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POLYMATROIDS
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1. Introduction

Ler S be a collection of subspaces of V(r, ¢), the rank-r vector space
over GF(g). Of the subspaces of V(r, g) which contain no member of §,
let U be one with maximum rank. What is the rank of L/?

In the special case that the subspaces in U all have rank less than or
equal to 1, the above problem is well-studied. It is, in essence, the critical
problem for matroids developed by Crapo and Rota [2]. There it is
shown that the rank of {/ depends only on the matroid structure of § and
that it is determined by an evaluation of the characteristic polynomial of
this matroid. In this paper we show that a similar result holds in the more
general case. In this case, the rank of U depends only on the polymatroid
structure of U and is determined by an evaluation of the characteristic
polynomial of this polymatroid.

The main results, presented in Section 3, are direct polymatroid-
theoretic generalisations of the standard matroid-theoretic ones. With
some polymatroid-theoretic preliminaries, established in Section 2, the
proofs are very simple. Given this, the material in this paper perhaps
needs some justification and the remainder of this introduction is devoted
to this.

Firstly, the results presented in Section 3 subsume the standard
matroid-theoretic resulis on the critical problem in unweakened form as
special cases. Now these days no mathematician believes in generalising
for the sake of generalising; nonetheless, it must always be true that
ideally a result should be presented at the maximum level of generality
possible without weakening the conclusion.

Secondly, one of the notable features of the critical problem for
matroids is that it provides a unified setting for a large number of
extremal (and enumerative) problems in combinatorics. In [12] it is
shown that the critical problem for polymatroids gemeralises (weak)
hypergraph colouring in just the same way that the critical problem for
matroids generalises graph colouring. Many combinatorial problems have
natural interpretations as hypergraph colouring problems so that the
number of problems which can be interpreted as critical problems is
considerably increased.

Thirdly, consider inequivalent representations. Some terms used here
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are not defined until later in this paper. It is an interesting fact that the
critical exponent of a set of points is a matroid invariant. It is a
consequence of results in this paper that the same is frue in the more
general case; the critical exponent of a coliection of subspaces is a
polymatroid invariant so that inequivalent representations of the same
polymatroid have the same critical exponent. In general, a polymatroid
has very sharply inequivalent representations. For example, consider the
polymatroid on a 3-element set § which takes the value 2 on all proper
non-empty subsets of 5§ and takes the value 3 on S. Over any rank-3
vector space this polymatroid can either be represented affinely by three
distinct concurrent lines or by three non-concurrent lines. Note aiso, in
contrast to the matroid case that binary 2-polymatroids are not, in
general, uniquely representable.

Finally consider polymatroid theory., The well-known fact that every
polymatroid is embeddable as a collection of flats of some matroid may
lead one to believe that the theory of polymatroids can, in some sense, be
reduced to matroid theory. The critical exponent of a collection of
subspaces is determined by an evaluation of the characteristic polynomial
of a polymatroid, but, in general, this polynomial is not the characteristic
polynomial of any associated matroid or, indeed, of any matroid at all.

2. Preliminaries
Let S be a finite set. A polymatroid on S is a function £:2%— Z which is

(i) normalised, that is, f{({Z) =0,
(ii) increasing, that is, if A ¢ B < S, then f(A)<f(B), and is
(iii} submodular, that it, if AcS and B¢S, then f(AUB)+
F(ANB)=<f(A) +f(B).

The set § is the ground set of f. Note that, if, in addition, the value of f
on singletons never exceeds 1, then fis a matroid.

Let § and E be finite sets and consider a function ¢: S—25 (IfAc S,
then we denote Li ¢(a) by ¢(A).) Now let f be a polymatroid on § and r

be a matroid on E. Then ¢ is a representation of f in r if, for all subsets A
of S, f(A) =r{¢(A)). Moreover, f is representable over r if there exists a
representation of f in r. Let g be a prime power, then f is representable
over GF(g) il, for some positive integer n, there exists a representation
of fin V(n, q) (equivalently PG(n — 1, q)).

