Reprinted from ADYANCES IN MATHEMATICS Vol 99, No, 2, June 1993
All Rights Reserved by Academic Press, New York and London Printed in Belgium

Characteristic. Polynomials
of Weighted Lattices

GEOFF WHITTLE* !

Department of Mathematics, University of Tasmania,
G.P.O. Box 252C, Hobart, Tasmania, 7001, Australia

1. INTRODUCTION

One of the most interesting and useful matroid invariants is the charac-
teristic, or chromatic, polynomial. (For a good survey of its applications
see [5].) Now characteristic polynomials can be defined for more general
structures. For example, the definition is easily extended to graded lattices
and they can also be defined for polymatroids. Moreover, much of the
combinatorial significance of characteristic polynomials is retained in some
of these more general settings. For example, the characteristic polynomial
of a polynmatroid representable over a finite field can be used to evaluate
its critical exponent [21], generalizing results of Crapo and Rota [8].
Also, characteristic polynomials of certain polymatroids derived from
hypergraphs can be used to enumerate hypergraph colourings in the same
way that characteristic polynomials of graphic matroids can be used to
enumerate graph colourings [11, 207, This suggests that it is worth while
to study characteristic polynomials in a more general setting.

In this paper we define characteristic polynomials for weighted lattices,
that is, for lattices endowed with order respecting functions into the
integers. The umbrella of weighted lattices includes all the structures
considered above—matroids, geometric lattices, polymatroids, and graded
lattices. The general plan of the paper is, in each section, to develop some
theory for weighted lattices, and then to use the theory to obtain a non-
trivial result for characteristic polynomials. In particular, the paper is
structured as follows.

In Section 3, the concept of a respectful closure operator on a weighted
laltice is introduced—essentially these are closure operators which respect
function values. It is shown that, excluding weighted lattices with trivial
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characteristic polynomials, the characteristic polynomial of a weighted
lattice is equal to that of its quotient relative to a respectful closure
operator. Section 4 considers minors of weighted lattices. A deletion-
contraction recursion for characteristic polynomials of weighted lattices
is given. In Section 5, a notion of modularity for weighted lattices is
introduced. The main theorem of this section, and possibly of the whole
paper, is an extension of Stanley’s modular factorisation theorem [14,
Theorem 2] to weighted lattices. Sections 6 and 7 develop further structure
theory for weighted lattices endowed with modular elements. Section 8
considers weighted lattice separation.

2. PRELIMINARIES

We assume that the reader is familiar with the basic concepts of matroid
theory as set forth in [17-19]. Familiarity is also assumed with the
elements of lattice theory, and with the theory of Mébius functions of
partially ordered sets. Attractive presentations of relevant order-theoretic
concepts are given in Stanley [16, Chap.3] and Aigner [1, particularly
Chap. 3, Sect.4]. Terminology for partially ordered sets and lattices
follows [16]. In any unexplained context the symbols § and 1 are used for
the least and greatest elements of a lattice, respectively.

Let $ be a set, then an integer valued set function on S is a function
/125 Z, and we say that S is the ground set of f. In this paper we only
consider set functions on finite sets. The function f is normalised if
J(@) =0, is increasing if f(A)= f(B) whenever A and B are subsets of S
with 4 2 B, and is submodular if f(4)+ f(B)= f(4A v B}+ f{A B) for all
subsets 4 and B of S. If /" is a normalised, increasing, submodular function,
then f is a polymatroid on S.

With a normalised, increasing function f on S, we associate a canonical
closuie operator. A subset F of S is a flar of f if J(Fua)y> f(F) for ail a
in S—F. A subset is a closed set of f if it is an intersection of flats. If 4
is a subset of S, then cl,(A) is the minimal closed set of f containing A.
Clearly cl, is a closure operator, the closure operator of f. Just as clearly,
the closed sets of f form a lattice, the lattice of closed sets of f.
A particularly well-behaved class of functions consists of those functions
whose flats and closed sets coincide. Note that polymatroids belong to this
class, so that oné may refer to the latrice of flats of a polymatroid.

A weighted lattice is an ordered pair (Z, /), where L is a finite lattice and
S is a function from L into the non-negative integers with the propertics
that f(0)=0 and that, if 2 and b are members of L with a<5, then
Sla)< f(b). M (L, f) is a weighted lattice, then L and f are the underlying
lattice and underlying function of (L, f), respectively. To simplify notation
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we generally use the symbol L, to denote a weighted lattice. In this case L,
also denotes the underlying unweighted lattice of L,: the underlying
function of Ly is f.

With a normalised, increasing function f on S we naturally associate two
weighted lattices. The first has, as its underlying lattice, the lattice of all
subsets of S ordered by inclusion and has 1 as its underlying function. This
is the Boolean weighted lattice of f, and is denoted by B, The other has,
as its underlying lattice, the lattice of closed sets of f and has, as its under-
lying function, the restriction of f to these sets. This is the weighted lattice
of closed sets of f, and is denoted by L,. In the case that fisa polymatroid
we may refer to the weighted lattice of flats of f.

To appreciate the unifying role played by weighted lattices it is worth
observing that if M is a matroid with rank function r, then both M and its
associated geometric lattice have natural interpretations as weighted
lattices, viz. B, and L,.

In a sense weighted lattices generalize graded lattices, but of course a
graded lattice may be weighted by a function which bears no relationship
to its rank function. On the other hand, nice examples of weighted lattices
are provided by graded lattices with their rank functions, and in particular,
by geometric lattices with their rank functions. In any unexplained context
a geometric lattice will always be assumed to be weighted by its rank
function.

