Journal of Combinatorial Theory

Growth rates of minor-closed classes of matroids

Jim Geelen ${ }^{\text {a }}$, Joseph P.S. Kung ${ }^{\text {b }}$, Geoff Whittle ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada
${ }^{\text {b }}$ Department of Mathematics, University of North Texas, Denton, Texas 76203, USA
${ }^{\text {c }}$ School of Mathematical and Computing Sciences, Victoria University, Wellington, New Zealand

A R T I C L E I N F O

Article history:

Received 30 January 2008
Available online 9 September 2008

Keywords:

Matroids
Growth rate
Minors

Abstract

For a minor-closed class \mathcal{M} of matroids, let $h(k)$ denote the maximum number of elements in a simple rank-k matroid in \mathcal{M}. We prove that, if \mathcal{M} does not contain all simple rank-2 matroids, then $h(k)$ is finite and is either linear, quadratic, or exponential.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider classes of matroids that are closed both under taking minors and under isomorphism; for convenience we shall simply refer to such classes as minor-closed. Our main result, combined with earlier results of Geelen and Whittle and of Geelen and Kabell, yields the following theorem, conjectured by Kung [4, Conjecture 4.9].

Theorem 1.1 (Growth rate theorem). If \mathcal{M} is a minor-closed class of matroids, then either
(1) there exists $c \in \mathbb{R}$ such that $|E(M)| \leqslant c r(M)$ for all simple matroids $M \in \mathcal{M}$,
(2) \mathcal{M} contains all graphic matroids and there exists $c \in \mathbb{R}$ such that $|E(M)| \leqslant c(r(M))^{2}$ for all simple matroids $M \in \mathcal{M}$,
(3) there is a prime-power q and $c \in \mathbb{R}$ such that \mathcal{M} contains all $\mathrm{GF}(q)$-representable matroids and $|E(M)| \leqslant$ $c q^{r(M)}$ for all simple matroids $M \in \mathcal{M}$, or
(4) \mathcal{M} contains all simple rank-2 matroids.

[^0]We follow the notation of Oxley [5]. A rank-1 flat is referred to as a point and a rank-2 flat is referred to as a line. The number of points in M is denoted by $\epsilon(M)$. For a class \mathcal{M} of matroids and integer $k \geqslant 0$, we let $h(\mathcal{M}, k)$ be the maximum of $\epsilon(M)$ among all rank- k matroids $M \in \mathcal{M}$. Thus, if \mathcal{G} is the set of graphic matroids, then $h(\mathcal{G}, k)=\binom{k+1}{2}$ and, for a prime-power q, if $\mathcal{L}(q)$ is the set of all $\mathrm{GF}(q)$-representable matroids, then $h(\mathcal{L}(q), k)=\frac{q^{k}-1}{q-1}$.

We begin by recounting two significant partial results towards the growth rate theorem. The first was proved by Geelen and Whittle [2].

Theorem 1.2. If \mathcal{M} is a minor-closed class of matroids, then either
(1) there exists $c \in \mathbb{R}$ such that, $h(\mathcal{M}, k) \leqslant c k$ for all k,
(2) \mathcal{M} contains all graphic matroids, or
(3) \mathcal{M} contains all simple rank- 2 matroids.

The second result was proved by Geelen and Kabell [1] and in part, by Kung [4, Theorem 6.6].
Theorem 1.3. If \mathcal{M} is a minor-closed class of matroids, then either
(1) there exists a polynomial $p(k)$ such that, $h(\mathcal{M}, k) \leqslant p(k)$ for all k,
(2) there is a prime-power q and $c \in \mathbb{R}$ such that \mathcal{M} contains all $\mathrm{GF}(q)$-representable matroids and $h(\mathcal{M}, k) \leqslant c q^{k}$ for all k, or
(3) \mathcal{M} contains all simple rank- 2 matroids.

In this paper, we bridge the gap by proving the following theorem.
Theorem 1.4. If \mathcal{M} is a minor-closed class of matroids, then either
(1) there exists $c \in \mathbb{R}$ such that, $h(\mathcal{M}, k) \leqslant c k^{2}$ for all k,
(2) $h(\mathcal{M}, k) \geqslant 2^{k}-1$ for all k, or
(3) \mathcal{M} contains all simple rank- 2 matroids.

We conclude the introduction with two interesting corollaries of the growth rate theorem. The second of these was already known; see Kung [3].

Corollary 1.5. Let q be a power of a prime p and let \mathcal{M} be a minor-closed class of $\mathrm{GF}(q)$-representable matroids. If \mathcal{M} does not contain all $\operatorname{GF}(p)$-representable matroids, then there exists a constant $c \in \mathbb{R}$ such that $h(\mathcal{M}, k) \leqslant c k^{2}$ for all k.