Polymatroid representation is just like matroid representation except
that elements of the ground set of the polymatroid are represented by
subsets rather than singletons. Let cl denote the closure operator of the
matroid r. Then, if ¢ represents f in r, the function ¢’ defined by
¢’ (a)=cl(¢(a)) also represents f in r so that one can think of the
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elements of the polymatroid as being represented by flats of the matroid.
A central well-known fact in the theory of polymatroids is that every
polymatroid is representable over some matroid (see for example [4,7]).
Conversely, if § is a collection of subsets of the ground set of the matroid
r, then the function f on S defined for all subsets A of § by

flA)y= r( U a) is a polymatroid on §.
aeAd

If ¢; and ¢, both represent the polymatroid f on S in V(r, q), then ¢,
and ¢, are equivalent representations of f if there exists an automorphism
a: V(r, g)— V(r, g) such that, for all x in S, &(cl(¢:(x)) = cl(g(x)).
The use of closure in this definition avoids trivially inequivalent
representations.

Let f be a polymatroid on § and X be a subset of S. Then the deletion
of X from §, denoted f\X, is the polymatroid on § — X defined, for all
AcS—X, by FAX(A)=f(A). The contraction of X from §, denoted
f/X, is the polymatroid on § — X defined for all A = § ~ X, by

fIX(A)=f(AUX) - f(A).

It is easily seen that, just as with matroids, deletion and contraction
commute, both with themselves and each other. The polymatroid f’ is a
minor of fif f' = fAX/Y for some disjoint subsets X and Y of §.

The definition given above of deletion is uncontentious. To justify the
definition of contraction, note first that it generalises that of contraction
in matroids. Note also, that if ¢ represents f in the matroid r on E, and if
s €8, then the function ¢’ S —s—>257%%) defined, for all elements x of
S, by ¢'(x) = ¢(x) — ¢(s) is a representation of f/s in r/P(s).

The closure operator of a polymatroid f on § is the function cl: 2828
defined, for all A c S, by

c(A)={x e S: f(AUx)=f(A)}.

It is easily seen (and well known, see for example [2, Ch. 7]) that cf is
increasing and idempotent. A set A is a flar of f if cl(A)=A4. When
ordered by inclusion, the flats of f form a lattice, but without additional
structure this lattice carries little of the significant information of the
polymatroid. Note that Dilworth [3, Ch. 7] has shown that every finite
lattice can be obtained from some polymatroid in the above way.

A weighted lattice is a pair (L, g) where L is a finite lattice and g is a
function from L into the integers with the properties that

(i} g{x)=<g(y) whenever x and y are elements of L with x <y, and
(iiy g(0)=0.

If (L, g) is a weighted lattice, then L and g are the underlying lattice and
underlying function of (L, g) respectively. Now let f be a polymatroid on
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S. Then associated with f is a weighted lattice which we denote by L.
The underlying Iattice of L, is the lattice of flats of f ordered by inclusion.
The underlying function of L, is the restriction of f to the flats of f. By an
abuse of notation, we denote this function by f also. The lattice just
described is the weighted lattice of flats of f.

The weighted iattice of flats of a matroid is just the usual geometric
lattice one associates with the matroid weighted by its rank function.
Now lattices of flats of polymatroids are not, in general, graded Jattices.
Even when they are, the rank of an element determined from the grading
will typicaily differ from its rank in the polymatroid. It is for this reason
that we have, in general, to consider weighted lattices,

Let (L, f;) and (L. f;) be weighted lattices. Then (L., f;) is
representable over (L., f2) if there exists an injective function ¢: L,— L,
with the properties that, if x and y are elements of L,, then fi(x)=
B{e(x)), and ¢(x v ¥) = ¢p(x) v ¢(y). An injective function ¢ with these
properties is a representation of (L,, fi) in (L,, £;,). Since ¢ is injective
and preserves joins, it follows that ¢p(x} = ¢(y) if andonly if x <y. It is
then evident that the subset ¢(L,) of L, forms a lattice isomorphic to L,.
Note that while joins are always preserved by ¢, meets are not, so that
¢(L,) is generally not a subiattice of L,. The routine proof of the
foliowing proposition is omitted.

