

Growth rates of minor-closed classes of matroids $\stackrel{\text{\tiny{trans}}}{\to}$

Jim Geelen^a, Joseph P.S. Kung^b, Geoff Whittle^c

^a Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada

^b Department of Mathematics, University of North Texas, Denton, Texas 76203, USA

^c School of Mathematical and Computing Sciences, Victoria University, Wellington, New Zealand

ARTICLE INFO

Article history: Received 30 January 2008 Available online 9 September 2008

Keywords: Matroids Growth rate Minors

ABSTRACT

For a minor-closed class \mathcal{M} of matroids, let h(k) denote the maximum number of elements in a simple rank-k matroid in \mathcal{M} . We prove that, if \mathcal{M} does not contain all simple rank-2 matroids, then h(k) is finite and is either linear, quadratic, or exponential.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider classes of matroids that are closed both under taking minors and under isomorphism; for convenience we shall simply refer to such classes as *minor-closed*. Our main result, combined with earlier results of Geelen and Whittle and of Geelen and Kabell, yields the following theorem, conjectured by Kung [4, Conjecture 4.9].

Theorem 1.1 (Growth rate theorem). If \mathcal{M} is a minor-closed class of matroids, then either

- (1) there exists $c \in \mathbb{R}$ such that $|E(M)| \leq cr(M)$ for all simple matroids $M \in \mathcal{M}$,
- (2) \mathcal{M} contains all graphic matroids and there exists $c \in \mathbb{R}$ such that $|E(M)| \leq c(r(M))^2$ for all simple matroids $M \in \mathcal{M}$,
- (3) there is a prime-power q and $c \in \mathbb{R}$ such that \mathcal{M} contains all GF(q)-representable matroids and $|E(\mathcal{M})| \leq cq^{r(\mathcal{M})}$ for all simple matroids $\mathcal{M} \in \mathcal{M}$, or
- (4) \mathcal{M} contains all simple rank-2 matroids.

0095-8956/\$ - see front matter © 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jctb.2008.08.006

 $^{^{\}star}$ This research was partially supported by grants from the Natural Sciences and Engineering Research Council of Canada and the Marsden Fund of New Zealand.

We follow the notation of Oxley [5]. A rank-1 flat is referred to as a *point* and a rank-2 flat is referred to as a *line*. The number of points in *M* is denoted by $\epsilon(M)$. For a class \mathcal{M} of matroids and integer $k \ge 0$, we let $h(\mathcal{M}, k)$ be the maximum of $\epsilon(M)$ among all rank-*k* matroids $M \in \mathcal{M}$. Thus, if \mathcal{G} is the set of graphic matroids, then $h(\mathcal{G}, k) = \binom{k+1}{2}$ and, for a prime-power *q*, if $\mathcal{L}(q)$ is the set of all GF(*q*)-representable matroids, then $h(\mathcal{L}(q), k) = \frac{q^k - 1}{q - 1}$.

We begin by recounting two significant partial results towards the growth rate theorem. The first was proved by Geelen and Whittle [2].

Theorem 1.2. If \mathcal{M} is a minor-closed class of matroids, then either

- (1) there exists $c \in \mathbb{R}$ such that, $h(\mathcal{M}, k) \leq ck$ for all k,
- (2) \mathcal{M} contains all graphic matroids, or
- (3) \mathcal{M} contains all simple rank-2 matroids.

The second result was proved by Geelen and Kabell [1] and in part, by Kung [4, Theorem 6.6].

Theorem 1.3. If \mathcal{M} is a minor-closed class of matroids, then either

- (1) there exists a polynomial p(k) such that, $h(\mathcal{M}, k) \leq p(k)$ for all k,
- (2) there is a prime-power q and $c \in \mathbb{R}$ such that \mathcal{M} contains all GF(q)-representable matroids and $h(\mathcal{M}, k) \leq cq^k$ for all k, or
- (3) \mathcal{M} contains all simple rank-2 matroids.

In this paper, we bridge the gap by proving the following theorem.