Corollary 1.6. Let \mathcal{M} be a minor-closed class of \mathbb{R}-representable matroids. If \mathcal{M} does not contain all simple rank-2 matroids, then there exists a constant $c \in \mathbb{R}$ such that $h(\mathcal{M}, k) \leqslant c k^{2}$ for all k.

2. Excluding a line

Kung [4] proved the following theorem.
Theorem 2.1. For any integer $l \geqslant 2$, if M is a matroid with no $U_{2, l+2-m i n o r, ~ t h e n ~} \epsilon(M) \leqslant \frac{r^{(M)}-1}{l-1}$.
Let $\mathcal{U}(l)$ denote the set of all matroids with no $U_{2, l+2}$-minor. Thus $h(\mathcal{U}(l), k) \leqslant \frac{l^{k}-1}{l-1}$. Note that, when l is a prime-power, this bound is tight since $\mathcal{L}(l) \subseteq \mathcal{U}(l)$. However, when l is not a prime-power, the growth rate theorem gives an asymptotically tighter bound of $c q^{k}$, where q is the largest prime-power less than or equal to l.

We remark that Kung [4] has made a stronger conjecture.

Conjecture 2.2. If $l \geqslant 2$ is an integer and q is the largest prime-power less than or equal to l, then $h(\mathcal{U}(l), k)=$ $\frac{q^{k}-1}{q-1}$ for all sufficiently large k.

Conjecture 2.2 is the case of Conjecture 4.9(a) in [4] when the set of excluded minors is empty. The general form of Conjecture 4.9 (a) can be restated as follows. Let \mathcal{M} be a minor-closed class not containing all rank- 2 simple matroids. If $\mathcal{L}(q) \subseteq \mathcal{M}$ for some prime power q and q is maximum with this property, then $h(\mathcal{M}, k)=\frac{q^{k}-1}{q-1}$ for sufficiently large k. This conjecture is too good to be true. We construct a counterexample \mathcal{M} (using q-lifts or q-cones). Let q be a prime-power, let $n \geqslant 2$ be an integer, and let \mathcal{F} be the set of all pairs (M, e) consisting of a $\operatorname{GF}\left(q^{n}\right)$-representable matroid M and an element $e \in E(M)$ such that M / e is $\operatorname{GF}(q)$-representable. Now let \mathcal{M} be the set of all matroids $M \backslash e$ where $(M, e) \in \mathcal{F}$. It is straightforward to verify that every extremal rank-k matroid $M^{\prime} \in \mathcal{M}$ contains a hyperplane H and an element $e^{\prime} \notin H$ such that $M^{\prime} \mid H \cong \operatorname{PG}(k-2, q)$ and, for each $f \in H$, the pair $\left(e^{\prime}, f\right)$ spans a $\left(q^{n}+1\right)$-point line in M^{\prime}. By adding an element e in parallel with e^{\prime}, we obtain associated pair $(M, e) \in \mathcal{F}$. Therefore,

$$
h(\mathcal{M}, k)=q^{n} \frac{q^{k-1}-1}{q-1}+1 .
$$

Our proof of the growth rate theorem requires a bound on the number of hyperplanes in a rank- k matroid in $\mathcal{U}(l)$. If M is $\operatorname{GF}(q)$-representable, then, by considering $\operatorname{PG}(r-1, q)$, we see that M has at most $\frac{q^{k}-1}{q-1}$ hyperplanes. On the other hand, when $M \in \mathcal{U}(l)$, we cannot prove a comparable bound, so we settle for the following crude upper bound from [2]; we include the short proof for completeness.

Lemma 2.3. Let $k \geqslant 1$ and $l \geqslant 2$ be integers and let $M \in \mathcal{U}(l)$ be a simple rank- k matroid. Then, M has at most $l^{k(k-1)}$ hyperplanes.

Proof. Let $n=|E(M)|$; thus $n \leqslant \frac{l^{k}-1}{l-1} \leqslant l^{k}$. Each hyperplane is spanned by a set of $k-1$ points, so the number of hyperplanes is at most $\binom{n}{k-1} \leqslant n^{k-1} \leqslant l^{k(k-1)}$.

3. Local connectivity

Let M be a matroid and let $A, B \subseteq E(M)$. We define $\sqcap_{M}(A, B)=r_{M}(A)+r_{M}(B)-r_{M}(A \cup B)$; this is the local connectivity between A and B. This definition is motivated by geometry. Suppose that M is a restriction of $\operatorname{PG}(k, q)$ and let F_{A} and F_{B} be the flats of $\operatorname{PG}(k, q)$ that are spanned by A and B, respectively. Then $F_{A} \cap F_{B}$ has rank $\sqcap_{M}(A, B)$.