Prorosition 2.1. Let f be a polymatroid and r be a matroid. Let L; and
L, denote their weighted lattices of flats. Then f is representable over r if
and only if L, is representable over L,.

The characteristic polynomial, denoted P(f; 1), of the polymatroid f on

§ is defined by
P(f; )= 3 (—1) A S—F),
AcS

Characteristic polynomials of polymatroids generalise those of matroids,
where they are often called chromatic polynomials [9, Ch. 15]. As with
matroids, characteristic polynomials of polymatroids satisfy a deletion-
contraction recursion. A routine computation proves

ProrosiTioN 2.2, For all elements a of S,

P(f; 2) = MOTEIP(f\a; 2) - P(f/a; A).

A loop of the polymatroid f is an element a with f({a}) =0. It is easily
seen that if f has a loop, then P(f;A)=0.

Let (L, f) be a weighted lattice and let 4 denote the Mdbius function
of L. Then the characteristic polynomiai of (L, f), denoted P((L, f); A),
is defined by

P((L, ) 4)= 2, u(0, )/ D/,

xel
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Characteristic polynomials of weighted lattices are studied in a general
setting in [1X]. The following proposition is a special case of [11,
Theorem 3.2].

ProrosiTiON 2.3. Let f be a polymatroid and L, be its weighted lattice of
fats. If fis loopless then

P(f; A)=P(Ls; ).

3. Main results

Consider V(r, g), the rank-r vector space over GF(g). Let A be a
collection of subsets of the ground set of V(r, ¢). A k-tuple of linear
functionals (L,, ..., L} on V(, q) is said to distinguish the members of

k
A if no member of A is contained in () Ker(L;). Recall that the
i=t

polymatroid f is representable over GF(q) if there exists a representation
of fin V(r, g). Let f be such a polymatroid and let ¢’ be a representation
of fin V(r, g). Let L; denote the weighted lattice of flats of f. Define the
function ¢: L, = V(r, q) by ¢(F)=cly(, (¢'(F)), for ali flats F of f.
Evidently, ¢ is a representation of L; in the weighted lattice of flats of
V(r, g), whick we also dencte by V{r, g). Also evident is the fact that
(L, ..., L) distinguishes the members of {¢'(S5): s ¢ S} if and only if
(Ly, ..., Ly) distinguishes the members of {¢(F): F € L;}.

Tueorem 3.1. Let f be a polymatroid on S representable over GF(q)
and let ¢' be a representation of f in V(r, q). Then the number of k-tuples
of linear functionals on V(r,q) which distinguish the members of
{#'(s):5 € S} is given by (g“YTIP(f; ¢*).

Proof. If f has a loop, the result is immediate, so assume that f is
loopless. Let Ly denote the weighted lattice of flats of f and let ¢ be the
associated representation of L, in V(r, g) (as discussed in the preamble to
the theorem). For x € Ly, let a(k, x) denote the number of k-tuples of

k
linear functionals (L,, ..., L;) for which ¢(x) =) Ker (L;). It is easily
i=1

seen (and shown in [13, Theorem 7.6.1]) that a(k, x) = (g*) ~"*¢D, But
r(p(x)) =f(x), so alk, x)=(g"Y 7. Since ¢ is a representation of L,
in V(r, q), it follows that if u and v are members of ¢(L;), then u v v is
a member of ¢(L,). Hence any subspace of V(r, g) contains a unique
maximal member of ¢(L;). For x in Ly, let B(k, x) denote the number of
k-tuples of linear functionals (L, . .., L) for which ¢(x) is the maximal

k
member of ¢(L,) contained in [} Ker (L;). Since x <y if and only if
i=1
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¢(x) = ¢(y), it now follows that
all, x)= X Bk y).

yYeLpia=y
Let u denote the Mébius function of L,. Then applying Mdbius inversion
and setting y = 0 we see that

Bk, 0)= 2, p(0, x)alk, x)

xely

= 2 (0, x)(g"y ™

xelLy
=(q"y7P(Ls; ¢")-

Since f is loopless, B(k, 0) is equal to the number of k-tuples of linear
functionals on V{(r, q) which distinguish the members of {$(x): x € Ly},
and this is the number which distinguish the members of {¢’(s): s € 5}.
Also, since f is loopless, P(Ls; A) = P(f; A), and the theorem is proved.

