v} in a 3-connected matroid M ,
where {a, b, c} is a triangle. Then X is a trident with wild triangle {a, b, c}
if {t, s, u, b}, {t, u, v, c}, and {t, s, v, a} are quads exposed in M\a, M\b, and
M\c, respectively (see Figure 1). Observe that (M/t)|(X − t) ∼= M(K4).
We remark that what we have called a trident is quite different from what
Geelen and Zhou [7] call a trident.

The following is the main result of [17, Theorem 3.1].

Theorem 3.7. Let {a, b, c} be a wild triangle in a 3-connected matroid M ,
where |E(M)| *= 11, and suppose that {a, b, c} is not an internal triangle
of a fan of M . Then M\a, M\b, and M\c are 3-connected. Moreover,
if (A1, A2), (B1, B2), and (C1, C2) are 3-separations exposed by a, b, and c,
respectively, with a ∈ B2 ∩ C1, b ∈ C2 ∩ A1, and c ∈ A2 ∩ B1, then exactly
one of the following holds:

(i) {a, b, c} is a wild triangle in a trident;
(ii) {a, b, c} is a standard wild triangle and (A1, A2), (B1, B2), and

(C1, C2) can be replaced by equivalent 3-separations such that



UPGRADING THE WHEELS-AND-WHIRLS THEOREM 15

c

s

v

t

E(M) − {a, b, c, s, t, u, v}

a
b

u

Figure 1. A trident.

(a) (A2∩B2, C1∩A1, B2∩C2, A1∩B1, C2∩A2, B1∩C1) is a partition
associated to {a, b, c};

(b) every 2-element cocircuit of M\a, b, c meets exactly two of
A2 ∩ B1, B2 ∩ C1, and C2 ∩ A1; and

(c) in (A2 ∩B2, C1 ∩A1, B2 ∩C2, A1 ∩B1, C2 ∩A2, B1 ∩C1), every
union of consecutive sets is exactly 3-separating in M\a, b, c;

(iii) {a, b, c} is a costandard wild triangle; more particularly, if M ′ is the
matroid that is obtained from M by performing a ∆−Y exchange on
{a, b, c} in M and then taking the dual of the result, then M ′ is 3-
connected and ((A2−c)∪b, (A1−b)∪c), ((B2−a)∪c, (B1−c)∪a), and
((C2−b)∪a, (C1−a)∪b) are 3-separations in M ′ exposed by a, b, and
c, respectively. Moreover, (ii) holds when (M,A1, A2, B1, B2, C1, C2)
is replaced by (M ′, (A2 − c) ∪ b, (A1 − b) ∪ c, (B2 − a) ∪ c, (B1 − c) ∪
a, (C2 − b) ∪ a, (C1 − a) ∪ b).

4. A More Powerful Result

In this section, we state a more powerful result from which Theorem 1.1
will follow when |E(M)| ≥ 9. First we prove Theorem 1.1 when |E(M)| ≤ 8.

Lemma 4.1. Let M be a 3-connected matroid other than a wheel or a whirl.
If |E(M)| ≤ 8, then M has an element whose deletion from M or M∗ is
3-connected but does not expose any 3-separations.

Proof. As M is not a wheel or a whirl, it follows by Tutte’s Wheels-and-
Whirls Theorem [21] that, by replacing M by its dual if necessary, we have
that M has an element e such that M\e is 3-connected. By Lemma 2.9,
since |E(M)| ≤ 8, the element e does not expose any 3-separations in M . !
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We may assume now that |E(M)| ≥ 9. In that case, Theorem 1.1 is
immediate from the following more powerful result. A terminal bag in a
3-tree T for a 3-connected matroid M is a degree-one vertex of T . A subset
S of E(M) is a terminal set if there is a 3-tree T for M such that S labels
a terminal bag of T .

Theorem 4.2. Let M be a 3-connected matroid other than a wheel or a
whirl. Suppose |E(M)| ≥ 9 and let S be a terminal bag of some 3-tree for
M . Then fcl(S) contains an element e whose deletion from M or M∗ is
3-connected but does not expose any 3-separations.

The next lemma establishes this theorem when S is a quad.

Lemma 4.3. Let f be an element of a quad Q in a 3-connected matroid M .

(i) When M\f is 3-connected, f does not expose any 3-separations in
M\f .

(ii) There is an element e in fcl(Q) whose deletion from M or M∗ is
3-connected but does not expose any 3-separations.

Proof. Take an element f in Q. Assume that M\f is 3-connected. Suppose f
exposes a 3-separation (X,Y ) of M\f . By Lemma 2.9, |X|, |Y | ≥ 4. Clearly
we may assume that |X ∩ (Q − f)| ≥ 2. Since Q − f is a triad of M\f , the
3-separation (X,Y ) is equivalent to the 3-separation (X ∪ (Q − f), Y − Q).
But f ∈ cl(Q−f), so (X∪Q,Y −Q) is a 3-separation of M ; a contradiction.
Hence (i) holds.

By (i) and duality, we may assume that neither M/f nor M\f is 3-
connected. Since Lemma 2.14 implies that si(M/f) and co(M\f) are 3-
connected, we deduce that f is in both a triangle and a triad. Hence f is in
a fan F with at least four elements. By orthogonality, F ⊆ fcl(Q). Hence,
by Lemma 2.11, (ii) holds. !

Lemma 4.4. For a tight flower ({a, b}, P,R) in a 3-connected matroid M
with {a, b} fully closed, {a, b} ∪ P a quad, and |E(M)| ≥ 7, either

(i) for some M1 in {M,M∗}, the matroid M1\a is 3-connected and does
not expose any 3-separations; or

(ii) R contains distinct elements t and c, and there is a labelling a′, b′ of
the elements of P such that {a, a′, t} and {b, b′, t} are triangles and
{a, a′, c} and {b, b′, c} are triads of M .

Proof. By (i) of the last lemma, we may assume that neither M/a nor M\a
is 3-connected. Thus, by Lemma 2.14, a is in both a triangle T and a triad
T ∗. As {a, b} is fully closed, b *∈ T ∪ T ∗. By orthogonality between T and
the cocircuit {a, b}∪P , we deduce that there is an element a′ of P such that



UPGRADING THE WHEELS-AND-WHIRLS THEOREM 17

T = {a, a′, t} for some element t of R. Let P −{a′} = {b′}. Suppose b′ ∈ T ∗.
Then, by orthogonality with the circuit T , we must have that T ∗ = {a, b′, t}.
Then, for X = {a, b, a′, b′, t}, we have λM (X) = r(X) + r∗(X) − |X| ≤
3 + 3 − 5 = 1, so |E(M) − X| ≤ 1. Hence |E(M)| ≤ 6; a contradiction.

We may now assume that a′ ∈ T ∗. Then T ∗ = {a, a′, c} for some el-
ement c of R. Moreover, c *= t as |E(M)| *= 4. By circuit exchange,
({a, a′, t} ∪ {a, b, a′, b′}) − a contains a circuit C of M . By orthogonality
with the cocircuit T ∗, we get that a′ *∈ C, so C = {t, b, b′}. By symmetry,
M has {c, b, b′} as a cocircuit. We conclude that (ii) holds. !

The next theorem is the main result of [18].

Theorem 4.5. Let (A,B) be a non-sequential 3-separation in a 3-connected
matroid M . Suppose that B is fully closed, A meets no triangle or triad of
M , and if (X,Y ) is a non-sequential 3-separation of M , then either A ⊆
fcl(X) or A ⊆ fcl(Y ). Then A contains an element whose deletion from M
or M∗ is 3-connected but does not expose any 3-separations.

The following consequence of the last theorem plays an important role in
the proof of Theorem 4.2.

Corollary 4.6. Let S be a non-sequential terminal set in a 3-connected
matroid M and let S′ = S − fcl(E(M) − S). If no triangle or triad of M
contains at least two elements of S′, then S′ contains an element e whose
deletion from M or M∗ is 3-connected but does not expose any 3-separations.

Proof. Let T be a 3-tree in which S is a terminal set. If M is sequentially
4-connected, then, by Theorem 1.2 and Lemma 2.9, the lemma holds. Thus
we may assume that M is not sequentially 4-connected and so T has at least
two vertices. Let u be the vertex of T labeled by S and let v be the vertex
of T adjacent to u. We next show that (S,E(M) − S) is a non-sequential
3-separation of M . This is certainly true if v is a bag vertex, so assume that
v is a flower vertex. Then the partition of E(M) displayed by v is a tight
maximal flower with S as a petal. Thus (S,E(M) − S) is non-sequential.

Now let (X,Y ) be a non-sequential 3-separation of M . By Theorem 3.6,
(X,Y ) is equivalent to a 3-separation (X ′, Y ′) displayed by T . Since S labels
a terminal bag, we may assume without loss of generality that S ⊆ X ′, so

S′ ⊆ S ⊆ fcl(X ′) = fcl(X).

The corollary now holds by Theorem 4.5. !
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5. Two Elements in the Guts

In this section, we prove Theorem 1.1 when M has a non-minimal 3-
separation (X,Y ) with |cl(X) ∩ cl(Y )| ≥ 2. In particular, the next lemma
will be needed in our treatment of wild triangles.

Lemma 5.1. In a 3-connected matroid M , let (X1, {a, b},X2) be a par-
tition of E(M) such that both (X1, {a, b} ∪ X2) and (X1 ∪ {a, b},X2) are
3-separations, and {a, b} ⊆ cl(X1)∩ cl(X2). Assume that M\a and M\b are
3-connected. Then either

(i) at least one of a and b does not expose any 3-separations in M ; or
(ii) |E(M)| = 10 and, for all e in E(M) − {a, b}, the matroid M\e is

3-connected but e does not expose any 3-separations in M .

Proof. Since (X1, {a, b}∪X2) ∼= (X1∪{a, b},X2), both of these 3-separations
are sequential, or both are non-sequential. In the first case, since {a, b} ⊆
cl(X1) ∩ cl(X2), we may assume that X1 ∪ {a, b} is sequential. By
Lemma 2.10, a does not expose any 3-separations. We may now assume
that both (X1, {a, b} ∪ X2) and (X1 ∪ {a, b},X2) are non-sequential. Thus
|X1|, |X2| ≥ 4. Moreover, each of (X1, a ∪ X2) and (X1 ∪ a,X2) are non-
sequential 3-separations of M\b.

Assume that M\a and M\b have exposed 3-separations (A1, A2) and
(B1, B2), respectively. Since b ∈ cl(X1) ∩ cl(X2) but b *∈ cl(B1) ∪ cl(B2),
all of X1 ∩ B1,X1 ∩ B2,X2 ∩ B1, and X2 ∩ B2 are non-empty. Suppose
|X1∩B1| = 1. Then, as |X1|, |B1| ≥ 4, we have |X1∩B2|, |X2∩B1| ≥ 2. Thus,
by uncrossing, X1∪B2 is 3-separating in M\b and (X1∪B2, (X2∪a)∩B1) ∼=
(B1, B2). But b ∈ cl(X1 ∪ B2) so we contradict the fact that (B1, B2)
is exposed by b. We deduce that |X1 ∩ B1| ≥ 2. By symmetry, each of
|X1∩B2|, |X2 ∩B1|, and |X2∩B2| has at least two elements. Thus M\b has
(X1∩B1,X1∩B2, (X2∪a)∩B2, (X2∪a)∩B1) as a flower, Φ. Suppose X1∩B1

is loose and X1 ∩B2 is tight. Then, by Lemma 3.1, X1 ∩B1 ⊆ fcl(X1 ∩B2).
From Lemma 2.6, it follows that ((X2 ∪ a) ∩ B1,X1 ∪ B2) ∼= (B1, B2); a
contradiction. By symmetry, it follows that X1 ∩B1 and X1 ∩B2 are either
both loose or are both tight petals of Φ. In the former case, as X2 ∪ a is
not sequential, it is not loose in the flower (X1 ∩ B1,X1 ∩ B2,X2 ∪ a) of
M\b. Thus, by Lemma 3.1, each of X1 ∩ B1 and X1 ∩ B2 is contained in
fclM\b(X2 ∪ a). Hence X1 is sequential in M\b; a contradiction. We deduce
that both X1 ∩ B1 and X1 ∩ B2 are tight petals of Φ.