Theorem 1.4. If \mathcal{M} is a minor-closed class of matroids, then either

- (1) there exists $c \in \mathbb{R}$ such that, $h(\mathcal{M}, k) \leq ck^2$ for all k,
- (2) $h(\mathcal{M}, k) \ge 2^k 1$ for all k, or
- (3) \mathcal{M} contains all simple rank-2 matroids.

We conclude the introduction with two interesting corollaries of the growth rate theorem. The second of these was already known; see Kung [3].

Corollary 1.5. Let q be a power of a prime p and let \mathcal{M} be a minor-closed class of GF(q)-representable matroids. If \mathcal{M} does not contain all GF(p)-representable matroids, then there exists a constant $c \in \mathbb{R}$ such that $h(\mathcal{M}, k) \leq ck^2$ for all k.

Corollary 1.6. Let \mathcal{M} be a minor-closed class of \mathbb{R} -representable matroids. If \mathcal{M} does not contain all simple rank-2 matroids, then there exists a constant $c \in \mathbb{R}$ such that $h(\mathcal{M}, k) \leq ck^2$ for all k.

2. Excluding a line

Kung [4] proved the following theorem.

Theorem 2.1. For any integer $l \ge 2$, if M is a matroid with no $U_{2,l+2}$ -minor, then $\epsilon(M) \le \frac{l^{r(M)}-1}{l-1}$.

Let $\mathcal{U}(l)$ denote the set of all matroids with no $U_{2,l+2}$ -minor. Thus $h(\mathcal{U}(l), k) \leq \frac{l^k-1}{l-1}$. Note that, when l is a prime-power, this bound is tight since $\mathcal{L}(l) \subseteq \mathcal{U}(l)$. However, when l is not a prime-power, the growth rate theorem gives an asymptotically tighter bound of cq^k , where q is the largest prime-power less than or equal to l.

We remark that Kung [4] has made a stronger conjecture.

Conjecture 2.2. If $l \ge 2$ is an integer and q is the largest prime-power less than or equal to l, then $h(\mathcal{U}(l), k) = \frac{q^k - 1}{a - 1}$ for all sufficiently large k.

Conjecture 2.2 is the case of Conjecture 4.9(a) in [4] when the set of excluded minors is empty. The general form of Conjecture 4.9(a) can be restated as follows. Let \mathcal{M} be a minor-closed class not containing all rank-2 simple matroids. If $\mathcal{L}(q) \subseteq \mathcal{M}$ for some prime power q and q is maximum with this property, then $h(\mathcal{M}, k) = \frac{q^k - 1}{q - 1}$ for sufficiently large k. This conjecture is too good to be true. We construct a counterexample \mathcal{M} (using q-lifts or q-cones). Let q be a prime-power, let $n \ge 2$ be an integer, and let \mathcal{F} be the set of all pairs (M, e) consisting of a GF (q^n) -representable matroid M and an element $e \in E(M)$ such that M/e is GF(q)-representable. Now let \mathcal{M} be the set of all matroids $M \setminus e$ where $(M, e) \in \mathcal{F}$. It is straightforward to verify that every extremal rank-k matroid $M' \in \mathcal{M}$ contains a hyperplane H and an element $e' \notin H$ such that $M'|H \cong PG(k-2,q)$ and, for each $f \in H$, the pair (e', f) spans a $(q^n + 1)$ -point line in M'. By adding an element e in parallel with e', we obtain associated pair $(M, e) \in \mathcal{F}$. Therefore,

$$h(\mathcal{M}, k) = q^n \frac{q^{k-1} - 1}{q - 1} + 1.$$

Our proof of the growth rate theorem requires a bound on the number of hyperplanes in a rank-*k* matroid in $\mathcal{U}(l)$. If *M* is GF(q)-representable, then, by considering PG(r - 1, q), we see that *M* has at most $\frac{q^k-1}{q-1}$ hyperplanes. On the other hand, when $M \in \mathcal{U}(l)$, we cannot prove a comparable bound, so we settle for the following crude upper bound from [2]; we include the short proof for completeness.