The above proof is similar to that of the special case for matroids given
in Crapo and Rota [2, Theorem 16.1] (see also Zaslavsky [13, Theorem
7.6.1]). A proof could also be given using a deletion-contraction
argument for the characteristic polynomial. This proof would generalise
that of Welsh [9, Theorem 15.5.1]. Yet another proof could be given
using the techniques of Kung [5].

Theorem 3.1 is also intimately related to a theorem of Kung, Murty
and Rota [6, Theorem 10]. This theorem deals with collections of
subgroups of a given finite abelian group. While Theorem 3.1 deals with
linear functionals (homomorphisms into the underlying field) [6,
Theorem 10] is concerned with enumerating k-tuples of distinguishing
group characters (homomorphisms into the complex unit circle).

CoroLLARY 3.2. Let f be a polymatroid representable over GF(q).
Then the minimal number k for which there exists a k-tuple of linear
functionals on V(r,q) which distinguish the members of any repre-
sentation of f in V(r, q) is independent of the representation and is given
by the least positive integer k for which P(f;q*)>0.

As with matroids, the number k given in Corollary 3.2 is the critical
exponent of f over g, denoted c(f;g). Since the kernel of a linear
functional is a hyperplane, we also have,

COROLLARY 3.3. Let f be a polymatroid on § representable over GF(q)
and let ¢ be a representation of f in S. Then c(f;q) is equal to the
minimum number k for which there exists a k-tuple (H,, ..., H;) of

k
hyperplanes of V (r, q) with the property that {7\ H; contains no member of
i=t

{¢p(s):s€8).
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We now return to the question asked at the beginning of this paper. Let §
be a collection of subsets of V(r, ¢), then the polymatroid determined by
S is the polymatroid on S whose value on any subset A of S is equal to
the rank in V' (r, ¢) of the span of A. An easy argument now proves

CoroLLARY 3.4. Let S be a collection of subspaces of V(r, q) and let f
be the polymatroid determined by S. Then the rank of a maximum ranked
subspace U of V(r, q) with the property that U contains no member of S is
equal to r — k where k is the least positive integer with the property that

P(f;4*)>0.

A less natural, but slightly more general, version of Corollary 3.4 can
be obtained by letting S be a collection of subsets of V(r, g) rather than a
collection of subspaces. Clearly, a subspace U of V(r, g) contains a given
subset if and only if it contains the span of that subset.

4. Boolean polymatroids and Rédei functions

While the matroids that are representable over free matroids are
trivial—their connected components have rank at most one~the poly-
matroids representable over free matroids form an interesting class. One
can develop theory analogous to that of the previous section for this
class.

In this section we blur the distinction between a free matroid and its
ground set, and use the same symbol, typically X, to denote both. Since
in a free matroid, cardinality is equal to rank, a polymatroid f on E is
representable over the free matroid X if and only if there exists a
function ¢: E— 2% with the property that f(A) = [¢(A)] for all subsets A
of E. Following [8], we call a polymatroid Boolean if it is representable
over some free matroid.

Assume then, that fis Boolean and is represented in X by ¢, and that
|X|=r. Of course, the flats of X are just the subsets of X and, in
particular, the hyperplanes of X are just those subsets of cardinality
r—1. We say that f spans X if f(E)=|X|. Naturally, the k-tuple of
hyperplanes (H,, . . ., H;) distinguishes the members of {¢(e):e € E} if
k

() H; contains no member of {¢(e). e € E}. An elementary argument

i=1
shows that if A is a subset of X, then the number of k-tuples of
hyperplanes (H, . . ., Hy) of X with the property that A is contained in

&
() H; is equal to (r — |AD .
i=1

A straightforward application of M6bius inversion similar to that of
Theorem 3.1 now proves that if f is loopless and spans X, then the
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