Now, without loss of generality, a ∈ B1. By Lemma 2.1, each of X1 ∩ B1

and (X1 ∪ a) ∩ B1 is 3-separating in M\b. Thus a ∈ cl(∗)M\b(X1 ∩ B1). But

a ∈ clM\b(X2), so, by orthogonality, a ∈ clM\b(X1 ∩ B1).
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As X1 ∩B1 and X1 ∩B2 are 3-separating in M\b and their complements
contain X2, each is 3-separating in M . Thus (X1 ∩B1,X1 ∩B2,X2 ∪ {a, b})
is a flower Ψ in M . As a ∈ cl(X1 ∩ B1) ∩ cl(X2 ∪ {a, b}), the flower Ψ is
not a copaddle. If Ψ is a paddle, then )(X2 ∪ {a, b},X1 ∩ B1) = 2. But
)(X2 ∪ {a, b},X1) = 2 and b ∈ cl(X2 ∪ {a, b}) ∩ cl(X1), so, by Lemma 2.5,
b ∈ cl(X1 ∩B1). Thus b ∈ cl(B1); a contradiction. Hence Ψ is not a paddle.
Thus the local connectivity between consecutive petals of Ψ is one.

Since (A1, A2) is a 3-separation of M\a exposed by a, a symmetric argu-
ment to that just given establishes that (X1 ∩ A1,X1 ∩ A2,X2 ∪ {a, b}) is a
flower in M in which the local connectivity between petals is one. Without
loss of generality, b ∈ A1. Note that this means that we have symmetry be-
tween (b, a,B1, B2, A1, A2) and (a, b,A1, A2, B1, B2). Thus b ∈ cl(X1 ∩ A1).

Let A1 ∩ X1 = R and A2 ∩ X1 = G and colour the elements of R and G
red and green, respectively. Note that we are only colouring elements of X1.
Since b *∈ cl(B1) ∪ cl(B2) but b ∈ cl(R), it follows that R *⊆ B1 ∩ X1 and
R *⊆ B2 ∩ X1. Likewise, as a *∈ cl(A1), we deduce that R does not contain
B1 ∩ X1. We have just noted that B1 ∩ X1 is not monochromatic. From
above, we deduce that we have the following two cases:

(I) B2 ∩ X1 is all red; or
(II) B2 ∩ X1 contains both red and green elements.

Consider case (I). We have A2 ∩X1 = G ⊆ B1 ∩X1 and )(B1 ∩X1,X2 ∪
{a, b}) = 1 = )(A2∩X1,X2∪{a, b}). Since a ∈ cl(B1∩X1)∩cl(X2∪{a, b}),
we deduce by Lemma 2.5 that a ∈ cl(A2∩X1), so a ∈ cl(A2); a contradiction.

We may now assume that case (II) occurs.

5.1.1. At least one of |X1 ∩ B1 ∩ A1|, |X1 ∩ B1 ∩ A2|, |X1 ∩ B2 ∩ A1|, and
|X1 ∩ B2 ∩ A2| is one.

Assume that all of these sets have at least two elements. Then, by ap-
plying [15, 8.2.2] to the flower (X1 ∩ B1,X1 ∩ B2,X2 ∪ {a, b}) and the 3-
separation (A1 ∩ X1, E(M) − (A1 ∩ X1)), we get that (X1 ∩ B1 ∩ A1,X1 ∩
B1 ∩ A2,X1 ∩ B2,X2 ∪ {a, b}) is a flower in which the local connectivity
between consecutive petals is 1. Thus )(X1 ∩ B1 ∩ A1,X2 ∪ {a, b}) =
)(X1 ∩ B1,X2 ∪ {a, b}) = 1 and a ∈ cl(B1 ∩ X1) ∩ cl(X2 ∪ {a, b}), so, by
Lemma 2.5, a ∈ cl(X1 ∩ B1 ∩ A1). But )(X1 ∩ B1 ∩ A1,X2 ∪ {a, b}) =
)(A1 ∩ X1,X2 ∪ {a, b}) = 1 and b ∈ cl(A1 ∩ X1) ∩ cl(X2 ∪ {a, b}), so
b ∈ cl(X1 ∩ B1 ∩ A1). Hence )(X1 ∩ B1 ∩ A1,X2 ∪ {a, b}) ≥ 2; a con-
tradiction.

The next three assertions establish that all of |X1 ∩ B1 ∩ A1|, |X1 ∩ B1 ∩
A2|, |X1 ∩ B2 ∩ A1|, and |X1 ∩ B2 ∩ A2| are one.
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5.1.2. If |X1 ∩ B1 ∩ A1| = 1, then |X1 ∩ B2 ∩ A1| = |X1 ∩ B1 ∩ A2| =
|X1 ∩ B2 ∩ A2| = 1.

Suppose that |X1 ∩ B1 ∩ A1| = 1. Let X1 ∩ B1 ∩ A1 = {x1}. Suppose
|X1∩B2∩A1| ≥ 2. Then, as A1∩X1 is 3-separating in M and hence in M\b,
and B2 is 3-separating in M\b, by Lemma 2.1, B2 ∪ x1 is 3-separating in
M\b. Thus (B1, B2) ∼= (B1−x1, B2∪x1). Also, as X1∩B1 is a tight petal of
Φ, it follows that ((X1∩B1)−x1, (X1∩B2)∪x1, (X2∪a)∩B2, (X2∪a)∩B1) is
a flower, Φ′, in M\b. Because )(X1∩B1,X1∩B2) = 1, the flowers Φ and Φ′

imply that )(X1∩B1, (X2∪a)∩B1) = 1 and )((X1∩B1)−x1, (X2∪a)∩B1) =
1. As a ∈ cl(X1 ∩ B1) ∩ cl((X2 ∪ a) ∩ B1), it follows, by Lemma 2.5, that
a ∈ cl((X1 ∩ B1) − x1). But (X1 ∩ B1) − x1 ⊆ A2; a contradiction. Thus
|X1 ∩ B2 ∩ A1| = 1.

Suppose that |X1 ∩ B1 ∩ A2| ≥ 2. Then, as B1 ∩ X1 and A2 ∩ X1 are 3-
separating in M\a, it follows by Lemma 2.1 that (A2∩X1)∪x1 is 3-separating
in M\a, so A1∩X1 is loose in (A1∩X1, A2∩X1, (X2∪a)∩A2, (X2∪a)∩A1),
which, by symmetry, is a contradiction. Thus |X1 ∩ B1 ∩ A2| = 1 and, by
symmetry, |X1 ∩ B2 ∩ A2| = 1. Hence (5.1.2) holds.

5.1.3. If |X1 ∩ B2 ∩ A1| = 1, then |X1 ∩ B1 ∩ A1| = |X1 ∩ B1 ∩ A2| = 1 =
|X1 ∩ B2 ∩ A2|.

Suppose X1 ∩ B2 ∩ A1 contains a single element, x2 say. By (5.1.2), we
may assume that |X1 ∩ B1 ∩ A1| ≥ 2. Then (B1, B2) ∼= (B1 ∪ x2, B2 − x2)
and (X1 ∩ (B1 ∪ x2), (X1 ∩B2)− x2,X2 ∪ a) is a flower that is equivalent to
the flower (X1 ∩B1,X1 ∩B2,X2 ∪ a) in M\b. But X1 ∩A1 and X1 ∩B1 are
contained in X1 ∩ (B1 ∪ x2). Thus {a, b} ⊆ cl(X1 ∩ (B1 ∪ x2)) ∩ cl(X2 ∪ a),
so 1 = )(X1 ∩ (B1 ∪ x2),X2 ∪ a) ≥ 2; a contradiction. Hence (5.1.3) holds.

5.1.4. If |X1 ∩ B2 ∩ A2| = 1, then |X1 ∩ B1 ∩ A1| = |X1 ∩ B1 ∩ A2| = 1 =
|X1 ∩ B2 ∩ A1|.

Suppose X1 ∩B2 ∩A2 = {y2}. By (5.1.2) and symmetry, we may assume
that |X1 ∩A2 ∩B1| ≥ 2. Then (B1, B2) ∼= (B1 ∪ y2, B2 − y2) and X1 ∩A2 =
G ⊆ X1 ∩ (B1 ∪ y2). Replacing (B1, B2) by (B1 ∪ y2, B2 − y2), we have
reduced to case (I), so we have a contradiction that establishes (5.1.4).

By combining the last four sublemmas and using the symmetry between
(b, a,B1, B2, A1, A2) and (a, b,A1, A2, B1, B2), we deduce that all of |X1 ∩
B1 ∩ A1|, |X1 ∩ B1 ∩ A2|, |X1 ∩ B2 ∩ A1|, and |X1 ∩ B2 ∩ A2| are one. By
symmetry, all of these cardinalities are still one when we replace X1 by X2.
Hence |E(M)| = 10. Thus X1 and X2 are both quads in M , so r(M) = 4.
Hence, if e ∈ Xi, one easily checks that M\e is 3-connected. If e exposes a
3-separation (X,Y ) of M\e, then we may assume that X contains Xi − e.
Hence X spans e; a contradiction. !
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Lemma 5.2. In a 3-connected matroid M other than a wheel or a whirl,
let (X1, {a, b},X2) be a partition of E(M) such that both (X1, {a, b} ∪ X2)
and (X1 ∪ {a, b},X2) are 3-separations, and {a, b} ⊆ cl(X1) ∩ cl(X2). Then
M has an element e whose deletion from M or M∗ is 3-connected and does
not expose any 3-separations.

Proof. The result is immediate from the preceding lemma if both M\a and
M\b are 3-connected. Thus we may assume that M\a is not 3-connected.
As a ∈ cl(X1)∩ cl(X2), the matroid M/a has (X1,X2 ∪ b) as a non-minimal
2-separation. Thus, by Lemma 2.2, co(M\a) is 3-connected. Since M\a is
not 3-connected, it follows that a is in a triad {a, x, y} of M . Now either
{a, x, y} is a wild triangle of M∗, or, for some z in {x, y}, the matroid M∗\z
is 3-connected and z does not expose any 3-separations of M∗. We may
assume that the former holds. Since M∗\a is not 3-connected, it follows
by [17, Corollary 4.3] that {a, x, y} is in a 4-element fan of M . Then, by
Lemma 2.11, the required result holds. !

6. Tridents

In this section, we show that, when a triangle Z of M is contained in a
trident X, if e ∈ X −Z, then e fails to expose a 3-separation in at least one
of M\e and M/e. Throughout the section, we shall assume that the trident
is labelled as in Figure 1.

Lemma 6.1. In a trident X in a 3-connected matroid M , for all pairs of
distinct elements e and f of {t, s, u, v}, the set (E(M) − X) ∪ {e, f} spans
M , and r(X) = r({t, s, u, v}) = 4.

Proof. Let Y = E(M)−X. First observe that cl(Y ∪ s) avoids the cocircuit
{t, u, v, c, b} of M , so

(2) cl(Y ∪ s) ∩ {u, v, t} = ∅.

Symmetry between the triples (b, c, s), (c, a, u), and (a, b, v) implies that
cl(Y ∪u)∩{v, s, t} = ∅ = cl(Y ∪v)∩{s, u, t}. As t *∈ cl(Y ∪s) and s *∈ cl(Y ),
the Mac Lane-Steinitz condition implies that s *∈ cl(Y ∪ t). By symmetry,

(3) cl(Y ∪ t) ∩ {u, v, s} = ∅.