Lemma 2.3. Let $k \ge 1$ and $l \ge 2$ be integers and let $M \in U(l)$ be a simple rank-k matroid. Then, M has at most $l^{k(k-1)}$ hyperplanes.

Proof. Let n = |E(M)|; thus $n \leq \frac{l^k-1}{l-1} \leq l^k$. Each hyperplane is spanned by a set of k - 1 points, so the number of hyperplanes is at most $\binom{n}{k-1} \leq n^{k-1} \leq l^{k(k-1)}$. \Box

3. Local connectivity

Let *M* be a matroid and let $A, B \subseteq E(M)$. We define $\sqcap_M(A, B) = r_M(A) + r_M(B) - r_M(A \cup B)$; this is the *local connectivity* between *A* and *B*. This definition is motivated by geometry. Suppose that *M* is a restriction of PG(*k*, *q*) and let *F*_A and *F*_B be the flats of PG(*k*, *q*) that are spanned by *A* and *B*, respectively. Then *F*_A \cap *F*_B has rank $\sqcap_M(A, B)$.

The following properties are intuitively obvious for representable matroids, and follow by elementary rank calculations for arbitrary matroids.

- (1) If $A, B \subseteq E(M)$ and $A' \subseteq A$, then $\sqcap_M(A', B) \leqslant \sqcap_M(A, B)$.
- (2) If A and C are disjoint subsets of E(M), then $r_{M/C}(A) = r_M(A) \prod_M(A, C)$.
- (3) If A, B, and C are disjoint subsets of E(M), then $\sqcap_{M/C}(A, B) = \sqcap_M(A, B) \sqcap_M(A, C)$.

We say that two sets $A, B \subseteq E(M)$ are skew if $\sqcap_M(A, B) = 0$. More generally, the sets $A_1, \ldots, A_l \subseteq E(M)$ are skew if $r_M(A_1) + \cdots + r_M(A_k) = r_M(A_1 \cup \cdots \cup A_k)$.

4. Books and dense minors

A line is *long* if it has at least 3 points. For sets A and B we let $A \times B$ denote $\{(a, b): a \in A, b \in B\}$. We use the following lemma to identify a dense minor.

Lemma 4.1. Let $k \ge 1$ be an integer and let $n = k2^k$. Let F_1 and F_2 be skew flats in a matroid M such that $M|F_1$ is isomorphic to $M(K_n)$, $r(F_2) = k$, and each pair of points in $F_1 \times F_2$ spans a long line. Then M has a rank-k minor N with $\epsilon(N) \ge 2^k - 1$.

423

Proof. We may assume that *M* is simple and that $r(M) = r_M(F_1 \cup F_2)$. We may also assume that F_2 is a *k*-element independent set in *M* and that $M|F_1 = M(G)$, where *G* is isomorphic to K_n . Let *C* denote the set of all subsets of F_2 with at least two elements. Since $n \ge k|\mathcal{C}|$, there exists a collection $(P_X: X \in \mathcal{C})$ of vertex-disjoint paths in *G* where each path P_X has length |X|. For each $X \in \mathcal{C}$, let e_X be the edge of *G* that connects the ends of P_X , and let $\phi_X : X \to E(P_X)$ be an arbitrary bijection. For each $x \in X$, let $f_x \in E(M) - (F_1 \cup F_2)$ be an element spanned by $\{x, \phi_X(x)\}$, and let $S_X = \{f_x: x \in X\}$. Finally, let *S* denote the union of the sets $(S_X: X \in \mathcal{C})$ and let *N* be the restriction of M/S to the flat spanned by F_2 . Note that the sets F_2 and $(P_X: X \in \mathcal{C})$ are skew and, for each $X \in \mathcal{C}$, the set S_X is contained in the flat of *M* that is spanned by $F_2 \cup P_X$. Moreover, F_2 is independent in *N* and, for each $X \in \mathcal{C}$, the set $X \cup \{e_X\}$ is a circuit of *N*. Hence $\epsilon(N) \ge |F_2| + |\mathcal{C}| = 2^k - 1$, as required. \Box

We call a matroid *M* round if each cocircuit of *M* is spanning. Equivalently, *M* is round if and only if E(M) cannot be written as the union of two proper flats. The following properties are straightforward to check:

- 1. If *M* is a round matroid and $e \in E(M)$ then M/e is round.
- 2. If N is a spanning minor of M and N is round, then M is round.

