INTERTWINING CONNECTIVITY IN MATROIDS*

RONG CHEN ${ }^{\dagger}$ AND GEOFF WHITTLE ${ }^{\ddagger}$

Abstract

Let M be a matroid and let Q, R, S, and T be subsets of the ground set such that the smallest separation that separates Q from R has order k and the smallest separation that separates S from T has order ℓ. We prove that if $E(M)-(Q \cup R \cup S \cup T)$ is sufficiently large, then there is an element e of M such that, in one of $M \backslash e$ or M / e, both connectivities are preserved.

Key words. matroids, connectivity, intertwining connectivity
AMS subject classification. O5B35
DOI. 10.1137/140959626

1. Introduction. Let M be a matroid with ground set $E(M)$. For any $X \subseteq$ $E(M)$, define $\lambda_{M}(X):=r_{M}(X)+r_{M}(E(M)-X)-r(M)$. For disjoint subsets Q, \bar{R} of $E(M)$, the connectivity between Q and R is

$$
\kappa_{M}(Q, R):=\min \left\{\lambda_{M}(X): Q \subseteq X \subseteq E(M)-R\right\}
$$

In the paper, we prove the following theorem.
Theorem 1.1. There is a function $c: \mathbb{N}^{2} \rightarrow \mathbb{N}$ with the following property. Let M be a matroid and $Q, R, S, T, F \subseteq E(M)$ sets of elements such that $Q \cap R=$ $S \cap T=\emptyset$ and $F=E(M)-(Q \cup R \cup S \cup T)$. Let $k:=\kappa_{M}(Q, R)$ and $\ell:=\kappa(S, T)$. If $|F| \geq(2 \ell+1) 2^{2 k+1}$, then there is an element $e \in F$ such that one of the following holds:
(i) $\kappa_{M \backslash e}(Q, R)=k$ and $\kappa_{M \backslash e}(S, T)=\ell$;
(ii) $\kappa_{M / e}(Q, R)=k$ and $\kappa_{M / e}(S, T)=\ell$.

This theorem resolves a conjecture of Geelen [1]. It strengthens a theorem of Huynh and van Zwam [3], who prove the result for a class that includes all representable matroids but does not include all matroids.

The value that we get is unlikely to be tight. The $(k+1) \times(\ell+1)$ grid gives an example where the theorem fails with $|F|=2 k \ell-\ell-k$. Perhaps this example is extremal?

Conjecture 1.2. Theorem 1.1 holds with $|F|=2 k \ell-\ell-k+1$.
2. Proof of Theorem 1.1. For all disjoint subsets Q, R of the ground set of a matroid M, Tutte [4] proved that there is a minor N of M with $E(N)=Q \cup R$ and such that $\kappa_{M}(Q, R)=\lambda_{N}(Q)$, which is a generalization of Menger's theorem to matroids. Equivalently, we have the following lemma.

Lemma 2.1. Let M be a matroid and Q, R be disjoint subsets of $E(M)$. For every $e \in E(M)-(Q \cup R)$ either $\kappa_{M \backslash e}(Q, R)=\kappa_{M}(Q, R)$ or $\kappa_{M / e}(Q, R)=\kappa_{M}(Q, R)$.

[^0]Let M be a matroid and Q, R be disjoint subsets of $E(M)$. Define $\sqcap_{M}(Q, R):=$ $r_{M}(Q)+r_{M}(R)-r_{M}(Q \cup R)$. A partition (A, B) of $E(M)$ is $Q-R$-separating of order $k+1$ if $Q \subseteq A, R \subseteq B$, and $\lambda_{M}(A) \leq k$. Let $e \in E(M)-(Q \cup R)$. If $\kappa_{M \backslash e}(Q, R)=$ $\kappa_{M}(Q, R)$, then e is deletable with respect to (Q, R); if $\kappa_{M / e}(Q, R)=\kappa_{M}(Q, R)$, then e is contractible with respect to (Q, R); and if e is both deletable and contractible with respect to (Q, R), then e is flexible with respect to (Q, R). Lemma 2.1 implies that for any $e \in E(M)-(Q \cup R)$ either e is deletable with respect to (Q, R) or e is contractible with (Q, R).