Now r(Y ) + 1 = r(Y ∪ t) ≤ r(M) − 1 and r(Y ) + r(X) = r(M) + 2.
But {t, s, u, v} spans X. Hence r({t, s, u, v}) = r(X) ≤ 4. Combining these
observations, we get r(Y ) = r(M) − 2 and r(X) = 4. The lemma follows
from (2) and (3) using symmetry. !

Lemma 6.2. In a trident X in a 3-connected matroid M , for all x in X −
{a, b, c}, either M/x or M\x is 3-connected having no exposed 3-separations.
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Proof. Let Y = E(M)−X. By symmetry, it suffices to show that M/t and at
least one of M/s and M\s are 3-connected having no exposed 3-separations.
We show first that:

6.2.1. M/t is simple; and either M/s is simple or M has a circuit {s, a, y}
for some y in Y .

The circuits {t, s, u, b}, {t, u, v, c}, and {t, s, v, a} of M imply that
(M/t)|{a, b, c, s, u, v} and (M/s)|{a, b, c, t, u, v} are isomorphic to the rank-3
wheel and whirl, respectively. Moreover, cl(Y ) avoids {t, s}, so (M/t)|Y ∼=
M |Y and (M/s)|Y ∼= M |Y . Hence a 2-circuit of M/t or of M/s must contain
one element of Y and one element of {a, b, c, s, t, u, v}. Using orthogonality
with the cocircuits {t, s, u, b, a}, {t, u, v, c, b}, and {t, s, v, a, c}, we deduce
that (6.2.1) holds.

We show next that:

6.2.2. If w ∈ {s, t} and M/w is simple, then M/w is 3-connected having
no exposed 3-separations.

Suppose (U, V ) is either a 2-separation or an exposed 3-separation of
M∗\w. Then neither U nor V is spanning in M/w. Since we may assume
at least two of a, b, and c are in U , we may assume that U contains {a, b, c}.
We show next that we may assume that U contains X−w. This is certainly
true if U meets {s, t, u, v}−w for then U spans X −w in M/w. If U avoids
{s, t, u, v}−w, then V spans X−w in M/w and, by interchanging U and V ,
we again get that we may assume U contains X−w. The known cocircuits of
M imply that w is a coloop of M |(V ∪ w). Hence λM/w(V ) = λM (V ) = k,
say. But M is 3-connected, so k *= 1; and k *= 2 as (U, V ) is exposed in
M∗\w. Thus (6.2.2) holds.

By (6.2.1), to complete the proof of the lemma, we need to show that:

6.2.3. If M has a triangle {s, a, y} for some y in Y , then M\s is 3-connected
having no exposed 3-separations.

We show first that M\s has no minimal 2-separations. Certainly M\s
has no 2-circuits. Suppose M\s has a 2-cocircuit C∗. Then C∗ ∪ s is a
triad of M meeting the triangle {s, a, y}. Thus |C∗ ∩ {a, y}| = 1. If C∗

meets {a, b, c}, then, by orthogonality, C∗ contains exactly two elements of
{a, b, c}. In that case, E(M)− (C∗ ∪ s) avoids (E(M)−X)∪ {t, u} and, by
Lemma 6.1, the latter spans M ; a contradiction. Thus C∗ avoids {a, b, c}
so y ∈ C∗. Orthogonality between C∗ ∪ s and the circuits {t, s, v, a} and
{t, s, u, b} implies that C∗ − y = {t}. But then C∗ ∪ s meets the circuit
{t, u, v, c} in a single element; a contradiction. We conclude that M\s has
no 2-cocircuits, so M\s has no minimal 2-separations.
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Now let (U, V ) be either a 2-separation or an exposed 3-separation of
M\s. Then neither U nor V spans s. Moreover, since M\s has no minimal
2-separations, if (U ′, V ′) is a partition of E(M\s) such that fclM\s(U

′) =
fclM\s(U) and fclM\s(V

′) = fclM\s(V ), then (U ′, V ′) is a 2-separation or an
exposed 3-separation of M\s. Thus we may assume that {a, b, c} ⊆ U . Then
y ∈ V otherwise s ∈ cl(U). Now |U ∩ {t, u, v}| ≤ 1 otherwise U spans s. If
t ∈ U , then the cocircuit {t, u, b, a} of M\s means that we can move u from V
into U . Likewise, if u or v is in U , the cocircuit {t, v, a, c} of M\s allows us to
move t from V into U . After these moves, |U∩{t, u, v}| ≥ 2; a contradiction.
We deduce that neither of these moves is possible, so {t, u, v} ⊆ V . Then, in
M\s, using the circuit {t, u, v, c} and the cocircuit {t, v, a, c}, we can move
c and then a from U to V . After these moves, V contains {a, y}, and so
s ∈ cl(V ); a contradiction. We conclude that (6.2.3) holds and hence so
does the lemma. !

7. Two-element Petals in Tight Flowers

The goal of this section is to prove the next theorem, which will be crucial
in the proof of Theorem 4.2 and is also of some independent interest.

Theorem 7.1. Let (P, {a, b}, Q) be a tight flower of a 3-connected matroid
M where {a, b} is fully closed and both P and Q have at least three elements.
Then the following hold.

(i) If a is in a triangle, then M\a is 3-connected and has no 3-
separations exposed by a.

(ii) If a is in a triad, then M/a is 3-connected and has no 3-separations
exposed by a.

(iii) If a is in neither a triangle nor a triad, then both M\a and M/a are
3-connected.

Moreover, if a is in neither a triangle nor a triad and both M\a and M/a
have 3-separations exposed by a, then |P | = |Q| = 4, both M\b and M/b are
3-connected, and neither M\b nor M/b has a 3-separation exposed by b.

Proof. From the fact that (P, {a, b}, Q) is tight, we immediately obtain

7.1.1. fcl(P ) ∩ {a, b} = ∅ = fcl(Q) ∩ {a, b}.

Next we show that:

7.1.2. If a is in a triangle, then a is not in a triad.
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Let {a, p, q} be a triangle T . If b ∈ T , then {a, b} is not closed, so b /∈ T .
If {p, q} ⊆ P , then a ∈ cl(P ) contradicting 7.1.1, so {p, q} *⊆ P . Hence we
may assume that p ∈ P and q ∈ Q.

Now assume that a is in a triad. Without loss of generality we may
assume that {a, p, s} is a triad. As {a, b} is coclosed, s *= b. If s ∈ P , then
a ∈ cl∗(P ); a contradiction. Thus s ∈ Q.

The triangle T and the triad {a, p, s} imply that p ∈ cl(Q∪{a, b}) and p ∈
cl∗(Q∪{a, b}). Thus, by Lemma 2.17(ii), λ(Q∪{a, b, p}) < λ(Q∪{a, b}) = 2.
This is a contradiction since |E − (Q ∪ {a, b, p})| ≥ 2. Hence (7.1.2) holds.

By replacing M by its dual if necessary, we may now assume that a is not
in a triad of M . Since a *∈ cl∗(P ) and a *∈ cl∗(Q), it follows that

7.1.3. a ∈ cl(Q ∪ b) and a ∈ cl(P ∪ b).

Similarly, since b *∈ cl(Q) and b *∈ cl(P ), it follows that

7.1.4. b ∈ cl∗M\a(P ) and b ∈ cl∗M\a(Q).

We show next that

7.1.5. M\a is 3-connected.

Let (X,Y ) be a 2-separation of M\a, where b ∈ X. As a is not in a
triad, |X|, |Y | ≥ 3. Assume that P ⊆ Y . By (7.1.4), b ∈ cl∗M\a(P ) and
hence b ∈ cl∗M\a(Y ). Thus (X − b, Y ∪ b) is a 2-separation of M\a. But
P ∪b ⊆ Y ∪b and, by (7.1.3), a ∈ clM (Y ∪b). Therefore λM (X−b) = 1. But
|X − b| ≥ 2 and we have contradicted the fact that M is 3-connected. Thus
X ∩ P *= ∅. On the other hand, if P ⊆ X, then P ∪ b ⊆ X and a ∈ cl(X)
again contradicting the fact that M is 3-connected. Thus every 2-separation
(X,Y ) of M\a crosses both P and Q.

Now λM\a(Y ) = 1 and λM\a(P ∪ b) = λM (P ∪ {a, b}) = 2. Thus, by
the submodularity of λ, we deduce that either λM\a(Y ∩ (P ∪ b)) = 1 or
λM\a(Y ∪ P ∪ b) = 1. Hence λM\a(X ∪Q) = 1 or λM\a(Y ∪ P ∪ b) = 1. As
b ∈ X, this means that either λM (X ∪Q∪ a) = 1 or λM (Y ∪P ∪ b∪ a) = 1.
As M is 3-connected, we deduce that either |Y ∩ P | = 1 or |X ∩ Q| = 1.

Assume that |Y ∩P | = 1, say Y ∩ P = {y}. If λM\a(P − y) = 1, then, as
|P − y| > 1 and a ∈ clM (Q ∪ b), we again contradict the 3-connectivity of

M . Thus λM\a(P − y) > 1. But λM\a(P ) = 2. Therefore y ∈ cl(∗)M\a(P − y),

so y ∈ cl(∗)M\a(X) and (X ∪y, Y −y) is also a 2-separation of M\a. But Y −y

avoids P , contradicting the fact that (X ∪ y, Y − y) crosses P . An identical
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argument holds in the case that |X ∩ Q| = 1 and we conclude that M\a is
indeed 3-connected, that is, (7.1.5) holds.

It follows from (7.1.5) and duality that (iii) of the theorem holds.

7.1.6. Suppose Z ∪ e ⊆ P or Z ∪ e ⊆ Q. Then

(i) λM\a(Z) = λM/a(Z) = λM (Z); and
(ii) the following are equivalent:

(a) e ∈ cl(∗)M\a(Z);

(b) e ∈ cl(∗)M/a(Z);

(c) e ∈ cl(∗)M (Z).

To show this, suppose that Z ⊆ P . By (7.1.1), a /∈ clM (Z) and, by (7.1.3),
the element a is not a coloop of E(M) − Z. Part (i) of (7.1.6) follows from
these facts and elementary rank calculations. Part (ii) follows from (i) and
Lemma 2.17. Thus (7.1.6) holds.

Now assume that a exposes a 3-separation (D1,D2) in M\a, where b ∈ D1.
Let (P1, P2, Q2, Q1) = (D1 ∩ P,D2 ∩ P,D2 ∩ Q,D1 ∩ Q).

7.1.7. (P1 ∪ b, P2, Q2, Q1) is a flower in M\a. Moreover, b ∈ cl∗M\a(P1) and

b ∈ cl∗M\a(Q1).

To see this, suppose first that P ⊆ D2. Then, as b ∈ cl∗M\a(P ), we

have b ∈ cl∗M\a(D2), so (D1 − b,D2 ∪ b) is a 3-separation of M\a equivalent
to (D1,D2). But a ∈ clM (D2 ∪ b), so we have contradicted the fact that
(D1,D2) is exposed by a. Hence P *⊆ D2. If P ⊆ D1, then P ∪ b ⊆ D1,
so a ∈ clM (D1). Hence (D1,D2) is not exposed by a. Thus P *⊆ D1. By
symmetry, it follows that (D1,D2) crosses both P and Q.

Assume that |P ∩ D1| = 1. Now |P | ≥ 3 and, by Lemma 2.9, |D1| ≥ 4.
By two applications of uncrossing, we get that λM\a(P ∪ D2) = 2 and
λM\a(P ∪D2∪b) = 2. Thus, in M\a, the 3-separation (D1,D2) is equivalent
to (D1 − P,D2 ∪ P ) and hence to (D1 − (P ∪ b),D2 ∪ P ∪ b). But a ∈
cl(D2 ∪ P ∪ b). Hence a does not expose (D1,D2); a contradiction. We
deduce that |P ∩ D1| > 1. By symmetry, |Q ∩ D1| > 1.