The weighted lattice L, is submodular if, for all elements a and b of
L,, fla)+f(b)= fla A b)+ f(a v b). A graded lattice is upper semimodular
if it is submodular when weighted by its rank function. Note that the
underlying lattice of a submodular weighted lattice may not be upper
semimodular, and a weighted lattice whose underlying lattice is upper
semimodular may not be submodular.

The characteristic polynomial of the weighted lattice L, denoted
P(Ls; A), is defined by

P(Lp2)= Y w0, x) /-1,
xely
Here u represents the Mébius function of the underlying lattice of L. The
characteristic polynomial of the normalised, increasing function f on S is
equal to that of its Boolean weighted lattice, that is, P(f; A)= P(B,; ). It
is then easily seen that

P(f; ;1“) — Z (_ i )IAi Af{S)wf(A)‘
ASS
We often use Hasse diagrams to depict weighted lattices. Vertices of such

diagrams are labelled by ordered pairs of the form (a, f(a)), where a
denotes the element of the lattice corresponding to the given vertex.
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3. RESPECTFUL CLOSURE OPERATORS

Recall that a closure operator on a lattice L is a function cf: L — L with
the following properties:

(i) clix)=x, forall xin L;
(i) ifxand yarein L and x< y, then cl(x) <cl(y);
(i) cl{cl(x))=cl(x), for all x in L.

An element x of L is closed if cl(x) =x. It is well known, and easily verified,
that the closed elements of L with the induced order form a lattice: this is
the quotient of L relative to the closure operator cl.

Now let L, be a weighted lattice. A respectful closure operator on L, is
a closure operator cl on the underlying lattice of L, with the property that
J(x)= f(cl{x)}) for every element x of L,.

We generalize the definition of flat to weighted lattices by saying that an
element x of L, is a flar if f(y)> f(x) for all elements y of L, with y> x.
Equivalently x is a flat if /(»)> f(x) for all elements y of L, which cover
x. An alternative characterisation of respectful closure operators is then
given by

PROPOSITION 3.1.  Let cl be a closure operator on the weighted lattice L,.
Then cl is respectful if and only if every flat of L, is closed.

Proof. 1t is clear that if ¢l is respectful, then every flat of L, is ciosed.
For the converse, assume that every flat of L, is closed, and let x be an
element of L. It'is easily seen that there exists at lcast one flat z of L, with
zzx and f(z)=f(x). Since ¢l is a closure operator, cl(z)=cl{x). But
cl{z)=1z so z = cl{x). Therefore f{z) > f(cl{x)), and the result follows since
cdix)zx |

Assume that cl is a respectful closure operator on L,. By restricting f to
the closed elements of L,, the quotient of L, relative to cl becomes a
weighted lattice: this is the weighted quotient of L, relative to cl. (Of course,
this construction can be performed for any closure operator on L, but it
is only respectful ones that are of interest to us.)

A canonical respectful closure operator is obtained by setting cl(x) to be
A{y:yaflatof L, and yx} for all elements x of L. It is easily checked
that c] is, indeed, a respectful closure operator, and that if cl, is any other
respectful closure operator on Ly, then cl; is a refinement of ¢l in the sense
that the elements which are closed with respect to cl; form a superset of the
closed elements of cl. This closure operator is the one of most interest to
us; we call it the principal closure operator of L.

Now let /" be a normalised, increasing function on a finite set. Then it is
immediate that the weighted quotient of B, (the Boolean weighted lattice
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of f) relative to the principal closure operator of B, is precisely L,
(the weighted lattice of closed sets of f). To reinforce the point—perhaps
unnecessarily—observe that if r is the rank function of a matroid M, then
the principal closure operator of B, is just the usual closure operator of M.
The weighted quotient of B, relative to this closure operator is just the
geometric lattice one associates with M weighted by its rank function.

For the remainder of this section we assume that L, is a weighted lattice,
that cl is a respectful closure operator on L,, and that L; is the weighted
quotient of L, relative to cl. The value of taking a weighted quotient of a
weighted lattice is that one frequently obtains a structure which is simpler
than the original weighted lattice, yet which retains sufficient information
to solve problems associated with it. This claim is justified by

Tusorem 3.2, If cl(0) =0, then P(L,, 1)=P(L}; 2).

Theorem 3.2 will follow straightforwardly from the following fundamen-
tal result of Rota [13]. The version cited here follows [7, Theorem 17 (see
also [1, Theorem 4.2.77).

ProroSITION 3.3. Let P be a locally finite poset, let ¢l be a closure
operator on P, and let P denote the guotient of P relative to cl. Then, for
all elements x and y of P,

_ fuplel(x), cl(y)),  if x=cl(x)
Lo Z)‘{o, if x<cl(x)

ce P, cl(z) =cl(y)}

Proof of Theorem 3.2. Let p and ' denote the Mébius functions of L,
and L/, respectively, Then,

P(Lp2)= 3, w(D, x) a7 M=/

x€e Ly
= Z ( z p(ﬁ, ¥) ;{f(i)—f(.v))’
xeL} yeLegl(yy=x
By Proposition 3.1, if cl{ y}=x, then f{y)=f(x). Hence
PLin=3 (% ulp) s,

.R‘ELJ} yelpiel{y)=x
Since cl(0) =0, it follows from Proposition 3.3 that 3° ., ... #(0, y) =
#'(0, x). Hence

P(LpA)= Y w@x) ¥D-/N=P(Li2). B

xEL_’}
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A condition of Theorem 3.2 is that cl(0)=0. Consider the case where
this does not hold. An atom e of ‘the -weighted lattice L, is a loop of
L; if e<cl(®) where cl denotes the principal closure operator of L,.
Equivalently, e is a loop of L., if, for every flat x of L;, e<x. Clearly,
f(e)=0 if e is a loop, but the converse is not, in general, true. The
following result follows routinely from Proposition 3.3.