Theorem 2.2 (see [3, Theorem 3.4]). Let M be a matroid and Q, R be disjoint subsets of $E(M)$, let $k:=\kappa(Q, R)$, and let $F \subseteq E(M)-(Q \cup R)$ be a set of nonflexible elements. Then there are an ordering $\left(f_{1}, \ldots, f_{n}\right)$ of F and a sequence $\left(A_{1}, \ldots, A_{n}\right)$ of subsets of $E(M)$ such that
(i) A_{i} is $Q-R$-separating of order $k+1$ for each $i \in\{1, \ldots, n\}$;
(ii) $A_{i} \subseteq A_{i+1}$ for each $i \in\{1, \ldots, n\}$;
(iii) $A_{i} \cap F=\left\{f_{1}, \ldots, f_{i}\right\}$ for each $i \in\{1, \ldots, n\}$;
(iv) $f_{i} \in \operatorname{cl}\left(A_{i}-\left\{f_{i}\right\}\right) \cap \operatorname{cl}\left(E(M)-A_{i}\right)$ or $f_{i} \in \operatorname{cl}^{*}\left(A_{i}-\left\{f_{i}\right\}\right) \cap \mathrm{cl}^{*}\left(E(M)-A_{i}\right)$.

Theorem 2.3 (see [3, Lemma 3.6]). Let M be a matroid and Q, R be disjoint subsets of $E(M)$, let $k:=\kappa(Q, R)$, and let $(U, E(M)-U)$ be a $Q-R$-separating set of order $k+1$. If $e \in E(M)-(U \cup R)$ is noncontradictable with respect to (Q, R), then e is also noncontradictable with respect to (U, R).

First we prove that Theorem 1.1 holds for the case $|S|=|T|=\ell$.
Lemma 2.4. There is a function $c: \mathbb{N}^{2} \rightarrow \mathbb{N}$ with the following property. Let M be a matroid and $Q, R, S, T, F \subseteq E(M)$ sets of elements such that $Q \cap R=S \cap T=\emptyset$ and $F=E(M)-(Q \cup R \cup \bar{S} \cup T)$. Let $k:=\kappa_{M}(Q, R)$ and $\ell:=\kappa_{M}(S, T)$. If $|S|=|T|=\ell$ and $|F| \geq(2 \ell+1) 2^{2 k+1}$, then there is an element $e \in F$ such that one of the following holds:
(i) $\kappa_{M \backslash e}(Q, R)=k$ and $\kappa_{M \backslash e}(S, T)=\ell$;
(ii) $\kappa_{M / e}(Q, R)=k$ and $\kappa_{M / e}(S, T)=\ell$.

Proof. If F contains some flexible element with respect to (Q, R) or (S, T), then we are done. So we may assume that each element in F is nonflexible with respect to (Q, R) and nonflexible with respect to (S, T). By Lemma 2.1 an element e in F is deletable (or contractible) with respect to (Q, R) if and only if e is contractible (or deletable) with respect to (S, T), for otherwise the lemma holds.

Let $\left(A_{1}, \ldots, A_{(2 \ell+1) 2^{2 k+1}}\right)$ be the nested sequence of $Q-R$ separating sets from Theorem 2.2, let $\left(B_{1}, \ldots, B_{(2 \ell+1) 2^{2 k+1}}\right)$ be their complements, and let $\left(f_{1}, \ldots, f_{(2 \ell+1) 2^{2 k+1}}\right)$ be the corresponding ordering of F. Since $|S|=|T|=\ell$, there is a positive integer i such that $i+2^{2 k+1} \leq(2 \ell+1) 2^{2 k+1}$ and such that $Q \cup R \cup S \cup T \subseteq A_{i} \cup B_{(2 \ell+1) 2^{2 k+1}}$. Set

$$
\begin{aligned}
& Q^{\prime}:=A_{i}, R^{\prime}:=B_{i+2^{2 k+1}}, F^{\prime}:=E(M)-\left(Q^{\prime} \cup R^{\prime}\right), \\
& A_{j}^{\prime}:=A_{i+j}, B_{j}^{\prime}:=B_{i+j}, f_{j}^{\prime}:=f_{i+j}, \text { for any } 1 \leq j \leq 2^{2 k+1} .
\end{aligned}
$$

That is, $F^{\prime}=\left\{f_{1}^{\prime}, \ldots, f_{2^{2 k+1}}^{\prime}\right\}$. By duality and Lemma 2.3, each element in F^{\prime} is nonflexible with respect to (Q^{\prime}, R^{\prime}).