Next assume that |P ∩ D2| = 1. Then (D1,D2) is equivalent to (D1 ∪
P,D2 − P ). As b ∈ D1, it follows that a ∈ cl(D1 ∪ P ), so (D1,D2) is
not exposed by a. Hence |P ∩ D2| > 1 and, by symmetry, |Q ∩ D2| > 1.
We conclude that (P1 ∪ b, P2, Q2, Q1) is a flower in M\a. By symmetry,
(P1, P2, Q2, Q1 ∪ b) is also a flower in M\a. Thus b is a loose element of

this flower. Hence b ∈ cl(∗)M\a(P1). But b /∈ clM (P ), so b /∈ clM\a(P1). Hence
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b ∈ cl∗M\a(P1). By symmetry, b ∈ cl∗M\a(Q1). We conclude that (7.1.7)
holds.

Next we show that

7.1.8. If z ∈ Q2 and z ∈ cl(∗)M\a(Q1 ∪ b), then z ∈ cl(∗)M\a(Q1).

To see this, suppose first that z ∈ cl∗M\a(Q1 ∪ b). Then, since, by
(7.1.7), b ∈ cl∗M\a(Q1), it follows that cl∗M\a(Q1 ∪ b) = cl∗M\a(Q1), so
z ∈ cl∗M\a(Q1). Next suppose that z ∈ clM\a(Q1 ∪ b). Then, as b *∈ cl(Q),
it follows that b *∈ cl(Q1 ∪ z). Hence z ∈ cl(Q1). We conclude that (7.1.8)
holds.

7.1.9. The element a is not in a triangle of M .

Assume that {p, a, q} is a triangle of M . As noted in 7.1.2, we may assume
that p ∈ P and q ∈ Q. By (7.1.3), a ∈ cl(Q ∪ b). Thus p ∈ cl(Q ∪ b). By
applying [15, Lemma 5.5(ii)] in the flower (P1, P2, Q2, Q1∪b) in M\a, we get
that either p ∈ cl(Q2) or p ∈ cl(Q1 ∪ b). The former implies that a ∈ cl(Q),
contradicting (7.1.1). Thus the latter holds. By symmetry, q ∈ cl(P1 ∪ b).
Thus {p, q} ⊆ cl(D1) so that a ∈ cl(D1) contradicting the fact that (D1,D2)
is blocked by a. Hence (7.1.9) holds.

It follows from (7.1.9) that (i) of the theorem holds and, by duality, so
does (ii). We now assume that a is in neither a triangle nor a triad. Then,
by (iii), both M\a and M/a are 3-connected. As above, assume (D1,D2) is
a 3-separation of M\a exposed by a, where b ∈ D1, and let P1, P2, Q1, and
Q2 be as before. Assume too that M/a has a 3-separation (R,G) that is
exposed by a where b ∈ R. Then |R|, |G| ≥ 4. Note that, up to duality, we
have symmetry between (D1,D2) and (R,G). We make frequent use of this
fact as, for example, in the following.

7.1.10. In the matroid M ,

(i) a blocks P2 ∪ Q2;
(ii) a blocks P1 ∪ b;
(iii) a blocks Q1 ∪ b;
(iv) a coblocks G;
(v) a coblocks (R ∩ P ) ∪ b;
(vi) a coblocks (R ∩ Q) ∪ b.

Part (i) follows from the fact that a blocks (D1,D2), and D2 = P2 ∪ Q2.
Consider (ii). As a blocks (D1,D2), we have a ∈ cl∗(D2), so a ∈ cl∗(Q∪P2).
Now suppose that a /∈ cl∗M (P1∪b). Then a ∈ clM (Q∪P2). But a ∈ clM (Q∪b).
By considering the flowers (P1∪b, P2, Q2, Q1) and (P1, P2, Q2, Q1∪b) of M\a
and using Lemma 2.16, we see that Q ∪ P2 and Q ∪ b are a modular pair
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in M\a. It follows by Lemma 2.15 that a ∈ clM (Q), contradicting 7.1.1.
Thus (ii) holds. Part (iii) follows by the symmetry between P and Q. Parts
(iv), (v), and (vi) hold by the symmetry between (D1,D2) and (R,G) under
duality.

The next assertion follows from (7.1.7) by duality.

7.1.11. ((P ∩ R) ∪ b, P ∩ G,Q ∩ G,Q ∩ R) is a flower in M/a. Moreover,
b ∈ clM/a(P ∩ R) and b ∈ clM/a(Q ∩ R).

A consequence of (7.1.11) and (7.1.6) is

7.1.12. λM\a(R ∩ P ) = λM\a(G ∩ P ) = λM\a(R ∩ Q) = λM\a(G ∩ Q) = 2.

We show next that

7.1.13. b /∈ cl(∗)M\a(R ∩ P ).

If b ∈ clM\a(R∩P ), then b ∈ clM (P ), so this case does not occur. Assume
that b ∈ cl∗M\a(R ∩ P ). By (7.1.10)(iv), a ∈ clM (G). Thus, by Lemma 2.19,

b ∈ cl∗M (R ∩ P ) so b ∈ cl∗M (P ), contradicting (7.1.1). Hence (7.1.13) holds.

Assume from now on that among 3-separations exposed by a in M\a and
3-separations exposed by a in M/a, we have chosen (P1 ∪ Q1 ∪ b, P2 ∪ Q2)
and (R,G) such that the number of nonempty sets amongst P1 ∩ R,P1 ∩
G,P2 ∩R,P2 ∩G,Q1 ∩R,Q1 ∩G,Q2 ∩R,Q2 ∩G is minimized. We call this
assumption the minimality assumption.

7.1.14. If 1 ∈ {|R ∩ P1|, |R ∩ P2|, |G ∩ P1|, |G ∩ P2|}, then |P | = 4, and
|R ∩ P1| = |R ∩ P2| = |G ∩ P1| = |G ∩ P2| = 1.

Let (R1, R2) be a permutation of (P1, P2) and let (Y,B) be a permutation
of (R,G). Assume that |R1 ∩ Y | = 1, letting R1 ∩ Y = {y1}, say. Assume
that |R1| > 2. Then λM\a(R1 ∩B) ≥ λM\a(R1) = 2. Thus, by Lemma 2.17,

y1 ∈ cl(∗)M\a(R1 ∩ B). Therefore, by (7.1.6)(ii), y1 ∈ cl(∗)M/a(R1 ∩ B). Hence

y1 ∈ cl(∗)M/a(B). This means that (B ∪ y1, Y − y1) is also a 3-separation of

M/a. Using (B ∪ y1, Y − y1) to replace (B,Y ), we get a contradiction to
the minimality assumption. Therefore |R1 ∩ B| = 1 and |R1| = 2.

It is now clear that either (7.1.14) holds, or we may assume, up to sym-
metry, that |Y ∩ R2| ≥ 2. Assume the latter holds. Then uncrossing
the 3-separating sets R2 and Y ∩ P shows that λM\a(R2 ∪ y1) = 2, so

y1 ∈ cl(∗)M\a(R2). If R2 = P1, then we deduce that y1 ∈ cl(∗)M\a(P1 ∪ Q1 ∪ b),

and we can replace (P1∪Q1∪b, P2∪Q2) by (P1∪Q1∪b∪y1, (P2∪Q2)−y1).
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If, instead, R2 = P2, we deduce that y1 ∈ cl(∗)M\a(P2∪Q2) and we can replace

(P1 ∪ Q1 ∪ b, P2 ∪ Q2) by ((P1 ∪ Q1 ∪ b) − y1, P2 ∪ Q2 ∪ y1). In both cases,
these replacements contradict the minimality assumption. We deduce that
(7.1.14) holds.

The next assertion will require several steps to establish it.

7.1.15. If 1 /∈ {|R ∩ P1|, |R ∩ P2|, |G ∩ P1|, |G ∩ P2|}, then (P1, P2) = (P ∩
G,P ∩ R), and the flower (P1, P2, Q2, Q1 ∪ b) in M\a is swirl-like.

Assume first that (R,G) crosses both P1 and P2. Then |R ∩ P1|, |R ∩
P2|, |G ∩ P1|, |G ∩ P2| ≥ 2. Moreover, λM\a(R ∩ P ) = 2. Then the flower
(P1, P2, Q2, Q1 ∪ b) of M\a refines to

(P1 ∩ G,P1 ∩ R,P2 ∩ R,P2 ∩ G,Q2, Q1 ∪ b),

which is a flower Φ1 that displays R∩P . This follows by repeated uncrossing
arguments. In particular, λM\a(P1∩R) = 2 as λM\a(P1) = 2 = λM\a(P ∩R)
and P1∩R = P1∩(P ∩R). Also λM\a((P2∩G)∪Q2) = 2 since (P2∩G)∪Q2

is the complement of the union of the 3-separating sets P1∪Q1∪b and P ∩R.

Now λM\a(G∩P ) = 2, and G∩P is the union of two non-adjacent petals
of Φ1. Thus Φ1 is an anemone. Hence, by Lemma 3.5, (P1, P2 ∩ R,P2 ∩
G,Q2, Q1 ∪ b) is also an anemone Φ′

1. As b ∈ cl∗M\a(P1), by applying [15,
Lemma 6.4] to Φ′

1 and then to Φ1, we deduce that b ∈ cl∗M\a(P1 ∩ R); a
contradiction to (7.1.13).

Assume next that P1 ⊆ R. As a ∈ clM (G), we have a ∈ clM (G ∪ Q ∪
(P2 ∩R)). Since b ∈ cl∗M\a(P1), we can apply Lemma 2.19 to contradict the

fact that b /∈ cl∗M (P ). We conclude that P1 ∩ G *= ∅.

Now assume that P1 ⊆ G and that G ∩ P2 *= ∅. Then, by the hypothesis
of (7.1.15), |P2 ∩ G| > 1. Moreover, by (7.1.12), |P2 ∩ R| > 1. Then,
arguing as for Φ1 and noting that Q2 ∪ (P2 ∩ R) is the intersection of the
two 3-separating sets Q ∪ b ∪ R and P2 ∪ Q2, we get that the partition

(P1, P2 ∩ G,P2 ∩ R,Q2, Q1 ∪ b)

is a flower Φ2 in M\a. In particular, (P1 ∪ (P2 ∩G)∪Q1 ∪ b, (P2 ∩R)∪Q2)
is a 3-separation (Z1, Z2) in M\a.

Next we shall show that (Z1, Z2) is well blocked by a. First assume
(Z1, Z2) is not blocked by a. Then a ∈ clM (P1 ∪ (P2 ∩ G) ∪ b ∪ Q1) since
a *∈ cl(P2 ∪ Q2). Also a ∈ clM (Q1 ∪ Q2 ∪ b). By concatenating petals in Φ2

and applying Lemma 2.15, we get that a ∈ clM (Q1 ∪ b); a contradiction as
a *∈ cl(D1). Thus (Z1, Z2) is blocked by a.
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We now need to show that every 3-separation of M\a equivalent to
(Z1, Z2) is also blocked by a. We do this by showing that each 3-separation
(Z ′

1, Z
′
2) of M\a that is of one of the forms (Z1∪z, Z2−z) or (Z1−z, Z2∪z)

is blocked by a. Moreover, for each such choice of (Z ′
1, Z

′
2), we can re-

place (R,G) or (D1,D2) by equivalent 3-separations for which it can be
easily checked that the minimality assumptions continue to hold along with
the other assumptions governing both (7.1.15) and this case, namely that
1 /∈ {|R∩P1|, |R∩P2|, |G∩P1|, |G∩P2|}, that P1 ⊆ G, and that G∩P2 *= ∅.
Once we have established this, we can replace (Z1, Z2) by (Z ′

1, Z
′
2) and repeat

the argument.