The following properties are intuitively obvious for representable matroids, and follow by elementary rank calculations for arbitrary matroids.
(1) If $A, B \subseteq E(M)$ and $A^{\prime} \subseteq A$, then $\sqcap_{M}\left(A^{\prime}, B\right) \leqslant \Pi_{M}(A, B)$.
(2) If A and C are disjoint subsets of $E(M)$, then $r_{M / C}(A)=r_{M}(A)-\Pi_{M}(A, C)$.
(3) If A, B, and C are disjoint subsets of $E(M)$, then $\Pi_{M / C}(A, B)=\square_{M}(A, B)-\square_{M}(A, C)$.

We say that two sets $A, B \subseteq E(M)$ are skew if $\sqcap_{M}(A, B)=0$. More generally, the sets $A_{1}, \ldots, A_{l} \subseteq$ $E(M)$ are skew if $r_{M}\left(A_{1}\right)+\cdots+r_{M}\left(A_{k}\right)=r_{M}\left(A_{1} \cup \cdots \cup A_{k}\right)$.

4. Books and dense minors

A line is long if it has at least 3 points. For sets A and B we let $A \times B$ denote $\{(a, b): a \in A, b \in B\}$. We use the following lemma to identify a dense minor.

Lemma 4.1. Let $k \geqslant 1$ be an integer and let $n=k 2^{k}$. Let F_{1} and F_{2} be skew flats in a matroid M such that $M \mid F_{1}$ is isomorphic to $M\left(K_{n}\right), r\left(F_{2}\right)=k$, and each pair of points in $F_{1} \times F_{2}$ spans a long line. Then M has a rank-k minor N with $\epsilon(N) \geqslant 2^{k}-1$.

Proof. We may assume that M is simple and that $r(M)=r_{M}\left(F_{1} \cup F_{2}\right)$. We may also assume that F_{2} is a k-element independent set in M and that $M \mid F_{1}=M(G)$, where G is isomorphic to K_{n}. Let \mathcal{C} denote the set of all subsets of F_{2} with at least two elements. Since $n \geqslant k|\mathcal{C}|$, there exists a collection $\left(P_{X}: X \in \mathcal{C}\right)$ of vertex-disjoint paths in G where each path P_{X} has length $|X|$. For each $X \in \mathcal{C}$, let e_{X} be the edge of G that connects the ends of P_{X}, and let $\phi_{X}: X \rightarrow E\left(P_{X}\right)$ be an arbitrary bijection. For each $x \in X$, let $f_{x} \in E(M)-\left(F_{1} \cup F_{2}\right)$ be an element spanned by $\left\{x, \phi_{X}(x)\right\}$, and let $S_{X}=\left\{f_{x}: x \in X\right\}$. Finally, let S denote the union of the sets $\left(S_{X}: X \in \mathcal{C}\right)$ and let N be the restriction of M / S to the flat spanned by F_{2}. Note that the sets F_{2} and $\left(P_{X}: X \in \mathcal{C}\right)$ are skew and, for each $X \in \mathcal{C}$, the set S_{X} is contained in the flat of M that is spanned by $F_{2} \cup P_{X}$. Moreover, F_{2} is independent in N and, for each $X \in \mathcal{C}$ and each $x \in X$, the elements x and $\phi_{X}(x)$ are in parallel in N. Therefore, for each $X \in \mathcal{C}$, the set $X \cup\left\{e_{X}\right\}$ is a circuit of N. Hence $\epsilon(N) \geqslant\left|F_{2}\right|+|\mathcal{C}|=2^{k}-1$, as required.

We call a matroid M round if each cocircuit of M is spanning. Equivalently, M is round if and only if $E(M)$ cannot be written as the union of two proper flats. The following properties are straightforward to check:

1. If M is a round matroid and $e \in E(M)$ then M / e is round.
2. If N is a spanning minor of M and N is round, then M is round.

Let M be a matroid. A flat F of M is called round if the restriction of M to F is round. Each rank-one flat is round. Moreover, a line is round if and only if it is long. A sequence $\left(F_{0}, F_{1}, \ldots, F_{t}\right)$ is called a k-book if F_{0} is a rank-k flat of M and F_{1}, \ldots, F_{t} are distinct round rank- $(k+1)$ flats of M each containing F_{0}.