Let $\left(C_{1}, \ldots, C_{2^{2 k+1}}\right)$ be the nested sequence of $S-T$ separating sets from Theorem 2.2 determined by the nonflexible-element set F^{\prime} with respect to (S, T), let $\left(D_{1}, \ldots, D_{2^{2 k+1}}\right)$ be their complements, and let $\left(g_{1}, \ldots, g_{2^{2 k+1}}\right)$ be the corresponding ordering of F^{\prime}. By duality we may assume that g_{1} is a deletable element with respect to (S, T). Then (i) $g_{1} \in \operatorname{cl}\left(C_{1}-\left\{g_{1}\right\}\right)$ and (ii) g_{1} is a contractible element
with respect to (Q, R). By (i) and the fact that $C_{1}-\left\{g_{1}\right\} \subseteq Q^{\prime} \cup R^{\prime}$ we see that $g_{1} \in \operatorname{cl}\left(Q^{\prime} \cup R^{\prime}\right)$. From (ii) we deduce that $g_{1} \notin \operatorname{cl}\left(Q^{\prime}\right)$ and $g_{1} \notin \operatorname{cl}\left(R^{\prime}\right)$. Therefore $\sqcap_{M}\left(Q^{\prime} \cup\left\{g_{1}\right\}, R^{\prime}\right)=\sqcap_{M}\left(Q^{\prime}, R^{\prime}\right)+1$. Assume that $g_{1}=f_{j}^{\prime}$. If $j \leq 2^{2 k}$, then set $Q^{\prime \prime}:=A_{j}^{\prime}, R^{\prime \prime}:=R^{\prime}$; else if $j>2^{2 k}$, then set $Q^{\prime \prime}:=Q^{\prime}, R^{\prime \prime}:=B_{j-1}^{\prime}$. No matter which case happens, set $F^{\prime \prime}:=E(M)-\left(Q^{\prime \prime} \cup R^{\prime \prime}\right)$. Evidently, $\left|F^{\prime \prime}\right| \geq 2^{2 k}$ as $\left|F^{\prime}\right|=2^{2 k+1}$. Replacing $Q^{\prime}, R^{\prime}, F^{\prime}$ with $Q^{\prime \prime}, R^{\prime \prime}, F^{\prime \prime}$, respectively, and repeating the above analysis $2 k$ times, there are numbers j_{1}, j_{2} with $2 k+1 \leq j_{1} \leq j_{2} \leq 2^{2 k+1}$ such that $\sqcap_{M}\left(A_{j_{1}}^{\prime}, B_{j_{2}}^{\prime}\right) \geq k+1$ or $\sqcap_{M^{*}}\left(A_{j_{1}}^{\prime}, B_{j_{2}}^{\prime}\right) \geq k+1$, a contradiction to the fact that $\lambda\left(A_{j_{1}}^{\prime}\right)=k$. So the lemma holds.

To prove Theorem 1.1 we still need the following lemma.
Lemma 2.5 (see [2, Lemma 4.7]). Let M be a matroid and S, T be disjoint subsets of $E(M)$. There exists sets $S_{1} \subseteq S, T_{1} \subseteq T$ such that $\left|S_{1}\right|=\left|T_{1}\right|=\kappa(S, T)$.

For convenience we restate Theorem 1.1 here.
Theorem 2.6. There is a function $c: \mathbb{N}^{2} \rightarrow \mathbb{N}$ with the following property. Let M be a matroid and $Q, R, S, T, F \subseteq E(M)$ sets of elements such that $Q \cap R=$ $S \cap T=\emptyset$ and $F=E(M)-(Q \cup R \cup S \cup T)$. Let $k:=\kappa_{M}(Q, R)$ and $\ell:=\kappa(S, T)$. If $|F| \geq(2 \ell+1) 2^{2 k+1}$, then there is an element $e \in F$ such that one of the following holds:
(i) $\kappa_{M \backslash e}(Q, R)=k$ and $\kappa_{M \backslash e}(S, T)=\ell$;
(ii) $\kappa_{M / e}(Q, R)=k$ and $\kappa_{M / e}(S, T)=\ell$.

