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INTERTWINING CONNECTIVITY IN MATROIDS∗

RONG CHEN† AND GEOFF WHITTLE‡

Abstract. Let M be a matroid and let Q, R, S, and T be subsets of the ground set such that the
smallest separation that separates Q from R has order k and the smallest separation that separates
S from T has order ℓ. We prove that if E(M)− (Q∪R∪ S ∪ T ) is sufficiently large, then there is an
element e of M such that, in one of M\e or M/e, both connectivities are preserved.
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1. Introduction. Let M be a matroid with ground set E(M). For any X ⊆
E(M), define λM (X) := rM (X) + rM (E(M)−X)− r(M). For disjoint subsets Q,R
of E(M), the connectivity between Q and R is

κM (Q,R) := min{λM (X) : Q ⊆ X ⊆ E(M)−R}.

In the paper, we prove the following theorem.
Theorem 1.1. There is a function c : N2 → N with the following property. Let

M be a matroid and Q, R, S, T , F ⊆ E(M) sets of elements such that Q ∩ R =
S ∩ T = ∅ and F = E(M) − (Q ∪ R ∪ S ∪ T ). Let k := κM (Q,R) and ℓ := κ(S, T ).
If |F | ≥ (2ℓ+ 1)22k+1, then there is an element e ∈ F such that one of the following
holds:

(i) κM\e(Q,R) = k and κM\e(S, T ) = ℓ;
(ii) κM/e(Q,R) = k and κM/e(S, T ) = ℓ.
This theorem resolves a conjecture of Geelen [1]. It strengthens a theorem of

Huynh and van Zwam [3], who prove the result for a class that includes all repre-
sentable matroids but does not include all matroids.

The value that we get is unlikely to be tight. The (k + 1) × (ℓ + 1) grid gives
an example where the theorem fails with |F | = 2kℓ− ℓ − k. Perhaps this example is
extremal?

Conjecture 1.2. Theorem 1.1 holds with |F | = 2kℓ− ℓ− k + 1.

2. Proof of Theorem 1.1. For all disjoint subsets Q, R of the ground set of
a matroid M , Tutte [4] proved that there is a minor N of M with E(N) = Q ∪ R
and such that κM (Q,R) = λN (Q), which is a generalization of Menger’s theorem to
matroids. Equivalently, we have the following lemma.

Lemma 2.1. Let M be a matroid and Q,R be disjoint subsets of E(M). For every
e ∈ E(M)− (Q ∪R) either κM\e(Q,R) = κM (Q,R) or κM/e(Q,R) = κM (Q,R).
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Let M be a matroid and Q, R be disjoint subsets of E(M). Define ⊓M (Q,R) :=
rM (Q)+rM (R)−rM (Q∪R). A partition (A,B) of E(M) is Q−R-separating of order
k + 1 if Q ⊆ A, R ⊆ B, and λM (A) ≤ k. Let e ∈ E(M) − (Q ∪ R). If κM\e(Q,R) =
κM (Q,R), then e is deletable with respect to (Q,R); if κM/e(Q,R) = κM (Q,R), then
e is contractible with respect to (Q,R); and if e is both deletable and contractible with
respect to (Q,R), then e is flexible with respect to (Q,R). Lemma 2.1 implies that for
any e ∈ E(M)−(Q∪R) either e is deletable with respect to (Q,R) or e is contractible
with (Q,R).

Theorem 2.2 (see [3, Theorem 3.4]). Let M be a matroid and Q, R be disjoint
subsets of E(M), let k := κ(Q,R), and let F ⊆ E(M)−(Q∪R) be a set of nonflexible
elements. Then there are an ordering (f1, . . . , fn) of F and a sequence (A1, . . . , An)
of subsets of E(M) such that

(i) Ai is Q−R-separating of order k + 1 for each i ∈ {1, . . . , n};
(ii) Ai ⊆ Ai+1 for each i ∈ {1, . . . , n};
(iii) Ai ∩ F = {f1, . . . , fi} for each i ∈ {1, . . . , n};
(iv) fi ∈ cl(Ai − {fi}) ∩ cl(E(M)−Ai) or fi ∈ cl∗(Ai − {fi}) ∩ cl∗(E(M)−Ai).
Theorem 2.3 (see [3, Lemma 3.6]). Let M be a matroid and Q,R be disjoint

subsets of E(M), let k := κ(Q,R), and let (U,E(M)− U) be a Q− R-separating set
of order k + 1. If e ∈ E(M) − (U ∪ R) is noncontradictable with respect to (Q,R),
then e is also noncontradictable with respect to (U,R).

First we prove that Theorem 1.1 holds for the case |S| = |T | = ℓ.
Lemma 2.4. There is a function c : N2 → N with the following property. Let M be

a matroid and Q, R, S, T , F ⊆ E(M) sets of elements such that Q∩R = S ∩ T = ∅
and F = E(M) − (Q ∪ R ∪ S ∪ T ). Let k := κM (Q,R) and ℓ := κM (S, T ). If
|S| = |T | = ℓ and |F | ≥ (2ℓ + 1)22k+1, then there is an element e ∈ F such that one
of the following holds:

(i) κM\e(Q,R) = k and κM\e(S, T ) = ℓ;
(ii) κM/e(Q,R) = k and κM/e(S, T ) = ℓ.
Proof. If F contains some flexible element with respect to (Q,R) or (S, T ), then

we are done. So we may assume that each element in F is nonflexible with respect
to (Q,R) and nonflexible with respect to (S, T ). By Lemma 2.1 an element e in F is
deletable (or contractible) with respect to (Q,R) if and only if e is contractible (or
deletable) with respect to (S, T ), for otherwise the lemma holds.