ProposiTION 3.4. If L, has a loop, then P(L;; A)=0.

4, MINORS OF WEIGHTED LATTICES

The proof of the following preliminary lemma is routine and is omitted.

LemMma 4.1, Let L be a lattice, and let x be an element of L. Then the
set P={y:yeL, y £ x}u0, with the induced order, is a lattice.

Let L, be a weighted lattice and let x be an element of L;. The contrac-
tion of Ly by x, denoted L,/x, is the weighted lattice whose underlying
lattice is the interval [x, l] of L, and whose underlying function, denoted
Jfix, is defined, for all y in [x, 1], by fix(¥)=f(y)—f(x). The deletion
of Ly by x, denoted L,\x, is the weighted lattice whose underlying lattice
is the set P={yp:yel, y £ x} Ul with the induced order and whose
underlying function is the restriction of /" to P. It follows from Lemma 4.1
that the deletion of f by x is well-defined.

Let f be a normalised, increasing function on S, and let 4 be a subset
of S. Then it is natural to define the deletion of 4 from f, denoted /\ 4, by
restricting /" to the power set of §— 4; that is, /\A(B)=f(8B) for all sub-
sets B of §— A. The contraction of A from f, denoted f/A4, is the function
on §5— A4 defined, for all subsets B of §— A4, by f/A(B)=f(4w B)— f{A).
In the case that f is the rank function of a matroid, these operations reduce
to the usual matroid-theoretic ones.

To throw some light on the operations of deletion and contraction for
weighted lattices it is worth while comparing them with the synonomous
operations on normalised, increasing functions. Assume that L, is the
weighted lattice of closed sets of the normalised, increasing function f on
S, and let 4 be a closed set of £ It is easily seen that L /4 is the weighted
lattice of closed sets of f/A4; that is, L;/4 = L. Of course, for matroids
this is very well known. These facts show that it is reasonable to denote the
underlying function of the weighted lattice L,/x by f/x. ,

No such correspondence exists, in general, for deletion. For example, let
+ be the rank function of the free matroid M on the set {x, y}. Then
Fig. 1(a) illustrates both B, and the weighted lattice of closed sets of M (in
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({xsy},z) ({X)Y},z)
(1) (7,1 (y,1)
3.0) ' 4(9,0)
(a} B, (b) Br\x
FIGURE 1

this case the two are identical) and Fig. 1(b} illustrates B,\x. Now B\x is
not a weighted lattice which can be associated in any reasonable way with
M\x, or indeed, with any matroid.

Nonethless the terminclogy is not unreasonable. Let f be the function on
{x, y, z} defined by f(&) =0, f(x)=f(y)=1, and f(4)=2 for all other
subsets of {x, p, z}. It is easily checked that the weighted lattices of flats of
fand f\x are isomorphic to B, and B,\x, respectively. Informally, we can
say that whether or not deletion in the weighted lattice corresponds to
deletion in the function depends on the choice of function. A more formal
description of the situation follows.

Let L, be a strictly weighted lattice (that is, f(x) < f(y) for all x and y
in L, with x<y). Let g be the function whose ground set is the set of
elements of L, defined, for all subsets 4 of L, by g(4)= f(V (4)). It is not
hard to sce that the weighted lattice of closed sets of g, denoted L, is
isomorphic to L; The reasonably routine verification of the following
proposition is left to the reader.

PROPOSITION 4.2. If A is an element of L, (that is, A is a closed set of
g) then L\A is isomorphic to the weighted lattice of closed sets of g\A.

As a somewhat concrete illustration consider the content of Proposi-
tion 4.2 for matroids. Let M be a matroid with rank function r. Let f be
the function whose ground set is the set & of flats of M, and which is
defined, for all subsets A of &, by f(A)=r(J{F:FeA}) Then f is a most
natural submodular function to associate with a matroid. Now L,, the
weighted lattice of closed sets of f, is isomorphic to the weighted lattice of
flats of M. Proposition 4.2 then says that deletion in L, corresponds to
deletion by flats in f. The following theorem justifies the existence of this
section.
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THEOREM 4.3. Let L, be a weighted lattice with at least three elements,
and let x be an atom of L,. Then,

P(Ly; )= P(L\x; 2)— P(Ly/x; ).

We first prove a lemma. Let g and p\x denote the M&bius functions of
L; and L,\x, respectively.

Lemma 4.4. Let x be an atom of Ly, and let y be an element of L \x.
() If y £ x, then p(0, y)=p\x(0, y).
(it) If y>x, then p(0, y)=p\x(0, y) - p(x, p).

Proof. Part (i) is clear. Consider (ii). First assume that y covers x.
Then

0 )=~ % w0, 2)

ﬁs:(.y;::;&x

But, sigce y covers x, if 4 is in {z:0<z<y, z#x}, then a * x and, by
(1), #\x(0, a) = u(0, a). Therefore

#\X(G, J’)= - Z H(G, Z)'
'6(:<_1'::-:§E.\'
Now
#O.=—= ¥ w0, 2)— (0, x).
Ogzcpinsty
But x covers 0, and y covers x, so (0, x)=p(x, y)= — 1. Therefore

w0, ¥)=p\x(@, y) — p(x, y).

‘Now assume that y > x, and that the result holds for all z in Ly such that
x <z < y. Clearly, .