Assume first that z ∈ cl(∗)M\a(Z1) ∩Z2. We now use the flower (P1 ∪ (P2 ∩

G), P2 ∩ R,Q2, Q1 ∪ b) of M\a obtained by uncrossing the 3-separations
(Z1, Z2) and (P,Q ∪ b). This flower is a concatenation of Φ2. By [15,

Lemma 5.5], we see that either (i) z ∈ P2 ∩R and z ∈ cl(∗)M\a(P1 ∪ (P2 ∩G));

or (ii) z ∈ Q2 and z ∈ cl(∗)M\a(Q1 ∪ b). If (i) holds, then, by (7.1.6), z ∈

cl(∗)M/a(P1 ∪ (P2 ∩ G)), so z ∈ cl(∗)M/a(G). Then, by using (7.1.14), we see

that by replacing (R,G) with the equivalent 3-separation (R− z,G∪ z) and
repeating the argument from the second last paragraph, we obtain that in
this case (Z1 ∪ z, Z2 − z) is blocked by a.

Suppose that (ii) holds. Then, by (7.1.8), z ∈ cl(∗)M\a(Q1), so z ∈

cl(∗)M\a(D1). We now replace (D1,D2) by the equivalent (D1 ∪ z,D2 − z)

noting that, by (7.1.7), |Q2 − z| ≥ 2. The minimality assumption still
holds unless z ∈ Q2 ∩ R and Q1 ⊆ G, or z ∈ Q2 ∩ G and Q1 ⊆ R. By

(7.1.6), z ∈ cl(∗)M/a(Q1). Thus, in the exceptional cases, z ∈ cl(∗)M/a(G) or

z ∈ cl(∗)M/a(R), respectively. In these exceptional cases, in addition to replac-

ing (D1,D2) by (D1 ∪ z,D2 − z), we also replace (R,G) by (R − z,G ∪ z)
and (R ∪ z,G − z), respectively. After making these replacements, we can
apply the argument from the previous paragraph to get that (Z1∪z, Z2 −z)
is blocked by a.

We now need to establish that (Z1 − z, Z2 ∪ z) is blocked by a when

z ∈ cl(∗)M\a(Z2)∩Z1. In this case, the argument is similar to that given in the

last two paragraphs except in the case that z = b which we now consider.
By (7.1.7), b ∈ cl∗M\a(Q1). Thus b is loose in the flower (b ∪ P1 ∪ (P2 ∩

G), P2 ∩ R,Q2, Q1). Since b ∈ cl∗M\a(P ) and b ∈ cl(∗)M\a(Z2), it follows that

b ∈ cl∗M\a(Z2). By Lemma 3.4, b ∈ cl∗M\a(P2∩R). This contradicts (7.1.13).

This proves that (Z1, Z2) is indeed well blocked by a. But the existence of
(Z1, Z2) contradicts the minimality assumption so this case does not occur.
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Next assume that P2 ⊆ R and that R ∩ P1 *= ∅. Recall that P1 ∩ G *= ∅.
Then the hypotheses of (7.1.15) imply that |R∩P1| ≥ 2 and |G∩P1| ≥ 2. Let
Z1 = (P1∩G)∪b∪Q1 and Z2 = (P ∩R)∪Q2. Arguing as in the earlier case,
we deduce that (P1 ∩G,P ∩R,Q2, Q1 ∪ b) and ((P1 ∩G)∪ b, P ∩R,Q2, Q1)
are flowers in M\a. Assume that (Z1, Z2) is not blocked by a. Then either
a ∈ clM (Z1) or a ∈ clM (Z2). Assume that a ∈ clM (Z1). We know that
a ∈ clM (Q ∪ b). So, by Lemma 2.15 and Corollary 3.3, a ∈ clM (Q1 ∪ b),
so a does not block Q1 ∪ b, which contradicts (7.1.10)(iii). Assume that
a ∈ clM (Z2). Recall that a ∈ clM (P ∪ b). In this case, by Lemma 2.15
and Corollary 3.3, we deduce that a ∈ clM (Z2 ∩ (P ∪ b)). This gives the
contradiction that a ∈ clM (P ). Thus a blocks (Z1, Z2).

As before, we need to show that every 3-separation of M\a equivalent to
(Z1, Z2) is also blocked by a, and the strategy used here is the same as that

described in detail above. Assume that z ∈ cl(∗)M\a(Z1) ∩ Z2. Then, by [15,

Lemma 5.5], either (i) z ∈ P ∩ R and z ∈ cl(∗)M\a(P1 ∩ G), or (ii) z ∈ Q2

and z ∈ cl(∗)M\a(Q1 ∪ b). If (i) holds, then, by (7.1.6), z ∈ cl(∗)M/a(P1 ∩ G), so

z ∈ cl(∗)M/a(G). In this case, by using (7.1.14) again, we see that we can replace

(R,G) by the equivalent (R − z,G ∪ z) and preserve all the assumptions
governing this case. Now z ∈ P1 ∩R or z ∈ P2. In the former case, we leave
(D1,D2) unchanged. In the latter case, we replace it by (D1 ∪ z,D2 − z). In
both cases, by arguing as in the last paragraph, we get that (Z1 ∪ z, Z2 − z)

is blocked by a. If (ii) holds, then, by (7.1.8), z ∈ cl(∗)M\a(Q1), so, by (7.1.6),

z ∈ cl(∗)M/a(Q1). We replace (D1,D2) by the equivalent (D1 ∪ z,D2 − z).

This will not produce a violation of the minimality condition unless either
Q1 ⊆ G and z ∈ R, or Q1 ⊆ R and z ∈ G. In the exceptional cases, we again
replace (R,G) by (R−z,G∪z) or (R∪z,G−z), respectively. In both cases,
the argument from the previous paragraph establishes that (Z1 ∪ z, Z2 − z)
is blocked by a.

Next assume that z ∈ cl(∗)M\a(Z2) ∩ Z1. Then either (i) z ∈ P1 ∩ G and

z ∈ cl(∗)M\a(P ∩ R), or (ii) z ∈ Q1 ∪ b and z ∈ cl(∗)M\a(Q2). If (i) occurs,

then z ∈ cl(∗)M/a(P ∩ R), so z ∈ cl(∗)M/a(R). Hence we can replace (R,G) by

(R ∪ z,G − z) to get that (Z1 − z, Z2 ∪ z) is blocked by a. Now suppose
that (ii) occurs. Assume that z = b. Then, by considering the flower

((P1∩G)∪b,Q1, Q2, P∩R), we have, since b ∈ cl(∗)M\a(Q2) and b ∈ cl∗M\a(Q1),

that b ∈ cl∗M\a(Q2). Then, by [15, Lemma 5.5], as b ∈ cl∗M\a(Q2∪(P ∩R)),
we have b ∈ cl∗M\a(P ∩ R). As a ∈ cl(G), Lemma 2.19 implies that b ∈
cl∗(P ∩ R), so b ∈ cl∗(P ), contradicting the fact that (P, {a, b}, Q) is tight.
We deduce that z *= b. Then (D1 − z,D2 ∪ z) is equivalent to (D1,D2). As
before, the minimality assumption is preserved unless either Q2 ⊆ R and
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z ∈ G, or Q2 ⊆ G and z ∈ R. In each case, z ∈ cl(∗)M/a(Q2), so we can replace

(R,G) by (R ∪ z,G − z) or (R − z,G ∪ z), respectively. In both cases, the
same argument that was used above for (Z1, Z2) shows that (Z1 − z, Z2 ∪ z)
is blocked by a.

Finally, we do indeed have P1 = G ∩ P and P2 = R ∩ P . Assume that
(P1, P2, Q2, Q1 ∪ b) is an anemone. Then (P2, P1, Q2, Q1 ∪ b) is a flower.
By (7.1.4), b ∈ cl∗M\a(P ), so, by [15, Lemma 5.5], b ∈ cl∗M\a(P2). As
G ⊆ P1 ∪ Q, and a ∈ clM (G), it follows by Lemma 2.19 that b ∈ cl∗M (P2),
so b ∈ cl∗M (P ); a contradiction. We conclude that (7.1.15) holds.

7.1.16. If 1 /∈ {|R∩P1|, |R∩P2|, |G∩P1|, |G∩P2|}, then |Q1∩R| = |Q1∩G| =
|Q2 ∩ R| = |Q2 ∩ G| = 1.

Assume otherwise. Then, by (7.1.14) and symmetry, 1 /∈ {|R ∩ Q1|, |R ∩
Q2|, |G∩Q1|, |G∩Q2|}. Now, by (7.1.15) and symmetry, we have R = P2 ∪
Q2∪b and G = P1∪Q1. By (7.1.10)(iv), a ∈ clM (G), so a ∈ clM (P1∪b∪Q1).
By (7.1.3), a ∈ clM (P1 ∪ b ∪ P2). Thus, by Lemma 2.15, a ∈ cl(P1 ∪ b)
contradicting (7.1.10)(ii). Hence (7.1.16) holds.

7.1.17. |P | = |Q| = 4 and if X ∈ {P1, P2, Q1, Q2} and Y ∈ {R,G}, then,
|X ∩ Y | = 1.

Assume this does not hold. Then we may assume that 1 /∈ {|R∩P1|, |R∩
P2|, |G∩P1|, |G∩P2|}, so P1 = G∩P and P2 = R∩P . Moreover, |Q1∩R| =
|Q1 ∩ G| = |Q2 ∩ R| = |Q2 ∩ G| = 1 and the flower (P1, P2, Q2, Q1 ∪ b) of
M\a is swirl-like. Let {q1} = R ∩ Q1 and {q2} = R ∩ Q2.

By duality, the flower (R∩P,G∩P,G∩Q, (R∩Q)∪b) of M/a is swirl-like.
Moreover, by (7.1.11), b is in the closure of both R∩P and (R∩Q)∪b. This
means that )M/a(P2, {q1, q2}) = 1. But )M (P2, {q1, q2}) = 0 as otherwise,
r(P2∪{q1, q2}) = r(P2)+1, so q1 ∈ cl(P2∪{q2}). Then, by replacing (D1,D2)
by the equivalent (D1−q1,D2∪q2), we find that the new Q1 has just a single
element; a contradiction to (7.1.7). We conclude that a ∈ clM (P2 ∪ {q1, q2})
contradicting the fact that a blocks P1 ∪ b. Hence (7.1.17) holds.

We may now assume that |P | = |Q| = 4. Then, by (7.1.12), each of
|R ∩ P |, |G ∩ P |, |R ∩ Q|, and |G ∩ Q| is 2.

7.1.18. Both P and Q are quads in M .

Assume P is not a quad. Then it is sequential. By (7.1.6), a sequential
ordering (x1, x2, x3, x4) of P in M is also a sequential ordering of P in
M/a. Now {x1, x2, x3} contains either a unique element z of R or a unique
element z′ of G. Then (R,G) is equivalent to (R−z,G∪z) or (R∪z′, G−z′),
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respectively. Hence |(R − z) ∩ P | = 1 or |(G − z′) ∩ P | = 1, so we have a
contradiction to 7.1.12. Thus (7.1.18) holds.

By (7.1.15), the flower (P1, P2, Q2, Q1∪b) of M\a is swirl-like. By (7.1.7),
b ∈ cl∗M\a(P1) ∩ cl∗M\a(Q1). Thus (P1 ∪ b, P2, Q2, Q1) is also a swirl-like
flower of M\a, and both P1 ∪ b and Q1 ∪ b are triads of M\a. Moreover,
M\a, b has (P,Q) as a 2-separation. Hence M |(P ∪ Q) is the 2-sum, with
basepoint x say, of matroids MP and MQ that have P and Q respectively
as spanning circuits. In particular, r(M) = 5.