Proof. By Lemma 2.5 there are sets $S_{1} \subseteq S, T_{1} \subseteq T$ such that $\left|S_{1}\right|=\left|T_{1}\right|=$ $\kappa_{M}(S, T)$. Then Lemma 2.4 implies that there is an element $e_{1} \in E(M)-(Q \cup$ $\left.R \cup S_{1} \cup T_{1}\right)$ such that for some $M_{1} \in\left\{M \backslash e_{1}, M / e_{1}\right\}$ we have $\kappa_{M_{1}}(Q, R)=k$ and $\kappa_{M_{1}}\left(S_{1}, T_{1}\right)=\ell$. Since $\kappa_{M_{1}}\left(S_{1}, T_{1}\right)=\ell$ implies $\kappa_{M_{1}}(S, T)=\ell$, when $e_{1} \in F$ the lemma holds. So we may assume that $e_{1} \notin F$. That is, $e_{1} \in(S \cup T)-\left(S_{1} \cup T_{1}\right)$. Since $F \subseteq E\left(M_{1}\right)-\left(Q \cup R \cup S_{1} \cup T_{1}\right)$, using Lemma 2.4 again there is an element $e_{2} \in E\left(M_{1}\right)-\left(Q \cup R \cup S_{1} \cup T_{1}\right)$ such that for some $M_{2} \in\left\{M_{1} \backslash e_{2}, M_{1} / e_{2}\right\}$ we have $\kappa_{M_{2}}(Q, R)=k$ and $\kappa_{M_{2}}\left(S_{1}, T_{1}\right)=\ell$. Without loss of generality we may assume that $M_{2}=M_{1} \backslash e_{2}$. Then $\kappa_{M \backslash e_{2}}(Q, R)=k$ and $\kappa_{M \backslash e_{2}}\left(S_{1}, T_{1}\right)=\ell$ as $\kappa_{M}(Q, R)=k$ and $\kappa_{M}\left(S_{1}, T_{1}\right)=\ell$. Thus, when $e_{2} \in F$, the lemma holds. So we may assume that $e_{2} \notin F$. Since $(S \cup T)-\left(S_{1} \cup T_{1}\right)$ is finite, repeating the above analysis several times we can always find a minor with an element e such that (i) or (ii) holds. The theorem follows from this observation and the fact that the connectivity function is monotone under minors.

Acknowledgments. The authors thank Jim Geelen, Tony Huynh, and Stefan H. M. van Zwam for reading the paper carefully and giving some helpful comments.

REFERENCES

[1] J. Geelen, private communication, 2014.
[2] J. Geelen, B. Gerards, and G. Whittle, Excluding a planar graph from $G F(q)$-representable matroids, J. Combin. Theory Ser. B, 97 (2007), pp. 971-998.
[3] T. Huynh and S. H. M. van Zwam, Intertwining connectivity in representable matroids, SIAM J. Discrete Math., 28 (2014), pp. 188-196.
[4] W. T. Tutte, Menger's Theorem for matroids, J. Res. Nat. Bur. Standards Sect. B, 69 (1965), pp. 49-53.

[^0]: *Received by the editors March 5, 2014; accepted for publication (in revised form) July 2, 2014; published electronically September 9, 2014. This research was supported by a grant from the Marsden Fund of New Zealand and the grants from China CNNSF (11201076), SRFDP (20113514120010), CSC, and JA11032.
 http://www.siam.org/journals/sidma/28-3/95962.html
 ${ }^{\dagger}$ Center for Discrete Mathematics, Fuzhou University, Fuzhou, People's Republic of China (rongchen@fzu.edu.cn).
 \ddagger School of Mathematics, Statistics and Operations Research, Victoria University of Wellington, New Zealand (geoff.whittle@vuw.ac.laz).