Ju(ﬁ! ,V)= - Z ‘U(G, Z)'— Z #(63 Z}—,U.(G, X).
xgzyp Oscaz kv
Now u(0, x)=—1= ~ p(x, x); s0 by (i) and the induction assumption, it
follows that
uO. 3=~ % w\x@20+ ¥ prnz2)— T \x0, 2)+u(x, x)
X<z y XDy [V -E R T-E oXN
=p\x(0, y)—u(x, y). 8
Proof of Theorem 4.3. Since L, has at least three elements and x is an

atom of L, it follows that x#1, so that 1 is the maximum element of
L A\x. Therefore,

P(LAx; )= 5 w\x(@, y) VO-7),

reLpyvex
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Consider L,/x. We have

P(Lx;hy= Y  pix,p) T = fix(),

yelgyEx
But f/x(1)— f/x( )= f(1) = f(»). Therefore,

P(Lfx; )= % plx, p) D10,

Yely; yEx

Using these facts and Lemma 4.4, it is now easily seen that the following
chain of equalities holds:

P(L\x, 1) — P(Lyfx; A)
= 7 2\x(0, ) VDI 5 px, y) O/

yx yEX
= ¥ p\x(@, p) VDT L T n\x(D, y) VD10
Yy x y>x
— 3 u(x, y) VIO~ y(x, x) 2 DS
y>x
=Y w(®,y) VOTO L T u(®, y) YOS 4 u(@, x) D7)
yEx y>x
Z ‘u(o y)lf(ll fr) = P(L ,1) I
yely

Theorem 4.3 does not hold for 2-element weighted lattices. The charac-
teristic polynomials of these lattices are easily computed directly: if L, is a
2-element weighted lattice, then P(L/; A)= A" —1.

Note that Theorem 4.3 can be used to compute the characteristic polyno-
mial of a loopless matroid (or, indeed, any normalised, increasing function)
in two ways; cither from the Boolean weighted lattice of the matroid or
from the weighted lattice of flats of the matroid.

For a concrete example to illustrate the content of Theorem 4.3 consider
the weighted lattice L, illustrated in Fig. 2(a). Figures 2(b) and 2(c)
llustrate L,\q and L /g, respectively. It is easily verified by direct computa-
tion that P(L,; 4)=A%—32*+24, that P(L\g; 1)=A%—21%+ 1, and that
P(L//q; A)=A*—2A+1. Hence, P(L,; )= P(L\g; 1)~ P(L//q; ).

Consider a further class of examples. Let L, be a weighted lattice with
set of atoms {x,, .., x,}. We define the lower truncation of L, denoted
d(Ly), by d(Lg)=(..(L;\x,)..\x,). It is easily seen that the order of
deleting the atoms is irrelevant, so that d{L) is well-defined.

A number of interesting weighted lattices arise as lower truncations of
geometric lattices. Note that if L, is a geometric lattice, the atoms of d(L,)
all have weight equal to 2 so that d{L/) is a 2-polymatroid. We calculate
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(a1,
(s,5) alt,5)
{a) 1,
(p,2 (£,2)
(f,63 |
(8,0)
(1,
{s.5) (£,5)
{5,3) (t,3)
(p,2) (r,2)
(g,0)
(6,0 te Tgfa
(b) Lf\q
FIGURE 2

the characteristic polynomial of some of these lattices. The technique we
use is summarised in the following proposition.

PrROPOSITION 4.5, Let L, be a weighted lattice with set of atoms
{x1, . x,}, and assume that Lyfx; = L/x,= --- = L/x,. Then

P(d(Ly); 2) = P(Ls; A) + n(P(Ly/x,; ).
Proof. The result follows routinely from Theorem 4.3 after observing
that if 1 <i<n, then
(o (LAY NX W \X oy = L/x;. |
Consider the rank-r vector space over the finite field GF(g). Denote the

weighted lattice of flats of this vector space by F{r, ¢). If x is an atom of
V(P‘, q)s then V(r’ q)/x; V(““ 1: ‘]) AlSO, V(J', Q‘) has (f}r - 1)/(9‘ - 1)
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atoms, and P(V(r,q);2)=(A—1)}1—¢q)---{A—g"). It then follows from
Proposition 4.5, that

PAV(r, @) )= Q—1)A—q)---(A— ¢ )A~q + (g ~1)/(g—1)).

Let P, and V, denote the rank-r partition and Boolean lattice, respectively
(weighted, of course, by their rank functions). Then a similar caiculation
shows that

P(d(P,);A)=(A—1)(A—2)---(A—(r—1))(A—r+(;)),

and that
PAV. ) N=A-1"1T(A-1+7r).

Note that d{¥(r, ¢)) is naturally associated with the Grassmanian of
rank 2 flats of W{r,g). Also, {d(P.); A} enumerates the number of
A-colourings of the complete 3-hypergraph on r+ 1 vertices.

5. MopuLAR ELEMENTS OF WEIGHTED L.ATTICES

The ordered pair (x, p) of elements of a lattice is a modular pair (written
xMy) if, for all z<yp, we have zv (x A y)=(z v x) A y. Wilcox [22]
showed that the relation of being a modular pair is symmetric if and only
if the lattice is upper semimodular. Staniey [15] defines an element x of a
lattice L to be modular if xMy and yMx for all elements y of L. This is a
natural definition in that a lattice is modular if and only if every element
of the lattice is modular in the above sense.

it follows immediately from the results of [2, Chap. IV, Sect. 27 that the
modular elements of an upper semimodular lattice with height function A
are the elements x of L which have the property that for all elements y
of L,

AxX)+h()=Hx A P)+h(xv y)

Indeed, for such lattices—especially geometric lattices—this property is
often given as the definition of a modular element. For arbitrary weighted
lattices, no nice correspondence like the above holds: for a useful concept
of modularity we need a definition which incorporates both aspects.