7.1.19. In MP , the element x is freely placed on the line spanned by P2.

Observe from the flowers (P1 ∪ b,Q1, Q2, P2) and (P1, Q1 ∪ b,Q2, P2) of
M\a that )(P2, Q2) = 1 and )(P1, Q2) = 0. Thus P2∪Q2 contains a circuit
of M . As P and Q are cocircuits of M , it follows by orthogonality that
P2 ∪ Q2 is a circuit of M . Hence P2 ∪ x and Q2 ∪ x are circuits of MP and
MQ, respectively. As )(P1, Q2) = 0, we deduce that (7.1.19) holds.

It follows immediately from (7.1.19) and symmetry that

7.1.20. P2 ∪ Q2 is the only circuit of M |(P ∪ Q) that meets both P and Q
and has at most four elements.

By orthogonality and the fact that (P, {a, b}, Q) is tight, it follows that b
is in neither a triangle nor a triad of M . Thus, by (iii), both M\b and M/b
are 3-connected. We show next that

7.1.21. M\b has no 3-separation exposed by b.

Assume M\b has a 3-separation (Y1, Y2) exposed by b and let |Y1| ≤ |Y2|.
As |E(M\b)| = 9 and (Y1, Y2) is non-sequential, we deduce that Y1 is a quad
of M\b. Suppose a ∈ Y1. Then M\b, a has Y1 − a as a triad. As P and Q
are both circuits, it follows by orthogonality that Y1 − a is contained in P
or Q. Thus a is in cl(P ) or cl(Q); a contradiction. Hence a *∈ Y1.

Since Y1 is a circuit of M contained in P ∪ Q, and P and Q are both
cocircuits of M , either Y1 ∈ {P,Q}, or Y1 meets each of P and Q in exactly
two elements. In the first case, (Y1, Y2) is not exposed by b; a contradiction.
In the second case, we deduce from (7.1.20) that Y1 = P2 ∪ Q2. Then
P2∪Q2∪b is a cocircuit of M . As r(M) = 5, it follows that r(P1∪Q1∪a) = 4.
Now a *∈ cl(P1 ∪Q1), so r(P1 ∪Q1) = 3. Hence P1 ∪Q1 contains a circuit of
M that contradicts (7.1.20).

We conclude that (7.1.21) holds. By duality, M/b has no 3-separation
exposed by b, and this completes the proof of Theorem 7.1. !
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8. Wild Triangles

In this section, we establish several results for wild triangles that will
be used in the proofs of Theorems 1.1 and 4.2, which will be given in the
last section. In particular, we shall require a property of standard and
costandard wild triangles, which will be proved in Lemma 8.2. The proof
of that lemma will use the next lemma, which considers a matroid M and
a matroid obtained from M by a ∆ − Y exchange, and relates both closure
and coclosure in these two matroids.

Lemma 8.1. Let {a, b, c} be a triangle ∆ in a matroid M . Let K be a copy
of M(K4) having each of {a, b, c}, {a, a′}, {b, b′}, and {c, c′} as flats. Let
M ′ = P∆(K,M)\∆. Then, for X ⊆ E(M) − ∆ and e ∈ E(M) − ∆,

(i) e ∈ clM (X) if and only if e ∈ clM ′(X);
(ii) e ∈ clM (X ∪ {a, b, c}) if and only if e ∈ clM ′(X ∪ {a′, b′, c′}); and
(iii) e ∈ cl∗M (X) if and only if e ∈ cl∗M ′(X).

Proof. As M\∆ = M ′\{a′, b′, c′}, part (i) is immediate. For (ii), note that
the flats of P∆(K,M) consist of those sets F such that F ∩ E(M) is a flat
of M and F ∩ E(K) is a flat of K [13, p.419]. As {a, b, c} is a flat of K, we
have clM (X ∪ {a, b, c}) = clP∆(K,M)(X ∪ {a, b, c}). Now

clM ′(X ∪ {a′, b′, c′}) − {a′, b′, c′}

= clP∆(K,M)\∆(X ∪ {a′, b′, c′}) − {a′, b′, c′}

= clP∆(K,M)(X ∪ {a′, b′, c′}) − ∆ − {a′, b′, c′}

= clP∆(K,M)(X ∪ {a′, b′, c′} ∪ ∆) − ∆ − {a′, b′, c′}

= clM (X ∪ {a, b, c}) − {a, b, c}.

Thus (ii) holds. Part (iii) follows from (i) because e ∈ cl∗M (X) if and only
if e *∈ clM (E(M) − X − e). !

Lemma 8.2. Let {a, b, c} be a standard or costandard wild triangle in a 3-
connected matroid M . Then there is a partition (P,Q,R, {a, b, c}) of E(M)
such that each of P,Q, and R is a non-sequential 3-separating set and none
of fcl(P ), fcl(Q), or fcl(R) contains {a, b, c}.

Proof. Suppose first that {a, b, c} is a standard wild triangle and let
(P1, P2, . . . , P6) be a partition of E(M) − {a, b, c} associated to {a, b, c}.
Let (P,Q,R) = (P1 ∪ P2, P3 ∪ P4, P5 ∪ P6). Then |E(M)| ≥ 15 as |Pi| ≥ 2
for all i. As P and P ∪ a are 3-separating in M , if P is sequential, then so
is P ∪ a. In that case, by Lemma 2.10, a does not expose any 3-separations
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of M ; a contradiction. Thus P is non-sequential and, by symmetry, so are
Q and R. It follows that none of fcl(P ), fcl(Q), or fcl(R) is E(M).

Now suppose that fcl(P ) contains b. Then it also contains c. Thus M
has a 3-sequence of the form (P, a, e1, e2, . . . , em, E(M)−fcl(P )) and we may
assume that (b, c) = (ei, ei+1) for some i. If ei ∈ cl∗(P ∪{a, e1, e2, . . . , ei−1}),
then P ∪ {a, e1, e2, . . . , ei−1} is 2-separating in M\ei; a contradiction. Thus
ei ∈ cl(P ∪ {a, e1, e2, . . . , ei−1}), so {b, c} ⊆ cl(P ∪ {a, e1, e2, . . . , ei−1}).
Moreover, {b, c} ⊆ cl(E(M) − (P ∪ {a, e1, e2, . . . , ei−1, b, c}). Therefore, by
Lemma 5.1, at least one of b and c does not expose any 3-separations in M ;
a contradiction. We conclude that fcl(P ) avoids {b, c}. By symmetry, fcl(Q)
avoids {a, c}, and fcl(R) avoids {a, b}. Thus the lemma holds when {a, b, c}
is a standard wild triangle. Note too that, in this case, a, b, and c are in
cl(P ), cl(Q), and cl(R), respectively.

Now assume that {a, b, c} is a costandard wild triangle in M . Then
{a, b, c} is a standard wild triangle in (∆M)∗. Clearly the full closure of
a set equals its full closure in the dual matroid. As the lemma holds for
standard wild triangles, there is a partition (P,Q,R, {a, b, c}) of E(M) such
that each of P,Q, and R is a non-sequential 3-separating set of ∆M and none
of fcl∆M (P ), fcl∆M (Q), or fcl∆M(R) contains {a, b, c}. Moreover, a, b, and
c are in cl∗∆M(P ), cl∗∆M(Q), and cl∗∆M(R), respectively. By Lemma 8.1,
each of P,Q, and R is a non-sequential 3-separating set of M since a se-
quential ordering of such a set in M is a sequential ordering of it in ∆M .

It remains to show that none of fclM (P ), fclM (Q), and fclM (R) contains
{a, b, c}. To avoid confusion, we shall work with the matroid M ′ defined in
the last lemma. Assume that fclM (P ) ⊇ {a, b, c}. We know that fclM ′(P ) *⊇
{a′, b′, c′} but a′ ∈ cl∗M ′(P ).

Consider the 3-sequence (P, z1, z2, . . . , zn, E(M) − fclM (P )). As fclM (P )
contains {a, b, c}, we may assume that {a, b, c} = {zi, zj , zk} where i < j < k.
As {a, b, c} is a triangle, we can move the first and last members of {a, b, c}
in the sequence (z1, z2, . . . , zn) so that we maintain a 3-sequence and get
{a, b, c} = {zj−1, zj , zj+1}. By Lemma 8.1, P∪{z1, z2, . . . , zh} is 3-separating
in M ′ for all h in [j − 2]. As {a, b, c} is a triangle of M , we must have that
zj−1 ∈ clM (P ∪ {z1, z2, . . . , zj−2}).

Suppose b ∈ clM (P ∪ {z1, z2, . . . , zj−2}). Then M has a circuit C such
that b ∈ C and C ⊆ b∪P ∪{z1, z2, . . . , zj−2}. In P∆(K,M), the set {a′, b, c′}
is a circuit, so (C−b)∪{a′, c′} is a circuit of P∆(K,M) and hence of M ′. As
a′ ∈ cl∗M ′(P ), we deduce that c′ ∈ fclM ′(P ). Then, as {a′, b′, c′} is a cocircuit
of M ′, we have {a′, b′, c′} ⊆ fclM ′(P ); a contradiction. Thus b *∈ clM (P ∪
{z1, z2, . . . , zj−2}). By symmetry, c *∈ clM (P ∪ {z1, z2, . . . , zj−2}). Hence
a = zj−1 and we may assume that (zj , zj+1) = (b, c). Moreover, b ∈ cl∗M (P∪



UPGRADING THE WHEELS-AND-WHIRLS THEOREM 35

{z1, z2, . . . , zj−2, a}) otherwise we can interchange a and b in the 3-sequence
to get a contradiction. The circuit {a, b, c} of M implies that the cocircuit C∗

of M that contains b and is contained in P∪{z1, z2, . . . , zj−2, a} must contain
a. Thus the hyperplane H of M that equals E(M)−C∗ contains c and avoids
{a, b}. Hence P∆(K,M) has H ∪ {a′, b′} as a hyperplane and so c′ ∪ (C∗ −
{a, b}) is a union of cocircuits of M ′. Thus c′ ∈ fclM ′(P∪{z1, z2, . . . , zj−2}) =
fclM ′(P ). But a′ ∈ fclM ′(P ). Thus {a′, b′, c′} ⊆ fclM ′(P ); a contradiction.
We conclude, using symmetry, that none of fclM (P ), fclM (Q), and fclM (R)
contains {a, b, c}. !

The next lemma will be useful in both the proof of the subsequent lemma
and the proof of Theorem 4.2.

Lemma 8.3. Let M be a 3-connected matroid and R be a petal of a tight
flower Φ of M whose order is at least three. Then there is a tight flower
(P,R,Q) that is a concatenation of Φ and has |P | ≥ 3. Moreover, either

(i) |Q| ≥ 3; or
(ii) Φ has at least four petals and has a tight concatenation (P1, P2, R,Q)

where |P2| = 2 = |Q|.

Proof. Let Φ = (P1, P2, . . . , Pn−2, R,Q). If n = 3, then, as Φ has order
at least three, |P1|, |Q| ≥ 3 and (i) holds. Hence we may suppose that
n ≥ 4. Let Φ′ = (P,R,Q) where P = P1 ∪ P2 ∪ · · · ∪ Pn−2. Then P
is certainly tight. Suppose some Q′ in {R,Q} is loose in Φ′. Then, by
Lemma 3.1, Q′ ⊆ fcl(P1 ∪ P2 ∪ · · · ∪ Pn−2). Hence, by [15, Lemma 5.9],
Q′ ⊆ fcl(P1)∪ fcl(Pn−2), so Q′ is loose in Φ; a contradiction. Therefore Φ′ is
a tight flower. Thus if |Q| ≥ 3, then (i) holds. By symmetry, if |Pn−2| ≥ 3,
then (i) holds. Therefore, we may assume that |Q| = 2 = |Pn−2|. In that
case, we let Φ′′ = (P1 ∪ P2 ∪ · · · ∪ Pn−3, Pn−2, R,Q). Then, arguing as for
Φ′, we deduce that Φ′′ is tight. !

In the next lemma, the hypothesis that Φ is tight is not needed. But we
do not need the stronger result here, so we prove only the weaker result.