Let (A1, . . . , A(2ℓ+1)22k+1) be the nested sequence of Q − R separating sets
from Theorem 2.2, let (B1, . . . , B(2ℓ+1)22k+1) be their complements, and let
(f1, . . . , f(2ℓ+1)22k+1) be the corresponding ordering of F . Since |S| = |T | = ℓ,
there is a positive integer i such that i + 22k+1 ≤ (2ℓ + 1)22k+1 and such that
Q ∪R ∪ S ∪ T ⊆ Ai ∪B(2ℓ+1)22k+1 . Set

Q
′
:= Ai, R

′
:= Bi+22k+1 , F

′
:= E(M)− (Q

′
∪R

′
),

A
′

j := Ai+j , B
′

j := Bi+j , f
′

j := fi+j , for any 1 ≤ j ≤ 22k+1.

That is, F
′
= {f ′

1, . . . , f
′

22k+1}. By duality and Lemma 2.3, each element in F
′
is

nonflexible with respect to (Q
′
, R

′
).

Let (C1, . . . , C22k+1) be the nested sequence of S − T separating sets from The-
orem 2.2 determined by the nonflexible-element set F

′
with respect to (S, T ), let

(D1, . . . , D22k+1) be their complements, and let (g1, . . . , g22k+1) be the corresponding
ordering of F

′
. By duality we may assume that g1 is a deletable element with re-

spect to (S, T ). Then (i) g1 ∈ cl(C1 − {g1}) and (ii) g1 is a contractible element
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with respect to (Q,R). By (i) and the fact that C1 − {g1} ⊆ Q′ ∪ R′ we see that
g1 ∈ cl(Q′ ∪ R′). From (ii) we deduce that g1 /∈ cl(Q

′
) and g1 /∈ cl(R

′
). Therefore

⊓M (Q
′ ∪ {g1}, R

′
) = ⊓M (Q

′
, R

′
) + 1. Assume that g1 = f

′

j . If j ≤ 22k, then set

Q
′′
:= A

′

j , R
′′
:= R

′
; else if j > 22k, then set Q

′′
:= Q

′
, R

′′
:= B

′

j−1. No mat-

ter which case happens, set F
′′
:= E(M) − (Q

′′ ∪ R
′′
). Evidently, |F ′′ | ≥ 22k as

|F ′ | = 22k+1. Replacing Q
′
, R

′
, F

′
with Q

′′
, R

′′
, F

′′
, respectively, and repeating the

above analysis 2k times, there are numbers j1, j2 with 2k+1 ≤ j1 ≤ j2 ≤ 22k+1 such
that ⊓M (A

′

j1 , B
′

j2) ≥ k+1 or ⊓M∗(A
′

j1 , B
′

j2) ≥ k+1, a contradiction to the fact that

λ(A
′

j1 ) = k. So the lemma holds.
To prove Theorem 1.1 we still need the following lemma.
Lemma 2.5 (see [2, Lemma 4.7]). Let M be a matroid and S, T be disjoint

subsets of E(M). There exists sets S1 ⊆ S, T1 ⊆ T such that |S1| = |T1| = κ(S, T ).
For convenience we restate Theorem 1.1 here.
Theorem 2.6. There is a function c : N2 → N with the following property. Let

M be a matroid and Q, R, S, T , F ⊆ E(M) sets of elements such that Q ∩ R =
S ∩ T = ∅ and F = E(M) − (Q ∪ R ∪ S ∪ T ). Let k := κM (Q,R) and ℓ := κ(S, T ).
If |F | ≥ (2ℓ+ 1)22k+1, then there is an element e ∈ F such that one of the following
holds:

(i) κM\e(Q,R) = k and κM\e(S, T ) = ℓ;
(ii) κM/e(Q,R) = k and κM/e(S, T ) = ℓ.
Proof. By Lemma 2.5 there are sets S1 ⊆ S, T1 ⊆ T such that |S1| = |T1| =

κM (S, T ). Then Lemma 2.4 implies that there is an element e1 ∈ E(M) − (Q ∪
R ∪ S1 ∪ T1) such that for some M1 ∈ {M\e1,M/e1} we have κM1(Q,R) = k and
κM1(S1, T1) = ℓ. Since κM1(S1, T1) = ℓ implies κM1(S, T ) = ℓ, when e1 ∈ F the
lemma holds. So we may assume that e1 /∈ F . That is, e1 ∈ (S ∪ T ) − (S1 ∪ T1).
Since F ⊆ E(M1) − (Q ∪ R ∪ S1 ∪ T1), using Lemma 2.4 again there is an element
e2 ∈ E(M1) − (Q ∪ R ∪ S1 ∪ T1) such that for some M2 ∈ {M1\e2,M1/e2} we have
κM2(Q,R) = k and κM2(S1, T1) = ℓ. Without loss of generality we may assume that
M2 = M1\e2. Then κM\e2(Q,R) = k and κM\e2 (S1, T1) = ℓ as κM (Q,R) = k and
κM (S1, T1) = ℓ. Thus, when e2 ∈ F , the lemma holds. So we may assume that
e2 /∈ F . Since (S ∪ T )− (S1 ∪ T1) is finite, repeating the above analysis several times
we can always find a minor with an element e such that (i) or (ii) holds. The theorem
follows from this observation and the fact that the connectivity function is monotone
under minors.
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