Let L, be a weighted lattice. Then the element x of L, is a modular
element of L if, for all elements y of L, the following properties hold:

(i) yMx and xMy (in other words x is modular in the underlying
lattice of L)
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(i) SE)+/()=fxv y)+f(xAyp)

The main purpose of this section is to prove the following theorem. It is
a direct generalization of Stanley [14, Theorem 2.

THEOREM 5.1.  If x is @ modular element of the weighted lattice L;, then

P(L;; M)=P(Ls| x; A)[ Y u(®,a) AI(TJ—f(.v)—f(::):I'

ﬂfﬂl\.\.’=0

We need some preliminary results; some of these are of sufficient
independent interest to be entitled propositions. In the following sequence
it will be assumed that x is a modular element of the weighted lattice L.
Also, if a is an element of L,, then a,: [a A x, x] — [@, a v x] is defined by
a,(y)=av y,and f,:[a,av x]— [a A x, x] is defined by 8,(y)=x A .

The restriction of L, to g, denoted L, | a, is obtained by restricting Ly to
the interval [0, a]. If 4 and b are elements of L, and a< b, then the under-
lying lattice of (L,/a} | b is, of course, the interval [a, ] of the underlying
lattice of Ly: the underlying function of (L,/a)|b is the restriction of the
underlying function of L/a to this interval. Consistent with earlier usage in
this paper we denote this function by f/a also.

PROPOSITION 5.2.. If a is an element of L;, then a, is a weighted lattice
isomorphism between (Lyf(a A x))|x and (Lyja)i(a v x). The inverse of «,

is B,.

Proof. Tt follows from [14, Lemma 1] that «, is a lattice isomorphism
with inverse f8,. To show that «, is a weighted lattice isomorphism we
must show that if y is in [a A x, x], then flale, ()= flla A x)(¥).
Now fla(e,(y)) = flav y}— fla), and fi(a A x)(¥) = f(y) — fla A x).

Therefore we must show that

flav y)—fla)=f(y)—Sla A x). (1)
From the modularity of x, we see that
Jx)+flay=fxva)+f{xAa) (2)

and that
fx)+flav yy=flxvav y)+flxrfav y)

But y is in [aaxx] so xvavy=xva Alo, xalavy)=
«%a(y}=y. Therefore,

Sx)+flav y)=flxva)+f(y) (3}
Equation (1) is now established by subtracting (2) from (3). §
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ProposiTiON 5.3, Let a be an element of L,. Then,
(i) x v ais modular in L/a,
(ii} x A aismodularin L }a,
(ili) if x A a=0, then x is modular in L \a.

Proof. Consider (i). Assume that y and z are elements of [a, 1]. If
< ¥, then, using the modularity of x in L, we see that

zv(lavx)ay)=zv{av(xay)
=(zva)vixay)=(zviavx))ay

Now assume that zgavx Since zel[qavx], it follows from
Proposition 5.2 that z=0,(x')=a v x' for some x’' € x. It then follows that

zvi{yvafavx))=x'vaviav(xay)
=av((xXvyjaxl=x'vy)alav x)
={zv y)alavx)

We conclude that x v ¢ is modular in the underlying lattice of Ly/a. To
complete the proof we need to show that if y is in [ag, 1], then

Jla(y)+fla(x v a)=fla{y v x v a)+ fla(y A (x v a)).

Now, since x is modular, y A {(x v a)=a v (x A y). It then follows from
Proposition 5.1 that

Slalav (x ~ yYy=fllan x)(Balav (x A p)}=7(x A y)=f(x A a)
Also yvxva=yvx so fla(y v x)=f(y v x)— f(a). Therefore

flaly v x v a)+fla(y A (x v a))
= flx A y)—flx na)+ flx v y)— fla)
=f(x)+f(p)—fx)—fla) + flx v a) - fla)
= fla(y)+ flalx v a),

and (i) is proved.
The proof of (ii) is similar to (i} and is omitted. The proof of (iii) is
almost trivial. f§

LEMMA 5.4, Let z be an element of a lattice L with the property that if
ye L and y>0, then z A y>0, and let a be an element of L which is not
in [0, 2]. Then p(0, a)=0.
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Proof. Consider z A ain [0,a] If y is in [0,4], then zAan y=
z A ¥, 50 that z A a has no complement in [0, 47. It is then a consequence
of Crapo’s complementation theorem [6, Theorem 3] that u(0, «)=0. J

We are now in a position to prove Theorem 5.1. A proof could also be
given which mimics the technique of Stanley [14, Theorem 2], but I
cannot resist the opportunity of applying Theorem 4.3.

Proof of Theorem 5.1. It is clear that the result holds for weighted
lattices with at most two elements. Assume that L, has at least three
elements, and, for induction, that the result holds for all weighted lattices
with less elements than L. If the only element which meets x at 0 is 0, then
by Lemma 54,

P(Lpd)=§ w0, a) D=/
Y-

= P(Ls} x; 2)[p(0, §) A70-/10-/00]

= P{Lf | x; ,1) [ z #(ﬁ, a) Aﬂi)“ﬂ-\‘)—f(&}jll

ﬂ:.\'l\ﬂﬁo

Assume then that there exists at least one element ¢ > 0 such that g A x=0.
This clearly implies the existence of an atom with this property. Let p be
an atom of L, such that p A x=0. By Theorem 4.3,

P(Lp A)=P(LAp; Ay — P(L;/p; 4).