Lemma 8.4. Let M be a 3-connected matroid and let {a, b, c} be a triangle
in M that is not in a 4-element fan. Suppose {a, b, c} is a petal of a tight
flower Φ of M whose order is at least three. Then {a, b, c} is not wild.

Proof. Assume that {a, b, c} is wild. Then, by [17, Corollary 4.3], we may
assume that all of M\a, M\b, and M\c are 3-connected.

By Theorem 3.7, |E(M)| = 11, or {a, b, c} is a wild triangle in a trident,
or {a, b, c} is a standard or costandard wild triangle. If {a, b, c} is standard
or costandard, then |E(M)| ≥ 15. Moreover, if {a, b, c} is in a trident, then
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|E(M)| ≥ 9. Thus we may assume that either |E(M)| ≥ 10, or |E(M)| = 9
and {a, b, c} is a wild triangle in a trident.

8.4.1. The local connectivity between pairs of consecutive petals of Φ is 1.

By Lemma 8.3, Φ has a concatenation (P, {a, b, c}, Q) in which |P | ≥ 3
and |Q| ≥ 2. Suppose first that (P, {a, b, c}, Q) is a paddle. Then the
partition (P, {a, b}, c ∪ Q) satisfies the hypotheses of Lemma 5.1 and that
lemma implies that {a, b, c} is not wild; a contradiction.

Next assume that (P, {a, b, c}, Q) is a copaddle. Let ∆M be the matroid
that is obtained by performing a ∆− Y exchange on {a, b, c} and then rela-
belling the resulting matroid in the natural way so that E(∆M) = E(M).
Then, by [17, Lemmas 8.2 and 8.3], {a, b, c} is a wild triangle in (∆M)∗,
and all of (∆M)∗\a, (∆M)∗\b, and (∆M)∗\c are 3-connected. Since
(P, {a, b, c}, Q) is a paddle in (∆M)∗, we get a contradiction as in the last
paragraph. We deduce that (P, {a, b.c}, Q), and hence Φ, is neither a paddle
nor a copaddle. Thus (8.4.1) holds.

Now assume that |Q| ≥ 3. If b ∈ cl(P ) and c ∈ cl(Q), then (P ∪ b,Q ∪ c)
is a 2-separation of M\a, contradicting the assumption that this matroid
is 3-connected. As the local connectivity between distinct pairs of petals is
1, it follows that we may assume that neither b nor c is in cl(P ) ∪ cl(Q).
Moreover,

8.4.2. r(P ∪ b) = r(P ∪ c) = r(P ∪ {b, c}) = r(P ) + 1, and r(Q ∪ b) =
r(Q ∪ c) = r(Q ∪ {b, c}) = r(Q) + 1.

Using this, we deduce that

8.4.3. λM\a(P ∪ b) = λM\a(P ∪ c) = 3.

Let (B,C) be a 3-separation of M\a that is exposed by a. Then we may
assume that b ∈ B and c ∈ C.

8.4.4. (B,C) crosses both P and Q.

Suppose P ⊆ B. By (8.4.2), c ∈ cl(P ∪ b) so c ∈ cl(B). But then (B,C)
is equivalent to (B ∪ c, C − c), and a ∈ cl(B ∪ c). This contradicts the
assumption that (B,C) is exposed in M\a. A symmetric argument shows
that P is not contained in C. Thus (8.4.4) holds.

8.4.5. |P ∩ B| ≥ 2 and |P ∩ C| ≥ 2; and |Q ∩ B| ≥ 2 and |Q ∩ C| ≥ 2.

By symmetry, it suffices to prove the inequalities involving P . Suppose
that P ∩ B = {p}. As |P | ≥ 3, we have λM\a(P ∩ C) ≥ 2. Thus λM\a((P ∩
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C) ∪ p) = λM\a(P ) ≤ λM\a(P ∩ C). Therefore p ∈ cl(∗)M\a(P ∩ C), so

p ∈ cl(∗)M\a(C). Thus (B−p,C∪p) is a 3-separation in M\a that is equivalent

to (B,C). Hence (B − p,C ∪ p) is exposed by a yet it contradicts (8.4.4).
Thus |P ∩ B| ≥ 2 and, by symmetry, |P ∩ C| ≥ 2.

By (8.4.5), |C ∩ ({b, c} ∪ Q)| ≥ 2 and |C ∩ Q| ≥ 2. Hence, by uncrossing
and (8.4.5), we have λM\a(P ∩ B) = λM\a((P ∩ B) ∪ b) = 2. Therefore b ∈

cl(∗)M\a(P ∩B), so b ∈ cl(∗)M\a(P ). Hence λM\a(P ∪ b) = 2. This contradiction

to (8.4.3) completes the proof of the lemma when |Q| ≥ 3.

By Lemma 8.3, we may now assume that Φ has a tight concatenation
(P1, P2, {a, b, c}, Q) where |P2| = 2 = |Q|.

8.4.6. |P1| ≥ 3.

Suppose that |P1| = 2. Then |E(M)| = 9, so {a, b, c} is in a trident Z
of M . We shall assume that this trident is labelled as in Figure 1 and let
E(M)−Z = {j, k}. As the local connectivity between consecutive petals of
Φ is 1, each of P1∪P2 and P1∪Q has rank 3. By Lemma 6.1, if one of P1∪P2

and P1 ∪ Q contains {j, k}, then the relevant set has rank 4. Thus {j, k}
meets both P2 and Q. By symmetry, we may assume that P2 = {j, u}. Then,
in M\c, the set {t, s, v, a} is a quad meeting the 3-separating set {j, u, a, b}
in a single element. But each of the possible structures of this 3-separating
set produces a violation to orthogonality. We conclude that (8.4.6) holds.

Now, as before, we let (B,C) be a 3-separation in M\a exposed by a,
where b ∈ B and c ∈ C. Suppose first that P2 ⊆ B. Then, as {b, c} ∪ P2 is
3-separating in M\a and )({b, c}, P2) = 1, it follows that c ∈ cl(∗)(P2 ∪ b),
so c ∈ cl(∗)(B). Hence (B ∪ c, C − c) is a 3-separation equivalent to (B,C)
that is not exposed by a; a contradiction. We conclude that P2 ∩ C *= ∅.
By symmetry, P2 ∩ B *= ∅. Hence |P2 ∩ C| = 1 = |P2 ∩ B| and, similarly,
|Q ∩ C| = 1 = |Q ∩ B|.

As |P1| ≥ 3, without loss of generality, we have |P1 ∩ B| ≥ 2. Since
|E(M\a)− (P1 ∪B)| ≥ 2, it follows, by uncrossing, that λM\a(P1 ∩B) = 2,
so λM (P1∩B) = 2. Let P2∩B = {b′}. Then, by uncrossing again, λM\a((P1∩

B) ∪ b′) = 2, so λM ((P1 ∩ B) ∪ b′) = 2. We deduce that b′ ∈ cl(∗)(P1 ∩ B),
so b′ ∈ cl(∗)(P1). Hence P2 ⊆ fcl(P1), so P2 is loose. This contradiction
completes the proof of the lemma. !

Lemma 8.5. In a 3-connected matroid M with |E(M)| *= 11, let {a, b, c} be
a wild triangle that is not in a trident or a 4-element fan. If T is a 3-tree
for M and S labels a terminal bag of T , then |S ∩ {a, b, c}| ≤ 1.
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Proof. Assume that |S∩{a, b, c}| ≥ 2. Suppose first that S is non-sequential.
Because |E(M)| *= 11 and {a, b, c} is not in a trident or a 4-element fan, The-
orem 3.7 implies that {a, b, c} is a standard or costandard wild triangle of
M . By Lemma 8.2, there is a partition (P,Q,R, {a, b, c}) of E(M) such
that each of P,Q, and R is a non-sequential 3-separating set and none of
fcl(P ), fcl(Q), or fcl(R) contains {a, b, c}. Thus T displays 3-separations
(P ′, E(M) − P ′), (Q′, E(M) − Q′), and (R′, E(M) − R′) that are equiva-
lent to the non-sequential 3-separations (P,E(M)−P ), (Q,E(M)−Q), and
(R,E(M) − R) of M . Now fcl(U ′) = fcl(U) for all U in {P,Q,R}, so,
for all such U , the set fcl(U ′) contains at most one element of {a, b, c}.
Because the terminal bag S contains at least two elements of {a, b, c},
all of P ′, Q′, and R′ avoid S, so S ⊆ E(M) − (P ′ ∪ Q′ ∪ R′). But
fcl(P ′ ∪ Q′ ∪ R′) ⊇ fcl(P ′) ∪ fcl(Q′) ∪ fcl(R′) ⊇ E(M) − {a, b, c}. Thus
fcl(P ′ ∪ Q′ ∪ R′) = E(M), so S is sequential; a contradiction.

We may now assume that S is sequential. Then so is S ∪ {a, b, c}.
Also the neighbour of the vertex S in T is a flower vertex. Suppose that
|S ∪ {a, b, c}| ≥ 4. If M\b is not 3-connected, then, by [17, Theorem 4.2],
{a, b, c} is not wild; a contradiction. Hence M\b is 3-connected. Then, by
Lemma 2.10, b does not expose any 3-separations, contradicting the fact that
{a, b, c} is wild. We may now assume that |S∪{a, b, c}| = 3, so S = {a, b, c}.
Thus M has a tight flower of order at least three having {a, b, c} as one of its
petals. But Lemma 8.4 implies that {a, b, c} is not wild; a contradiction. !

9. Proofs of the Main Results

In this section, we prove Theorems 4.2 and 1.1.

Proof of Theorem 4.2. Assume first that S is sequential. Suppose that
|fcl(S)| ≥ 4. By switching to the dual if necessary, we may assume that
fcl(S) contains a triangle X. If M\e is 3-connected for some e in X, then,
by Lemma 2.10, e does not expose any 3-separations in M\e. Thus we may
assume that M\e is not 3-connected for all e in X. Then, by Tutte’s Tri-
angle Lemma [21], X is contained in a maximal fan F having at least four
elements. Thus, by Lemma 2.11, the deletion of an end f of F from M or
M∗ is 3-connected but does not expose any 3-separations. As F ⊆ fcl(S),
the theorem holds.

We may now assume that |fcl(S)| ≤ 3. In the 3-tree T , the set S labels a
degree-one vertex v. The unique neighbour u of v is a flower vertex. Thus
the corresponding tight flower Ψ of M has S as a petal. Then Ψ is equivalent
to a tight flower Φ having fcl(S) as a petal and having order at least three.
By Lemma 8.3, Φ has a tight concatenation (P, fcl(S), Q) where |P | ≥ 3.
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Suppose fcl(S) = {a, b}. If |Q| ≥ 3, then the result follows by Theo-
rem 7.1. Thus we may assume that |Q| = 2. Then, by Lemma 8.3, Φ has a
tight concatenation (P1, P2, {a, b}, Q) where |P2| = 2 = |Q|. Now Q ∪ {a, b}
is 3-separating but it does not contain a triangle or a triad otherwise one of
Q and {a, b} is loose. Thus {a, b} ∪ Q is a quad in M . We can now apply
Lemma 4.4 to get that either the theorem holds, or there is a labelling {a′, b′}
of Q and there is an element t of P1 ∪P2 such that {a, a′, t} and {b, b′, t} are
triangles of M . By symmetry, P2∪{a, b} is a quad in M . Thus, by orthogo-
nality, t ∈ P2. Hence {a, b, t} spans P2∪{a, b}∪Q, so λ(P2∪{a, b}∪Q) ≤ 1;
a contradiction as |E(M)| ≥ 9.

When S is sequential, it remains to consider the case when |fcl(S)| = 3. By
duality, we may assume that fcl(S) is a triangle {a, b, c} of M . This triangle
is certainly not contained in a 4-element fan. By Lemma 8.4, {a, b, c} is not
wild, so some e in {a, b, c} does not expose any 3-separations in M\e. We
conclude that the theorem holds when S is sequential.