Let *M* be a matroid. A flat *F* of *M* is called *round* if the restriction of *M* to *F* is round. Each rank-one flat is round. Moreover, a line is round if and only if it is long. A sequence (F_0, F_1, \ldots, F_t) is called a *k*-book if F_0 is a rank-*k* flat of *M* and F_1, \ldots, F_t are distinct round rank-(k + 1) flats of *M* each containing F_0 .

The following lemma is the main result of the section.

Lemma 4.2. There exists a function $f_1 : \mathbb{Z}^2 \to \mathbb{Z}$ such that, for integers $l, k \ge 2$, if (F_0, F_1, \ldots, F_t) is a (k+1)-book in a matroid $M \in \mathcal{U}(l)$ and $t \ge f_1(l, k)r(M)$, then M has a rank-k minor N with $\epsilon(N) = 2^k - 1$.

Proof. By Ramsey's Theorem, there exists a function $R : \mathbb{Z}^2 \to \mathbb{Z}$ such that, for integers $n, c \ge 1$, if we colour the edges of a clique on R(n, c) vertices with c colours, then there is a monochromatic clique on n vertices. By Theorem 1.2, there exists a function $\lambda : \mathbb{Z}^2 \to \mathbb{Z}$ such that, for integers $l, n \ge 2$, if $M \in \mathcal{U}(l)$ is a matroid with $\epsilon(M) > \lambda(l, n)r(M)$, then M has an $M(K_n)$ -minor.

Let $l, k \ge 2$ be integers. Now let $n_3 = k2^k$, $n'_2 = n_3 + 3$, $n_2 = R(n'_2, l2^k + 1) + 1$, and $n_1 = l2^k + R(n_2, \binom{l2^k}{k+1})$. Finally we let $f_1(l, k) = \lambda(l, n_1)$.

Now consider a matroid $M \in \mathcal{U}(l)$ containing a (k + 1)-book (F_0, F_1, \ldots, F_t) with $t \ge f_1(l, k)r(M)$. By way of contradiction, we assume that, for each rank-k minor N of M, we have $\epsilon(N) < 2^k - 1$. If follows easily that, for each rank-(k + 1) minor N of M, we have $\epsilon(N) < l(2^k - 1) + 1 \le l2^k$.

4.2.1. There is a minor M_1 of M and a set $X_1 \subseteq E(M_1)$ such that

(1) $F_0 \subseteq E(M_1)$ and $r_{M_1}(F_0) = k + 1$, (2) $(M_1/F_0)|X_1 \cong M(K_{n_1})$, and (3) for each $e \in X_1$, the flat of M_1 that is spanned by $F_0 \cup \{e\}$ is round.

Proof of 4.2.1. For each $i \in \{1, ..., t\}$, choose $x_i \in F_i - F_0$. Now let $X = \{x_1, ..., x_t\}$ and let $N = (M/F_0)|X$. Note that $\epsilon(N) \ge \lambda(l, n_1)r(N)$. Therefore there is a minor, say $N \setminus D/C$, of N that is isomorphic to $M(K_{n_1})$. The claim follows by taking $M_1 := M/C$ and $X_1 := E(N \setminus D/C)$. \Box

4.2.2. There is a minor M_2 of M_1 , a set $X_2 \subseteq E(M_2)$, and a (k + 1)-element independent set Y_2 of M_2 such that

(1) $(M_2/Y_2)|X_2 \cong M(K_{n_2})$, and

(2) each pair of elements in $X_2 \times Y_2$ spans a long line in M_2 .