Let p\p denote the Mébius function of L\ p. By Proposition 5.3(iii}, x is
modular in L \p. Clearly (L\p) | x= L, | x. Hence,

P(LAP; A)=P(Ly | x; E)[ Y w\@a) Zf‘“‘f‘*’—f‘")}.

aFEpigAx=1{

By Proposition 5.2, (L;/p)|{pv x)=L,|x, and by Proposition 5.3(i),
p v x is modular in L,/p. Hence

P =P 5i2)| T g a) -

azEpi(py Xdna=p

Clearly f/p(1)— f/p(x v p)— fipla)= f(1)— f{x)— f(a). Also, since x is
modular, (pv x)aa=pvixaa),sothatifazp, then (pv x)ana=p
if and only if x A @ =0. Therefore,

P(Ly[p; A)=P(L;| x; A) [ Y Hpa) l-”“‘f"""-‘"“"],

a?p:anx:(‘)
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and it follows that

PUD=RL R T a0 @ KT

asl:p:af\xmo

- Y u(p, a) Afﬁ)—f(:f)—f(a)}

a;:p:a/\xﬁﬁ

It follows from a straightforward application of Lemma 4.4 that

Z #\p(ﬁs ﬁ') lfﬁ)—f(x)—f(a}___ Z ‘u(p’ a} )hf(i)—f(-\‘)—ﬂﬂ)

a#panrx=0 T appiasx=0

= Z ,u(f), a) =Sy fla)

a:xna=90 .
and the theorem is proved. §

It is natural to ask if the conclusion of Theorem 5.1 holds for any weaker
hypotheses than those given. Now, for x to be modular in L,, we must
have, for all elements y of L;: (a) yMx, (b} xMy, and (c) flxy+f(y)=
f(x A y)+ flx v y). Can any of these conditions be dropped? The element
x of the weighted lattice L, illustrated in Fig. 3(a) certainly has properties
(a) and (b), but P(L;A)=A*—2—2*+1 and P(L/|x; N=2-1
Therefore (c) cannot be dropped. Also, the element x of the weighted
lattice L, illustrated in Fig. 3{(b) has properties (b) and (c), but P(L,; A} =
A3—2224+1 and P(L,|x;4)=A*—J, so that (a) cannot be dropped.
However, I can find no counter example to the conjecture that if x is an

(1,3
(1,4
(x,2}
(x,2) (2,3 b, 1)
(a,1)
(0,0)
L
(a) L . - 6.0
(b} L

FIGURE 3
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element of the weighted lattice Ly, and x has properties (a) and (c), then
P(L,| x; Z) divides P(Ly; 2): nor, unfortunately, can I prove it.

Note that without (b), conditions (2) and (c) are quite weak. To see this
consider an example. Let L be any finite lattice. Let L’ be the lattice
obtained from L by adding the element x in such a way that in ', x covers
0 and T covers . Define f: L'~ Z by f(0)=0, f(I)=2, and fla)=1 for
all other elements a of L' It is readily verified that, for all elements yof
L', yMx and f(p)+ f(x}=f(p v x)+ f(y A x).

In any event the whole question is perhaps academic, For classes of
weighted lattices where characteristic polynomials are known to be of
combinatorial significance the problem does not reaily arise.

THEOREM 5.5. Let L, be a weighted lattice which is strictly increasing
and submodular, and let x be an element of L, which has the property thai,
Jor all y in L;, fix)+f(¥)=f(x A )+ flxv p). Then x is a modular
element of L.

Proof. Let a be an element of L,. Now let y be an element of L, such
that y < x Then f(x)+flav y)= flxvav y)+f((yva)ax). But
xvav y=xvaso that

Sy va)ax)=f(yva)+f(x)=flx v a) {1}
Now,

flay+f(yvianx)zflavyviaax)+flan(yv(anx))

Since anx<a avyviaanx)=avy and since ye[ana x x],
an(pyv(anax})=ana x Therefore,

flyv{anx)zf(yva)+flanx)-fla). ()

But f(x)— f{x v a)= fla A x)— fla) and it follows, upon comparing (1)
with (2), that f(y v {a A x}}=f((y v @) A x). In any lattice y v (a A x) <
(y va)ax, and it now follows from the fact that f is strictly increasing
that y v {a A x)={(y v a) A x: in other words, aMx.

Now assume that y<a. Then,

Jyvixaa=flxvyvxaa)+flxalyv(xaa))—fix)
Butxvyvi{iraa)=xvyandxa(yv(xaa))=xAa so
Syvixaa)=flxv p)+f(xaa)—flx). (3)
Nowxv yva=xva, s0

Sy v x)na)<fly v x)+fla)—fla v x). (4)
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Comparing (3) with (4), we see that f(y v (x A a))= f((y v x} A a). But
yv{xaa)<(yvx)ra and [ is strictly increasing, so y v (x A @)=
{y v x) Aa, and we conclude that xMa. Since aMx and xMa for all @
in L, the theorem is proved. §

Before discussing the significance of Theorem 5.5, we first note the
following immediate corollary of Theorems 5.1 and 3.2.

COROLLARY 5.6. If x is an element of the weighted lattice Ly, and x is
modular in some quotient of L, relative to a respectful closure operator, then
P(L,| x; 2) divides P(L; A).

Let f be a normalised, increasing set function, and let C be a closed set
of f. By Corollary 5.6, if C is modular in the weighted lattice of closed sets
of f, then P(f| C;A) divides P(f;4). For polymatroids the situation is
even simpler since we may also invoke Theorem 5.5. :

COROLLARY 5.7. Let f be a polymatroid and let F be a Jflat of 1. If, for
all flats F' of F,

AF)+f(F')y=f(FOF)+ f(FnF),

then P(f\| F; ) divides P(f; 7).