We may now assume that S is non-sequential. Let S′ = S−fcl(E(M)−S).
If there are no triangles or triads of M that have at least two elements in
S′, then, by Corollary 4.6, the theorem holds. By switching to the dual if
necessary, we may assume that M has a triangle Y containing at least two
elements of S′. Then Y ⊆ fcl(S). Now, for y in Y , if M\y is 3-connected
but y does not expose any 3-separations in M\y, then the theorem holds.
Thus we may assume that Y is a wild triangle of M . Then, by Lemma 8.5,
one of the following holds: Y is contained in a 4-element fan, Y is contained
in a trident, or |E(M)| = 11. In the first case, by Lemma 2.11, the theorem
holds. Thus we may assume that Y is not contained in a 4-element fan.

Now suppose that Y is a wild triangle in a trident X. We may assume that
fcl(S)∩ (X −Y ) is empty otherwise the theorem holds by Lemma 6.2. As S
is non-sequential, |S| ≥ 4. If |S| = 4, then S is a quad and the theorem holds
by Lemma 4.3. Hence we may assume that |S| ≥ 5. Now, by uncrossing
X and E − fcl(S), we get that their intersection, X − Y , is 3-separating; a
contradiction since r∗(X−Y ) ≥ 3 and, by Lemma 6.1, r(X−Y ) = 4. Hence
we may assume that Y is not contained in a trident.

Finally suppose that |E(M)| = 11 and let Y = {a, b, c}. The argument
here will require a more detailed analysis of the proof of Theorem 3.7, which
appears in [17, Theorem 3.1]. We shall make frequent reference to that proof
assuming the reader has access to the paper. Since the triangle {a, b, c} is
wild but is not contained in a 4-element fan, it follows by [17, Corollary
4.3] that there are 3-separations, (A1, A2) and (B1, B2), that are exposed by
a and b, respectively. Following [17, Theorem 3.1], we assume that a and
b are in B2 and A1, respectively. Then c ∈ A2 ∩ B1. From [17, (5.0.5)],
|Ai ∩ Bi| ≥ 2 for each i in {1, 2}. Moreover, from [17, (5.0.10), (5.0.9)],
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|A1 ∩ B2| ≥ 1 and |A2 ∩ B1| ≥ 2. Then, as explained in [17, Section 6 and
p. 307, l. 10], by [17, Lemmas 7.3, 7.4, and 7.9], we may assume that either
|A1 ∩ B2| ≥ 2 and |A2 ∩ B1| ≥ 3; or {a, b, c} is in a trident. Since the latter
does not occur and |E(M)| = 11, we have

(4) |A1 ∩ B1| = |A2 ∩ B2| = |A1 ∩ B2| = 2 and |A2 ∩ B1| = 3.

Hence

(5) |A1| = |A2| = 5 = |B1| = |B2|.

Now (fcl(S), E − fcl(S)) is a non-sequential 3-separation of M . Choose
(U, V ) to be a non-sequential 3-separation of M with {a, b, c} ⊆ U and
with |V | maximized. Since |E(M)| = 11, it follows that (|U |, |V |) is in
{(5, 6), (6, 5), (7, 4)}. We have (U − a, V ) and (A1, A2) as 3-separations of
M\a. Clearly b and c in (U − a) ∩ A1 and (U − a) ∩ A2, respectively. Now
V meets both A1 and A2 otherwise, since |A1| = |A2| = 5, we have |V | = 4
and we obtain the contradiction that (A1 − b,A2 ∪ b) or (A1 ∪ c,A2 − c) is
equivalent to (A1, A2).

Suppose that |A2 ∩ V | = 1. Then, by uncrossing, A2 ∩ (U − a) is 3-
separating in M\a and (A1, A2) ∼= (A1 ∪ V,A2 ∩ (U − a)). Thus we can
replace (A1, A2) by (A1 ∪ V,A2 ∩ (U − a)). Since (5) holds for all potential
choices of (A1, A2), we have a contradiction. Thus |A2 ∩ V | ≥ 2 and, by
symmetry, |A1∩V | ≥ 2. Likewise, |A2∩ (U −a)| ≥ 2 and |A1∩ (U −a)| ≥ 2.
By uncrossing, both A1 ∩ V and A2 ∩ V are 3-separating in M\a. Since
{b, c} is in the complement of both of these sets in E(M\a), both sets are
3-separating in M . But the cardinality constraints on the various sets mean
that either (i) |V | = 4, or (ii) |V | ≥ 5 and |A1 ∩ V | or |A2 ∩ V | is 3. Assume
(ii) holds. Then A1 ∩ V or A2 ∩ V is a triangle or a triad of M avoiding
{a, b, c}. If A1 ∩ V is a triangle or triad, then it must contain the two
elements of A1 ∩ B2 or the two elements of A1 ∩ B1. Thus we can replace
(B1, B2) by an equivalent 3-separation of M\b for which (4) fails. If A2 ∩ V
is a triangle or triad, this set must contain the two elements of A2 ∩ B2 or
the two elements of (A2 ∩ B1) − c. Again we can replace (B1, B2) by an
equivalent 3-separation of M\b for which (4) fails. We conclude that (ii)
does not hold. Hence (i) holds and V is a quad, so |A1 ∩ V | = 2 = |A2 ∩ V |.
Moreover, by the choice of (U, V ), no element of U − {a, b, c} is in cl(∗)(V ).

To complete the argument, we shall again follow [17] and take a 3-
separation (C1, C2) of M\c exposed by c where a ∈ C1 and b ∈ C2.
We shall exploit symmetry a lot in what follows. In particular, we have
|C1| = |C2| = 5, and |V ∩ B1| = |V ∩ B2| = |V ∩ C1| = |V ∩ C2| = 2.

By uncrossing, each of (U−a)∩A1 and (U−a)∩A2 is a triangle or a triad
of M\a. By symmetry, each of (U − b) ∩ B1 and (U − b) ∩ B2 is a triangle
or a triad of M\b. Suppose that both (U − a) ∩ A1 and (U − a) ∩ A2 are
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triangles. Then r(A1) = r(A2) = 3, otherwise we can replace (A1, A2) by an
equivalent 3-separation for which (5) fails. Thus r(M) = 4. As r(V ) = 3, we
deduce that r(U) = 3. It follows that each of (U − b)∩B1 and (U − b)∩B2

is a triangle of M . Thus U − a is the disjoint union of a triangle containing
b and a triangle containing c, while U − b is the disjoint union of triangles
containing a and c. It is not difficult to check that this cannot occur. Hence
at most one of (U − a) ∩ A1 and (U − a) ∩ A2 is a triangle.

Let ((U − a) ∩ A1, (U − a) ∩ A2, V ∩ A2, V ∩ A1) = ({b, 1, 2}, {c, 3, 4},
{7, 8}, {5, 6}). By symmetry, there are three possibilities for (A2 ∩ B1) − c,
namely, {7, 8}, {3, 4}, and {3, 7}.

Suppose that (A2 ∩ B1) − c = {7, 8}. Then, by (4), ((U − b) ∩ B1, (U −
b)∩B2, V ∩B2, V ∩B1) = ({c, 1, 2}, {a, 3, 4}, {5, 6}, {7, 8}). Clearly at most
one of {a, 3, 4} and {c, 3, 4} is a triangle. If neither is, then {a, b, 3, 4} and
{a, c, 3, 4} are cocircuits of M . Since {a, b, c} is not contained in a 4-element
fan, it follows by elimination that {a, b, c, 3} is a cocircuit of M contradicting
Corollary 2.13. If {a, c, 3, 4} is a cocircuit and {a, 3, 4} is a circuit, then
{a, c, 3, 4} is a sequential 3-separating set and we obtain a contradiction
using Lemma 2.10. Thus {a, b, 3, 4} is a cocircuit and {c, 3, 4} is a circuit.
As {a, b, c} is also a circuit, it follows that {a, b, 3, 4} is a quad of M . This
contradicts Lemma 4.3(i).

Next assume that (A2 ∩ B1) − c = {3, 4}. Then, by (4), we have, with-
out loss of generality, that ((U − b) ∩ B1, (U − b) ∩ B2, V ∩ B2, V ∩ B1) =
({c, 3, 4}, {a, 1, 2}, {7, 8}, {5, 6}). If {c, 3, 4} is not a triangle of M , then both
{a, c, 3, 4} and {b, c, 3, 4} are cocircuits, so {a, b, c, 3} is a cocircuit; a con-
tradiction to Corollary 2.13. Hence {c, 3, 4} is a circuit and so {a, b, 1, 2}
is a cocircuit. Thus r(B1) = 3 and r(B2) = 4, so r(M) = 5. Hence r(C1)
or r(C2) is 3. The circuit {c, 3, 4} implies that neither C1 nor C2 con-
tains {3, 4}. Hence, without loss of generality, (U − c) ∩ C1 = {a, 1, 3} and
(U − c) ∩ C2 = {b, 2, 4}. As above, exactly one of {a, 1, 3} and {b, 2, 4} is a
circuit. Then {a, b, c, 1, 3, 4} or {a, b, c, 2, 3, 4} has rank 3. As r(U) = 4, it
follows that 2 or 1 is in cl∗(V ); a contradiction.

Finally, assume that (A2 ∩ B1) − c = {3, 7}. Then, without loss of gen-
erality, ((U − b) ∩ B1, (U − b) ∩ B2, V ∩ B2, V ∩ B1) = ({c, 1, 3}, {a, 2, 4},
{6, 8}, {5, 7}). Assume that both (U − a) ∩ A1 and (U − a) ∩ A2 are tri-
ads of M\a. Then {a, b, 1, 2} and {a, c, 3, 4} are cocircuits of M . Thus
r(A1) = 4 = r(A2), so r(B1) = 4 = r(B2). Hence both {b, c, 1, 3} and
{a, b, 2, 4} are cocircuits of M . The cocircuits {a, b, 1, 2} and {a, b, 2, 4}
imply that {b, 1, 2, 4} contains a cocircuit. By orthogonality, {1, 2, 4} is a
cocircuit. Thus (A1∪4, A2−4) ∼= (A1, A2); a contradiction. We deduce that
either (i) {a, b, 1, 2} is a cocircuit and {c, 3, 4} is a circuit; or (ii) {a, c, 3, 4} is
a cocircuit and {b, 1, 2} is a circuit. Hence r(A1) + r(A2) = 7, so r(U) = 4.
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Moreover, either (iii) {b, c, 1, 3} is a cocircuit and {a, 2, 4} is a circuit; or
(iv) {a, b, 2, 4} is a cocircuit and {c, 1, 3} is a circuit. We have already elim-
inated the possibility of both (i) and (iv) holding. If (i) and (iii) hold, or
(ii) and (iv) hold, then {a, b, c, 2, 3, 4} or {a, b, c, 1, 2, 3} has rank 3. Since
r(U) = 4, we deduce that 1 or 4 is in cl∗(V ); a contradiction. Hence we may
assume that (ii) and (iii) hold. Then {a, 3, 4} and {b, 1, 3} are triads of M\c.
Now a ∈ C1 and b ∈ C2. Since 3 is in C1 or C2, we must have that either
C1 ∩ (U − c) = {a, 3, 4}, or C2 ∩ (U − c) = {b, 1, 3}, otherwise we can replace
(C1, C2) by an equivalent 3-separation that does not have five elements on
each side. But now the triangles {a, 2, 4} and {b, 1, 2} imply that (C1, C2) is
equivalent to (C1∪2, C1−2) or (C1−2, C2∪2). This contradiction completes
the proof of the theorem. !

Theorem 1.1 is now a straightforward consequence of earlier results.

Proof of Theorem 1.1. By Lemma 4.1, we may assume that |E(M)| ≥ 9. In
that case, the theorem follows immediately from Theorem 4.2. !
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