Proof of 4.2.2. Let $n' = R(n_2, \binom{l^2}{k+1})$, thus $n_1 = l2^k + n'$. Note that F_0 has rank-(k + 1) and, hence, it spans at most $l2^k$ points. We begin by repeatedly contracting elements from X_1 if doing so increases the number of points spanned by F_0 ; the number of points that we contract will be at most $l2^k$. Therefore, there is a minor M_2 of M_1 and a set $X' \subseteq X_1$ such that:

- (1) $F_0 \subseteq E(M_2)$ and $r_{M_2}(F_0) = k + 1$,
- (2) $(M_2/F_0)|X' \cong M(K_{n'}),$
- (3) for each $e \in X'$, the flat of M_2 that is spanned by $F_0 \cup \{e\}$ is round, and
- (4) for each element $a \in X'$ and each element $b \in cl_{M_2}(F_0 \cup \{a\}) cl_{M_2}(F_0)$ that is not in parallel with a, there is an element $c \in cl_{M_2}(F_0)$ such that $\{a, b, c\}$ is a circuit of M_2 .

Let $F' = cl_{M_2}(F_0)$. We may assume, for notational convenience, that M_2 is simple. Thus $|F'| \leq l2^k$. For each element $a \in X'$, let B_a be a basis of the flat spanned by $\{a\} \cup F'$ with $\{a\} \subseteq B_a$ and with $B_a \cap F' = \emptyset$ (such a basis exists since the flat is round). By the last property of M_2 above, there is a basis B'_a of F' such that, for each $b \in B_a - \{a\}$, there is an element $c \in F'$ such that $\{a, b, c\}$ is a circuit. Note that B'_a is a (k + 1)-element subset of F' and the number of such subsets is at most $\binom{l2^k}{k+1}$. Therefore, by Ramsey's Theorem, there is a basis Y_2 of F' and a set $X_2 \subseteq X'$ such that $(M_2/F_0)|X_2 \cong M(K_{n_2})$ and, for each $e \in X_2$, we have $B'_e = Y_2$. Thus M_2 , X_2 , and Y_2 satisfy the claim. \Box

4.2.3. There is a set $X'_2 \subseteq X_2$ such that

(1) $(M_2/Y_2)|X'_2 \cong M(K_{n'_2})$, and (2) $\sqcap_{M_2}(X'_2, Y_2) \leq 1$.

Proof of 4.2.3. Recall that $(M_2/Y_2)|X_2 = M(G)$ where *G* is a graph that is isomorphic to K_{n_2} . Let $v \in V(G)$ and let *C* be the set of edges of *G* that are incident with *v*. Note that $Y_2 \cup C$ spans X_2 in M_2 . Define a partition (S_0, S_1, \ldots, S_m) of X_2 such that $S_0 = cl_{M_2}(C) \cap X_2$ and (S_1, \ldots, S_m) are the parallel classes of $(M_2|X_2)/S_0$. The flat spanned by Y_2 in M_2/C has rank k + 1 and at least *m* points, so $m \leq l2^k$. By definition, $n_2 = R(n'_2, l2^k + 1) + 1$. So, by Ramsey's Theorem, there is a set $X'_2 \subseteq E(G - v)$ and an element $j \in \{0, \ldots, m\}$ such that $(M_2/Y_2)|X'_2 \cong M(K_{n'_2})$ and $X'_2 \subseteq S_j$. Applying identities from the previous section, we get

$$\begin{split} \sqcap_{M_{2}}(X'_{2}, Y_{2}) &\leqslant \sqcap_{M_{2}}(S_{j} \cup C, Y_{2}) \\ &\leqslant \sqcap_{M_{2}/C}(S_{j}, Y_{2}) + \sqcap_{M_{2}}(C, Y_{2}) \\ &= \sqcap_{M_{2}/C}(S_{j}, Y_{2}) \\ &\leqslant r_{M_{2}/C}(S_{j}) \\ &\leqslant 1, \end{split}$$

as required.

4.2.4. There is a minor M_3 of M_2 , a set $X_3 \subseteq E(M_3)$, and a k-element independent set Y_3 of M_3 such that

(1) $M_3|X_3 \cong M(K_{n_3})$,

(2) each pair of elements in $X_3 \times Y_3$ spans a long line in M_3 , and

(3) X_3 and Y_3 are skew in M_3 .