The following lemma is the main result of the section.
Lemma 4.2. There exists a function $f_{1}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ such that, for integers $l, k \geqslant 2$, if $\left(F_{0}, F_{1}, \ldots, F_{t}\right)$ is a $(k+1)$ book in a matroid $M \in \mathcal{U}(l)$ and $t \geqslant f_{1}(l, k) r(M)$, then M has a rank-k minor N with $\epsilon(N)=2^{k}-1$.

Proof. By Ramsey's Theorem, there exists a function $R: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ such that, for integers $n, c \geqslant 1$, if we colour the edges of a clique on $R(n, c)$ vertices with c colours, then there is a monochromatic clique on n vertices. By Theorem 1.2, there exists a function $\lambda: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ such that, for integers $l, n \geqslant 2$, if $M \in \mathcal{U}(l)$ is a matroid with $\epsilon(M)>\lambda(l, n) r(M)$, then M has an $M\left(K_{n}\right)$-minor.

Let $l, k \geqslant 2$ be integers. Now let $n_{3}=k 2^{k}, n_{2}^{\prime}=n_{3}+3, n_{2}=R\left(n_{2}^{\prime}, l 2^{k}+1\right)+1$, and $n_{1}=l 2^{k}+$ $R\left(n_{2},\binom{l 2^{k}}{k+1}\right)$. Finally we let $f_{1}(l, k)=\lambda\left(l, n_{1}\right)$.

Now consider a matroid $M \in \mathcal{U}(l)$ containing a $(k+1)$-book $\left(F_{0}, F_{1}, \ldots, F_{t}\right)$ with $t \geqslant f_{1}(l, k) r(M)$. By way of contradiction, we assume that, for each rank-k minor N of M, we have $\epsilon(N)<2^{k}-1$. If follows easily that, for each rank- $(k+1)$ minor N of M, we have $\epsilon(N)<l\left(2^{k}-1\right)+1 \leqslant l 2^{k}$.
4.2.1. There is a minor M_{1} of M and a set $X_{1} \subseteq E\left(M_{1}\right)$ such that
(1) $F_{0} \subseteq E\left(M_{1}\right)$ and $r_{M_{1}}\left(F_{0}\right)=k+1$,
(2) $\left(M_{1} / F_{0}\right) \mid X_{1} \cong M\left(K_{n_{1}}\right)$, and
(3) for each $e \in X_{1}$, the flat of M_{1} that is spanned by $F_{0} \cup\{e\}$ is round.

Proof of 4.2.1. For each $i \in\{1, \ldots, t\}$, choose $x_{i} \in F_{i}-F_{0}$. Now let $X=\left\{x_{1}, \ldots, x_{t}\right\}$ and let $N=$ $\left(M / F_{0}\right) \mid X$. Note that $\epsilon(N) \geqslant \lambda\left(l, n_{1}\right) r(N)$. Therefore there is a minor, say $N \backslash D / C$, of N that is isomorphic to $M\left(K_{n_{1}}\right)$. The claim follows by taking $M_{1}:=M / C$ and $X_{1}:=E(N \backslash D / C)$.
4.2.2. There is a minor M_{2} of M_{1}, a set $X_{2} \subseteq E\left(M_{2}\right)$, and a $(k+1)$-element independent set Y_{2} of M_{2} such that
(1) $\left(M_{2} / Y_{2}\right) \mid X_{2} \cong M\left(K_{n_{2}}\right)$, and
(2) each pair of elements in $X_{2} \times Y_{2}$ spans a long line in M_{2}.

Proof of 4.2.2. Let $n^{\prime}=R\left(n_{2},\binom{l 2^{k}}{k+1}\right.$, thus $n_{1}=l 2^{k}+n^{\prime}$. Note that F_{0} has rank- $(k+1)$ and, hence, it spans at most $l 2^{k}$ points. We begin by repeatedly contracting elements from X_{1} if doing so increases the number of points spanned by F_{0}; the number of points that we contract will be at most $l 2^{k}$. Therefore, there is a minor M_{2} of M_{1} and a set $X^{\prime} \subseteq X_{1}$ such that:
(1) $F_{0} \subseteq E\left(M_{2}\right)$ and $r_{M_{2}}\left(F_{0}\right)=k+1$,
(2) $\left(M_{2} / F_{0}\right) \mid X^{\prime} \cong M\left(K_{n^{\prime}}\right)$,
(3) for each $e \in X^{\prime}$, the flat of M_{2} that is spanned by $F_{0} \cup\{e\}$ is round, and
(4) for each element $a \in X^{\prime}$ and each element $b \in \operatorname{cl}_{M_{2}}\left(F_{0} \cup\{a\}\right)-\operatorname{cl}_{M_{2}}\left(F_{0}\right)$ that is not in parallel with a, there is an element $c \in \operatorname{cl}_{M_{2}}\left(F_{0}\right)$ such that $\{a, b, c\}$ is a circuit of M_{2}.