Progf. Let L, denote the weighted lattice of flats of f. Then, in Ly,
fAFv Fy=f(FUF') and Fa F'=Fn F'. Hence, by Theorem 5.5, F is
modular in L. Therefore, by Corollary 5.6, P(f| F; 1) divides P(f; 1). B

While modularity is satisfactorily defined for weighted lattices, the
definition cannot be extended unambiguousty to set functions. Let f be a
normalised increasing function on E, and let 4 be a subset of E. The phrase
“4 is modular in /” has two plausible meanings: it could mean that 4 is
modular in the Boolean weighted lattice of f, or it could mean that 4
is modular in the weighted lattice of closed sets of f. In matroid theory,
it is almost always the latter meaning that is intended, but the former
meaning does get occasional use in the theory of submodular functions
(see, for example, [12, Sect. 1]). We do not define “modular” for set
functions as all situations in which the term is useful can be dealt with by
reference to an appropriate weighted lattice.

The following result generalizes Brylawski [3, Proposition 3.57.

PROPOSITION 5.8. If x is modular in L, and'y is modular in Ly | x, then
y is modular in Lp.
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Proof.  Assume that z and «a are elements of L, If a< p, then, using the
hypotheses of the proposition, we see that

avizayl=av(zax)ay)={av{zax))ay
=({avz)ax)ay=(avz)ay,
and it follows that zMy.
Now assume that a <z Then
(@aaxiv(yazaxh)=(@ax)vizap)=(zna ) va)ax

Also,
((a/\x)vy)/\(z;\x)=((yva)/\x)f\(ZAx)=((yva)Az)Ax.

It follows from the fact that y is modular in Lyl x that (aax)v
(yA{zAax))=((arx)v p) A (zAx). Therefore, (av (yArz))ax=
((@av y)arz)arx But,bothav (yaz)and (av y) A zare in [a,a v x].
It then follows from Proposition 5.2 that av {yAz)=(av p) Az so
that yMz.

Further use of the modularity of x in L, and the modularity of y in
Ly | x shows that

A2+ 1)y =7z A x)+ flz v x)= flx)+ f(3)
=fzAnxAp)+flznx)v y)+Sflzvx)—f(x)
=flz AP+ Uy ve)ax)+flzvx)—fix)
=flzapy+flyva+flx)-flyvevx)+flzvx)—flx)
=flzrp)+flzvy) §
COROLLARY 5.9. If x and y are modular elements of Ly thenxn yisa
modular element of L.

Proof. By Proposition 5.3(ii), x A y is modular in L,|x. Hence, by
Proposition 5.8, x A y is modular in L.

6. SUPERSOLVABLE WEIGHTED LATTICES

A maximal chain of a lattice is a chain 0 =x,<x, < .- <X, _(<X,=1
of the lattice with the property that, for 1 <i<n, x; covers x,_,. Let L, be
a weighted lattice. We say that L, is supersolvable if L, contains a maximal
chain of modular elements. The theory of supersolvable (unweighted)
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lattices was developed by Stanley [153. Note that a non-supersolvable
weighted lattice may have a supersolvable underlying lattice {(in the sense
of [15]). More importantly, note that it follows from [15, Proposition 2.1]
that if a weighted lattice is supersolvable in the sense of this paper, then its
underlying unweighted lattice is supersolvable in Stanley’s sense. Note
particularly that it follows routinely from [15, Corollary 217, that a
geometric lattice is (Stanley) supersolvable if and only if, when weighted by
its rank function, it is supersolvable as a weighted lattice. The following
theorem generalizes [15, Theorem 4.1].

THEOREM 6.1. Let D=xq<x, < -+ <X,_<X,=1 be a maximal chain
of modular elements of the supersolvable weighted lattice Ly. Then,

P(Lp A)= 11 (A7 —8)),
i=1

where, for 1 <i<n, a;= f(x;)— f(x; 1) and b, denotes the number of atoms
of [0, x;] which do not belong 10 [0, x;_ .1

Proof. Consider x,..,. Since x,_; is modular in Lj, it follows from
Theorem 5.1, that

P(LiA)=PUy|xih) L 0 a) O SmenTI,

aiaAxg-1=0

Say z is an element of L, such that z A x,_, =0 and z#0. If <z and
' #0, then, since x,_, is a copoint of Ly, z' v X, =2V x,=1. There-
fore, z' v {x,_Az)=z and (' v X, )AZ=5 which contradicts the
modularity of x,._,. We may conclude that the elements a of L, with the
property that a A x,_, =0 are exactly the atoms of L, not belonging to
[0, x,.,]. If a is such an atom, then, since x,_, is modular,
Fla)=f(1)— f(x,_,). Of course, (0, @) = — 1. Therefore

Z (0, a) A= ftn-0-S) 1y, 0) PUORE R

aianm ie.i=0

YL

Thus, P(L;4)=P(Ls| Xy1; MAm—b,). Tt follows from Proposition
5.3(iii) that, for 1 <i<n, x;_,i52 modular element of L, | x;, so the above
process can be repeated and the result obtained.

Ih the class of upper semimodular lattices weighted by their rank
functions, Theorem 6.1 is Stanley’s theorem.