Proof of 4.2.4. Recall that $(M_2/Y_2)|X'_2 = M(G)$ where *G* is a graph that is isomorphic to $K_{n'_2}$. Moreover, $\sqcap_{M_2}(X'_2, Y_2) \leq 1$. We may assume that $\sqcap_{M_2}(X'_2, Y_2) = 1$ otherwise the claim holds. It follows that $r_{M_2}(X'_2) = r_{M_2/Y_2}(X'_2) + 1$. Now it is routine to show that there is a triangle *T* of *G* that is independent in M_2 . Let $a, b, c \in V(G)$ be the three vertices in *G* that are incident with edges in *T*, let $X_3 := E(G - \{a, b, c\})$, and let $M_3 = M_2/T$. Now $\lambda_{M_2}(T, Y_2) = r_{M_2}(T) - r_{M_2/Y_2}(T) = 1$ and, hence,

$$\Pi_{M_3}(X_3, Y_2) \leqslant \Pi_{M_2/T} (X'_2 - T, Y_2)$$

= $\Pi_{M_2} (X'_2, Y_2) - \Pi_{M_2} (T, Y_2)$
= 0.

Therefore X_3 is skew to Y_2 in M_3 . Moreover, Y_2 has rank k in M_3 ; let $Y_3 \subset Y_2$ be a maximal independent set in M_3 . Then M_3 , X_3 , and Y_3 satisfy the claim. \Box

The result now follows by Lemma 4.1. \Box

5. Building a book

In order to build an appropriate book, we use the methods of [2]; in fact, this section is taken almost verbatim from that paper.

Lemma 5.1. For integers $\alpha \ge 1$ and $l \ge 2$, if $M \in U(l)$ is a matroid with $\epsilon(M) > \alpha \binom{r(M)+1}{2}$, then there is a minor N of M that contains $> \frac{\alpha}{(l+1)^2} r(N) \epsilon(N)$ long lines.

Proof. We may assume that *M* is simple. For each $v \in E$, let $N_v = M/v$. Inductively, we may assume that $\epsilon(N_v) \leq \alpha \binom{r(N_v)}{2}$ for each $v \in E$. Note that, $r(N_v) = r(M) - 1$ and $\binom{r(M)+1}{2} = \binom{r(M)}{2} + r(M)$. So $\epsilon(M) - \epsilon(N_v) \geq \alpha r(M) + 1$. Since $M \in \mathcal{U}(l)$, each long line in *M* has at most l + 1 points; so when we contract an element the parallel classes contain at most *l* elements. Thus *v* is on at least $\frac{\alpha r(M)}{l}$ long lines. So the number of long lines is at least $\frac{\alpha r(M)}{l(l+1)} \epsilon(M)$. \Box

The following lemma is proved in [2].

Lemma 5.2. Let *M* be a matroid, let F_1 and F_2 be round flats of *M* such that $r_M(F_1) = r_M(F_2) = k$ and $r_M(F_1 \cup F_2) = k + 1$, and let *F* be the flat of *M* spanned by $F_1 \cup F_2$. If $F \neq F_1 \cup F_2$ then *F* is round.

Let \mathcal{F} be a set of round flats in a matroid M. A rank-k flat F is called \mathcal{F} -constructed if there exist two rank-(k-1) flats $F_1, F_2 \in \mathcal{F}$ such that $F = \operatorname{cl}_M(F_1 \cup F_2)$ and $F \neq F_1 \cup F_2$. Thus, the \mathcal{F} -constructed flats are round. We let \mathcal{F}^+ denote the set of \mathcal{F} -constructed flats.

Most of the remaining work is in the proof of the following technical lemma.

Lemma 5.3. There exists an integer-valued function $f_2(k, \alpha, l)$ such that, for all integers $k \ge 2$, $\alpha \ge 1$, and $l \ge 2$, if $M \in \mathcal{U}(l)$ is a matroid with $\epsilon(M) > f_2(k, \alpha, l) \binom{r(M)+1}{2}$, then there exists a minor N of M and a set \mathcal{F} of round rank-(k-1) flats of N such that $|\mathcal{F}^+| > \alpha r(N)|\mathcal{F}|$.