Let $F^{\prime}=\mathrm{cl}_{M_{2}}\left(F_{0}\right)$. We may assume, for notational convenience, that M_{2} is simple. Thus $\left|F^{\prime}\right| \leqslant l 2^{k}$. For each element $a \in X^{\prime}$, let B_{a} be a basis of the flat spanned by $\{a\} \cup F^{\prime}$ with $\{a\} \subseteq B_{a}$ and with $B_{a} \cap F^{\prime}=\emptyset$ (such a basis exists since the flat is round). By the last property of M_{2} above, there is a basis B_{a}^{\prime} of F^{\prime} such that, for each $b \in B_{a}-\{a\}$, there is an element $c \in F^{\prime}$ such that $\{a, b, c\}$ is a circuit. Note that B_{a}^{\prime} is a $(k+1)$-element subset of F^{\prime} and the number of such subsets is at most $\binom{12^{k}}{k+1}$. Therefore, by Ramsey's Theorem, there is a basis Y_{2} of F^{\prime} and a set $X_{2} \subseteq X^{\prime}$ such that $\left(M_{2} / F_{0}\right) \mid X_{2} \cong$ $M\left(K_{n_{2}}\right)$ and, for each $e \in X_{2}$, we have $B_{e}^{\prime}=Y_{2}$. Thus M_{2}, X_{2}, and Y_{2} satisfy the claim.
4.2.3. There is a set $X_{2}^{\prime} \subseteq X_{2}$ such that
(1) $\left(M_{2} / Y_{2}\right) \mid X_{2}^{\prime} \cong M\left(K_{n_{2}^{\prime}}\right)$, and
(2) $\square_{M_{2}}\left(X_{2}^{\prime}, Y_{2}\right) \leqslant 1$.

Proof of 4.2.3. Recall that $\left(M_{2} / Y_{2}\right) \mid X_{2}=M(G)$ where G is a graph that is isomorphic to $K_{n_{2}}$. Let $v \in V(G)$ and let C be the set of edges of G that are incident with v. Note that $Y_{2} \cup C$ spans X_{2} in M_{2}. Define a partition $\left(S_{0}, S_{1}, \ldots, S_{m}\right)$ of X_{2} such that $S_{0}=\mathrm{cl}_{M_{2}}(C) \cap X_{2}$ and $\left(S_{1}, \ldots, S_{m}\right)$ are the parallel classes of $\left(M_{2} \mid X_{2}\right) / S_{0}$. The flat spanned by Y_{2} in M_{2} / C has rank $k+1$ and at least m points, so $m \leqslant l 2^{k}$. By definition, $n_{2}=R\left(n_{2}^{\prime}, l 2^{k}+1\right)+1$. So, by Ramsey's Theorem, there is a set $X_{2}^{\prime} \subseteq E(G-v)$ and an element $j \in\{0, \ldots, m\}$ such that $\left(M_{2} / Y_{2}\right) \mid X_{2}^{\prime} \cong M\left(K_{n_{2}^{\prime}}\right)$ and $X_{2}^{\prime} \subseteq S_{j}$. Applying identities from the previous section, we get

$$
\begin{aligned}
\Pi_{M_{2}}\left(X_{2}^{\prime}, Y_{2}\right) & \leqslant \Pi_{M_{2}}\left(S_{j} \cup C, Y_{2}\right) \\
& \leqslant \Pi_{M_{2} / C}\left(S_{j}, Y_{2}\right)+\Pi_{M_{2}}\left(C, Y_{2}\right) \\
& =\sqcap_{M_{2} / C}\left(S_{j}, Y_{2}\right) \\
& \leqslant r_{M_{2} / C}\left(S_{j}\right) \\
& \leqslant 1
\end{aligned}
$$

as required.
4.2.4. There is a minor M_{3} of M_{2}, a set $X_{3} \subseteq E\left(M_{3}\right)$, and a k-element independent set Y_{3} of M_{3} such that
(1) $M_{3} \mid X_{3} \cong M\left(K_{n_{3}}\right)$,
(2) each pair of elements in $X_{3} \times Y_{3}$ spans a long line in M_{3}, and
(3) X_{3} and Y_{3} are skew in M_{3}.