Proof. Let $f_2(2, \alpha, l) = \alpha (l+1)^2$, and, for $k \ge 2$, we recursively define

$$f_2(k+1, \alpha, l) = f_2(k, l^{(k+1)^2}\alpha + l^k, l)$$

The proof is by induction on *k*. Consider the case that k = 2. Now, let $M \in \mathcal{U}(l)$ be a simple matroid with $|E(M)| > f_2(2, \alpha, l) \binom{r(M)+1}{2}$. By Lemma 5.1, there exists a simple minor *N* of *M* with more than $\alpha r(N) \epsilon(N)$ long lines. Now, if \mathcal{F} is the set of points of *N*, then \mathcal{F}^+ is the set of long lines of *N* and $|\mathcal{F}^+| > \alpha r(N)|\mathcal{F}|$, as required.

Suppose that the result holds for k = n and consider the case that k = n + 1. Now let $M \in U(l)$ be a simple matroid with $\epsilon(M) > \beta(n + 1, \alpha, l) \binom{r(M)+1}{2}$. We let $\alpha' = l^{(n+1)^2}\alpha + l^n$. By the induction hypothesis there exists a minor N of M and a set \mathcal{F} of round rank-(n - 1) flats of N such that $|\mathcal{F}^+| > \alpha' r(N)|\mathcal{F}|$. We may assume that no proper minor of N contains such a collection of flats. We may also assume that N is simple. We will prove that $|(\mathcal{F}^+)^+| \ge \alpha r(N)|\mathcal{F}^+|$.

Now, for each $v \in E(N)$, let $N_v = N/v$. Let \mathcal{F}_v denote the set of rank-(n-1) flats in N_v corresponding to the set of flats in \mathcal{F} in N. That is, if $F \in \mathcal{F}$ and $v \notin F$, then $cl_{N_v}(F) \in \mathcal{F}_v$. By our choice of N,

 $|\mathcal{F}^+| > \alpha' r(N)|\mathcal{F}|$, and, by the minimality of N, $|\mathcal{F}_{\nu}^+| \leq \alpha' r(N_{\nu})|\mathcal{F}_{\nu}| \leq \alpha' r(N)|\mathcal{F}_{\nu}|$ for all $\nu \in E(N)$. Thus,

$$\left(\left|\mathcal{F}^{+}\right|-\left|(\mathcal{F}_{\nu})^{+}\right|\right)>\alpha'r(N)\left(|\mathcal{F}|-|\mathcal{F}_{\nu}|\right).$$

Let

$$\Delta = \sum (|\mathcal{F}| - |\mathcal{F}_{\nu}| : \nu \in E(N)) \text{ and } \Delta^{+} = \sum (|\mathcal{F}^{+}| - |(\mathcal{F}_{\nu})^{+}|: \nu \in E(N)).$$

This proves:

5.3.1. $\Delta^+ > \alpha' r(N) \Delta$.

Consider a flat $F \in \mathcal{F}^+$. By definition there exist flats F_1 , $F_2 \in \mathcal{F}$ such that $F = cl_N(F_1 \cup F_2)$ and there exists an element $v \in F - (F_1 \cup F_2)$. Now $cl_{N_v}(F_1) = cl_{N_v}(F_2)$, so these two flats in \mathcal{F} are reduced to a single flat in \mathcal{F}_v . This proves:

5.3.2. $\Delta \ge |\mathcal{F}^+|$.

Now, for some $v \in E(N)$, compare \mathcal{F}^+ with $(\mathcal{F}_v)^+$. There are two ways to lose constructed flats; we can either contract an element in a flat or we contract two flats onto each other. Firstly, suppose $F \in \mathcal{F}^+$ and $v \in F$. Note that $F - \{v\}$ only has rank n - 1 in N/v, so it will not determine a flat in $(\mathcal{F}_v)^+$. Now F has rank n and, by Theorem 2.1, a rank-n flat contains at most $\frac{l^n-1}{l-1} < l^n$ points; we destroy F if we contract any one of these points. Secondly, consider two flats $F_1, F_2 \in \mathcal{F}^+$ that are contracted onto each other in N_v . Let F be the flat of N spanned by $F_1 \cup F_2$ in N. Since F_1 and F_2 are contracted onto a common rank-k flat in N_v , we see that F has rank k+1 and $v \in F - (F_1 \cup F_2)$. Thus, $F \in (\mathcal{F}^+)^+$. Now, F has rank n+1, so it has at most l^{n+1} points. Moreover, by Lemma 2.3, in a flat of rank n+1 there are at most $l^{(n+1)n}$ rank-n flats avoiding a given element. Thus, $F - \{v\}$ contains at most $l^{(n+1)n}$ flats of \mathcal{F} ; these flats will be contracted to a single flat in $(\mathcal{F}_v)^+$. This proves:

5.3.3.
$$\Delta^+ \leq l^n |\mathcal{F}^+| + l^{(n+1)^2} |(\mathcal{F}^+)^+|.$$

Now, combining 5.3.1–5.3.3, we get

$$\begin{split} l^{(n+1)^{2}} | (\mathcal{F}^{+})^{+} | &\geq \Delta^{+} - l^{n} | \mathcal{F}^{+} | > \alpha' r(N) \Delta - l^{n} | \mathcal{F}^{+} | \\ &\geq \left(\alpha' r(N) - l^{n} \right) | \mathcal{F}^{+} | \geq \left(\alpha' - l^{n} \right) r(N) | \mathcal{F}^{+} | \\ &= l^{(n+1)^{2}} \alpha r(N) | \mathcal{F}^{+} |. \end{split}$$

Therefore $|(\mathcal{F}^+)^+| > \alpha |\mathcal{F}^+|$; as required. \Box

We are now ready to prove Theorem 1.4, which we restate here in a more convenient form.

Theorem 5.4. For all integers $l \ge 2$ and $k \ge 1$, there is an integer c such that, if $M \in U(l)$ is a matroid with $\epsilon(M) > c\binom{r(M)+1}{2}$, then M has a rank-k minor N such that $\epsilon(N) = 2^k - 1$.

Proof. Let $\alpha = l^{(k+2)(k+1)} f_1(l, k)$ and let $c = f_2(k + 2, \alpha, l)$. Now, let $M \in \mathcal{U}(l)$ be a matroid with $\epsilon(M) > c\binom{r(M)+1}{2}$. By Lemma 5.3, there is a minor N of M and a collection \mathcal{F} of round rank-(k + 1) flats of N such that $|\mathcal{F}^+| > \alpha r(N)|\mathcal{F}|$. By Lemma 2.3, each flat in \mathcal{F}^+ contains at most $l^{(k+2)(k+1)}$ flats from \mathcal{F} . Let $t = f_1(l, k)r(N)$. Therefore, there is a flat $F_0 \in \mathcal{F}$ that is contained in t flats in \mathcal{F}^+ ; let $F_1, \ldots, F_t \in \mathcal{F}^+$ be flats containing F_0 . Then (F_0, F_1, \ldots, F_t) is a (k+1)-book and, hence, the theorem follows by Lemma 4.2. \Box

426

References

- [1] J. Geelen, K. Kabell, Projective geometries in dense matroids, J. Combin. Theory Ser. B 99 (1) (2009) 1-8.
- [2] J. Geelen, G. Whittle, Cliques in dense GF(q)-representable matroids, J. Combin. Theory Ser. B 87 (2003) 264–269.
- [3] J.P.S. Kung, The long-line graph of a combinatorial geometry. II. Geometries representable over two fields of different characteristic, J. Combin. Theory Ser. B 50 (1990) 41–53.
- [4] J.P.S. Kung, Extremal matroid theory, in: Graph Structure Theory, Seattle, WA, 1991, in: Contemp. Math., vol. 147, American Mathematical Society, Providence, RI, 1993, pp. 21–61.
- [5] J.G. Oxley, Matroid Theory, Oxford University Press, New York, 1992.