Proof of 4.2.4. Recall that $\left(M_{2} / Y_{2}\right) \mid X_{2}^{\prime}=M(G)$ where G is a graph that is isomorphic to $K_{n_{2}^{\prime}}$. Moreover, $\Pi_{M_{2}}\left(X_{2}^{\prime}, Y_{2}\right) \leqslant 1$. We may assume that $\Pi_{M_{2}}\left(X_{2}^{\prime}, Y_{2}\right)=1$ otherwise the claim holds. It follows that $r_{M_{2}}\left(X_{2}^{\prime}\right)=r_{M_{2} / Y_{2}}\left(X_{2}^{\prime}\right)+1$. Now it is routine to show that there is a triangle T of G that is independent in M_{2}. Let $a, b, c \in V(G)$ be the three vertices in G that are incident with edges in T, let $X_{3}:=E(G-\{a, b, c\})$, and let $M_{3}=M_{2} / T$. Now $\lambda_{M_{2}}\left(T, Y_{2}\right)=r_{M_{2}}(T)-r_{M_{2} / Y_{2}}(T)=1$ and, hence,

$$
\begin{aligned}
\sqcap_{M_{3}}\left(X_{3}, Y_{2}\right) & \leqslant \sqcap_{M_{2} / T}\left(X_{2}^{\prime}-T, Y_{2}\right) \\
& =\sqcap_{M_{2}}\left(X_{2}^{\prime}, Y_{2}\right)-\sqcap_{M_{2}}\left(T, Y_{2}\right) \\
& =0
\end{aligned}
$$

Therefore X_{3} is skew to Y_{2} in M_{3}. Moreover, Y_{2} has rank k in M_{3}; let $Y_{3} \subset Y_{2}$ be a maximal independent set in M_{3}. Then M_{3}, X_{3}, and Y_{3} satisfy the claim.

The result now follows by Lemma 4.1.

5. Building a book

In order to build an appropriate book, we use the methods of [2]; in fact, this section is taken almost verbatim from that paper.

Lemma 5.1. For integers $\alpha \geqslant 1$ and $l \geqslant 2$, if $M \in \mathcal{U}(l)$ is a matroid with $\epsilon(M)>\alpha\left({ }_{2}^{(M)+1}\right)$, then there is a minor N of M that contains $>\frac{\alpha}{(l+1)^{2}} r(N) \epsilon(N)$ long lines.

Proof. We may assume that M is simple. For each $v \in E$, let $N_{v}=M / v$. Inductively, we may assume that $\epsilon\left(N_{v}\right) \leqslant \alpha\binom{r\left(N_{v}\right)}{2}$ for each $v \in E$. Note that, $r\left(N_{v}\right)=r(M)-1$ and $\binom{r(M)+1}{2}=\binom{r(M)}{2}+r(M)$. So $\epsilon(M)-\epsilon\left(N_{v}\right) \geqslant \alpha r(M)+1$. Since $M \in \mathcal{U}(l)$, each long line in M has at most $l+1$ points; so when we contract an element the parallel classes contain at most l elements. Thus v is on at least $\frac{\alpha r(M)}{l}$ long lines. So the number of long lines is at least $\frac{\alpha r(M)}{l(l+1)} \epsilon(M)$.

The following lemma is proved in [2].
Lemma 5.2. Let M be a matroid, let F_{1} and F_{2} be round flats of M such that $r_{M}\left(F_{1}\right)=r_{M}\left(F_{2}\right)=k$ and $r_{M}\left(F_{1} \cup F_{2}\right)=k+1$, and let F be the flat of M spanned by $F_{1} \cup F_{2}$. If $F \neq F_{1} \cup F_{2}$ then F is round.

Let \mathcal{F} be a set of round flats in a matroid M. A rank- k flat F is called \mathcal{F}-constructed if there exist two rank- $(k-1)$ flats $F_{1}, F_{2} \in \mathcal{F}$ such that $F=\operatorname{cl}_{M}\left(F_{1} \cup F_{2}\right)$ and $F \neq F_{1} \cup F_{2}$. Thus, the \mathcal{F}-constructed flats are round. We let \mathcal{F}^{+}denote the set of \mathcal{F}-constructed flats.

Most of the remaining work is in the proof of the following technical lemma.
Lemma 5.3. There exists an integer-valued function $f_{2}(k, \alpha, l)$ such that, for all integers $k \geqslant 2, \alpha \geqslant 1$, and $l \geqslant 2$, if $M \in \mathcal{U}(l)$ is a matroid with $\epsilon(M)>f_{2}(k, \alpha, l)\binom{r(M)+1}{2}$, then there exists a minor N of M and a set \mathcal{F} of round rank- $(k-1)$ flats of N such that $\left|\mathcal{F}^{+}\right|>\alpha r(N)|\mathcal{F}|$.

Proof. Let $f_{2}(2, \alpha, l)=\alpha(l+1)^{2}$, and, for $k \geqslant 2$, we recursively define

$$
f_{2}(k+1, \alpha, l)=f_{2}\left(k, l^{(k+1)^{2}} \alpha+l^{k}, l\right)
$$

The proof is by induction on k. Consider the case that $k=2$. Now, let $M \in \mathcal{U}(l)$ be a simple matroid with $|E(M)|>f_{2}(2, \alpha, l)\binom{r(M)+1}{2}$. By Lemma 5.1 , there exists a simple minor N of M with more than $\alpha r(N) \epsilon(N)$ long lines. Now, if \mathcal{F} is the set of points of N, then \mathcal{F}^{+}is the set of long lines of N and $\left|\mathcal{F}^{+}\right|>\alpha r(N)|\mathcal{F}|$, as required.

Suppose that the result holds for $k=n$ and consider the case that $k=n+1$. Now let $M \in \mathcal{U}(l)$ be a simple matroid with $\epsilon(M)>\beta(n+1, \alpha, l)\binom{r(M)+1}{2}$. We let $\alpha^{\prime}=l^{(n+1)^{2}} \alpha+l^{n}$. By the induction hypothesis there exists a minor N of M and a set \mathcal{F} of round rank- $(n-1)$ flats of N such that $\left|\mathcal{F}^{+}\right|>\alpha^{\prime} r(N)|\mathcal{F}|$. We may assume that no proper minor of N contains such a collection of flats. We may also assume that N is simple. We will prove that $\left|\left(\mathcal{F}^{+}\right)^{+}\right| \geqslant \alpha r(N)\left|\mathcal{F}^{+}\right|$.

Now, for each $v \in E(N)$, let $N_{v}=N / v$. Let \mathcal{F}_{v} denote the set of rank- $(n-1)$ flats in N_{v} corresponding to the set of flats in \mathcal{F} in N. That is, if $F \in \mathcal{F}$ and $v \notin F$, then $\operatorname{cl}_{N_{v}}(F) \in \mathcal{F}_{v}$. By our choice of N,
$\left|\mathcal{F}^{+}\right|>\alpha^{\prime} r(N)|\mathcal{F}|$, and, by the minimality of $N,\left|\mathcal{F}_{v}^{+}\right| \leqslant \alpha^{\prime} r\left(N_{v}\right)\left|\mathcal{F}_{v}\right| \leqslant \alpha^{\prime} r(N)\left|\mathcal{F}_{v}\right|$ for all $v \in E(N)$. Thus,

$$
\left(\left|\mathcal{F}^{+}\right|-\left|\left(\mathcal{F}_{v}\right)^{+}\right|\right)>\alpha^{\prime} r(N)\left(|\mathcal{F}|-\left|\mathcal{F}_{v}\right|\right)
$$

Let

$$
\Delta=\sum\left(|\mathcal{F}|-\left|\mathcal{F}_{v}\right|: v \in E(N)\right) \quad \text { and } \quad \Delta^{+}=\sum\left(\left|\mathcal{F}^{+}\right|-\left|\left(\mathcal{F}_{v}\right)^{+}\right|: v \in E(N)\right)
$$

This proves:
5.3.1. $\Delta^{+}>\alpha^{\prime} r(N) \Delta$.

Consider a flat $F \in \mathcal{F}^{+}$. By definition there exist flats $F_{1}, F_{2} \in \mathcal{F}$ such that $F=\operatorname{cl}_{N}\left(F_{1} \cup F_{2}\right)$ and there exists an element $v \in F-\left(F_{1} \cup F_{2}\right)$. Now $\operatorname{cl}_{N_{v}}\left(F_{1}\right)=\operatorname{cl}_{N_{v}}\left(F_{2}\right)$, so these two flats in \mathcal{F} are reduced to a single flat in \mathcal{F}_{v}. This proves:

5.3.2. $\Delta \geqslant\left|\mathcal{F}^{+}\right|$.

Now, for some $v \in E(N)$, compare \mathcal{F}^{+}with $\left(\mathcal{F}_{v}\right)^{+}$. There are two ways to lose constructed flats; we can either contract an element in a flat or we contract two flats onto each other. Firstly, suppose $F \in \mathcal{F}^{+}$and $v \in F$. Note that $F-\{v\}$ only has rank $n-1$ in N / v, so it will not determine a flat in $\left(\mathcal{F}_{v}\right)^{+}$. Now F has rank n and, by Theorem 2.1, a rank- n flat contains at most $\frac{l^{n}-1}{l-1}<l^{n}$ points; we destroy F if we contract any one of these points. Secondly, consider two flats $F_{1}, F_{2} \in \mathcal{F}^{+}$that are contracted onto each other in N_{v}. Let F be the flat of N spanned by $F_{1} \cup F_{2}$ in N. Since F_{1} and F_{2} are contracted onto a common rank-k flat in N_{v}, we see that F has rank $k+1$ and $v \in F-\left(F_{1} \cup F_{2}\right)$. Thus, $F \in\left(\mathcal{F}^{+}\right)^{+}$. Now, F has rank $n+1$, so it has at most l^{n+1} points. Moreover, by Lemma 2.3, in a flat of rank $n+1$ there are at most $l^{(n+1) n}$ rank-n flats avoiding a given element. Thus, $F-\{v\}$ contains at most $l^{(n+1) n}$ flats of \mathcal{F}; these flats will be contracted to a single flat in $\left(\mathcal{F}_{v}\right)^{+}$. This proves:
5.3.3. $\Delta^{+} \leqslant l^{\eta}\left|\mathcal{F}^{+}\right|+l^{(n+1)^{2}}\left|\left(\mathcal{F}^{+}\right)^{+}\right|$.

Now, combining 5.3.1-5.3.3, we get

$$
\begin{aligned}
l^{(n+1)^{2}}\left|\left(\mathcal{F}^{+}\right)^{+}\right| & \geqslant \Delta^{+}-l^{n}\left|\mathcal{F}^{+}\right|>\alpha^{\prime} r(N) \Delta-l^{n}\left|\mathcal{F}^{+}\right| \\
& \geqslant\left(\alpha^{\prime} r(N)-l^{n}\right)\left|\mathcal{F}^{+}\right| \geqslant\left(\alpha^{\prime}-l^{n}\right) r(N)\left|\mathcal{F}^{+}\right| \\
& =l^{(n+1)^{2}} \alpha r(N)\left|\mathcal{F}^{+}\right|
\end{aligned}
$$

Therefore $\left|\left(\mathcal{F}^{+}\right)^{+}\right|>\alpha\left|\mathcal{F}^{+}\right|$; as required.

We are now ready to prove Theorem 1.4 , which we restate here in a more convenient form.

Theorem 5.4. For all integers $l \geqslant 2$ and $k \geqslant 1$, there is an integer c such that, if $M \in \mathcal{U}(l)$ is a matroid with $\epsilon(M)>c\binom{r(M)+1}{2}$, then M has a rank-k minor N such that $\epsilon(N)=2^{k}-1$.

Proof. Let $\alpha=l^{(k+2)(k+1)} f_{1}(l, k)$ and let $c=f_{2}(k+2, \alpha, l)$. Now, let $M \in \mathcal{U}(l)$ be a matroid with $\epsilon(M)>c\binom{r(M)+1}{2}$. By Lemma 5.3, there is a minor N of M and a collection \mathcal{F} of round rank- $(k+1)$ flats of N such that $\left|\mathcal{F}^{+}\right|>\alpha r(N)|\mathcal{F}|$. By Lemma 2.3 , each flat in \mathcal{F}^{+}contains at most $l^{(k+2)(k+1)}$ flats from \mathcal{F}. Let $t=f_{1}(l, k) r(N)$. Therefore, there is a flat $F_{0} \in \mathcal{F}$ that is contained in t flats in \mathcal{F}^{+}; let $F_{1}, \ldots, F_{t} \in \mathcal{F}^{+}$be flats containing F_{0}. Then $\left(F_{0}, F_{1}, \ldots, F_{t}\right)$ is a $(k+1)$-book and, hence, the theorem follows by Lemma 4.2.

References

[1] J. Geelen, K. Kabell, Projective geometries in dense matroids, J. Combin. Theory Ser. B 99 (1) (2009) 1-8.
[2] J. Geelen, G. Whittle, Cliques in dense GF(q)-representable matroids, J. Combin. Theory Ser. B 87 (2003) $264-269$.
[3] J.P.S. Kung, The long-line graph of a combinatorial geometry. II. Geometries representable over two fields of different characteristic, J. Combin. Theory Ser. B 50 (1990) 41-53.
[4] J.P.S. Kung, Extremal matroid theory, in: Graph Structure Theory, Seattle, WA, 1991, in: Contemp. Math., vol. 147, American Mathematical Society, Providence, RI, 1993, pp. 21-61
[5] J.G. Oxley, Matroid Theory, Oxford University Press, New York, 1992

[^0]: this research was partially supported by grants from the Natural Sciences and Engineering Research Council of Canada and the Marsden Fund of New Zealand.