The following result is the weighted lattice theoretic version of a useful
result in matroid theory [14, Sect.3]. It follows easily from the proof of
Theorem 6.1.
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COROLLARY 6.2. Let x be a modular copoint of the weighted lattice L,
and let k denote the number of atoms of L, which are not comparable with
x. Then,

P(Lyy A)= P(Ly | 3 YA D=1 _p),

It is time for some examples. Let [0, n] denote the set {0, 1, ..., n} with
the natural order. Let n be a positive integer and let S{0,n] > Z be an
increasing function for which f(0)=0. This defines a weighted lattice
whose underlying lattice is [0, #] and whose underlying function is /. It
follows from Theorem 6.1, that

P(Lf; A= (if(n)—f(n-——;)__ 0)(,1f(rz—l)—f(n_2)__ 0)--- (ﬂ..ffz)_ﬂ” _0)(’11'(1) —1)
=;{f(n)~vf(il(;Lf(1)“ I).

This is easily checked to be correct by direct computation, since if / is in
[0, n], then p(0, {)#0 if and only if ie {0, 1),

We now consider a less trivial example. Let (a,, ..., a,) be a sequence of
positive integers such that, if 1 <i<n, then a, <a,; and let {6y, .., b,) be
a sequence of non-negative integers with b, = 1. Let ¥ be a vector space
over a large enough field—the reals will always do—and assume that (¥,
the rank of ¥, is greater than or equal to a -+ --+a, Now let
W={w,,.,w,} be a collection of subspaces of V with the following
properties:

(i) rw;)=a,, and for 1 <i<n, rwi=a;+a;

(i) if 1<i<n, then w,2w,; furthermore, if i and J are distinct
members of {1, .., n}, then w;n Wi=w,.

It is clear that it is always possible to find such a collection of subspaces.
For 1<i<n, let X,={x;:1</<b;} be a collection of subspaces of w;
with the following properties:

(1) the rank of each member of X, is a,;

(i) each member of X, is skew to w, (that is, if xekX, then
xyrvwp=0);

(it)) if X7 is a subset of X; and |X}] > 2, then (| {x:xeXV)=r(w,).

It is clear that conditions (i) and (i) can be made to hold. For condi-
tion (iii} to hold we first need a field which is large enough, which we have.
We also need r(w;) to be less than or equal to 2a;: we have this too, since
a; < a;and r(w,}=a, 4+ a,. Note that conditions (i) and (iii) above amount
to saying that the members of X, are freely placed on w,, Of course, if
b;=0, then X, is empty. Let S= WU X,u --- U X,, and let f be the func-
tion defined, for all subsets 4 of §, by s (4)=r(U{a:aeAd}). It is clear
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(x,3) (y,2) (z,2)
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(8,0
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that / is a polymatroid. For 0 <k <n, let Fo={wy, .., weju {x; 1i<k}. It
is routinely verified that, for 0<k<n, F, is a flat of f, and that
GB=Fy<F, <. <F,_,<F,=8 is a maximal chain of the weighted
lattice L, of flats of f. Moreover, it is straightforward to check, using
Theorem 5.5, that if 0<k<n—1, then F, is modular in L, | Fy . It then
follows from Proposition 5.8 that each of these flats is modular in L, so
that L, is supersolvable. Tt is then evident that P(L,; 1)=ITi_, (A% —b)).

This example embarrasses me somewhat, The underlying geometric idea
is simple in the extreme, but the simplicity seemed to get lost in the writing
down. Tt is really just a natural generalisation of [15, Example 2.10]. The
point of the example is to establish

ProposITION 6.3, Let (a4, .., 4,) be a sequence of positive integers such
that, for 1 <i<n, a,<a,, and let (by, .., b,) be a sequence of non-negative
integers with b, = 1. Then there exists a supersolvable, submodular weighted
lattice L, with maximal chain of modular elements O=xo<x, < <
X,_y<Xx,=1 such that for 1 <i<n, a;= fi{x;}— f(x;_\), and b; denotes the
number of atoms of [0, x;] which do not belong to [0, x;_,].

Of course, P(Ly; A)=[T/_, (A%—b,). Itis trivial to check that the condi-
tion that 4, =1 cannot be dropped in Proposition 6.3, but the condition
that ay< a; for 1 <i<n is not so obviously necessary. I have not checked
the matter thoroughly but it seems that this condition can be dropped if
one is prepared to forgo submodularity. Consider the weighted lattice L,
illustrated in Fig. 4. Here 0 < x < 1 is 2 maximal chain of modular elements.
In the notation of Proposition 6.3, we have a,=5, a,=2, b, =1, and
by=2, and P(L;;A)=(1°— 1)}{A*—2). Of course, L, is not submodular.
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7. COMPLETE PRINCIPAL TRUNCATIONS

A useful constraction for matroids and geometric lattices is the complete
principal truncation of [4, Sect.4]. Of particular interest is the fact,
observed by Brylawski [3, Corollary 7.4, that if F is a modular flat of a
matroid M, then

P(M; ) =P(M | F; A} P(Tr (M), /(% ~1).

Here T, (M) denotes the complete principal truncation of M at F.

Let L, be a weighted lattice, and x be an element of L, for which
f(x) = L. Then the complete principal truncation of L, at x, denoted T, (L),
consists of a partially ordered set (also denoted T.(L,)} and a function
T.(f): T.(L;)— Z. These are defined as follows:

(i) T.(L,) is equal to {aeL;iaAnx=0 or anx=x} with the
induced order;

(iy if @ is in T.(L;), then T.(f)a)=f(a), if anx=0, and
T.(Na@y=fa)—flx)+1,fanx=x

Prorosition 7.1, If x is a modular element of Ly, and f(x)21, then
T.(L;) is a weighted lattice.

Proof. It is a trivial exercise to check that T, (L,) is a lattice regardless
of whether or not x is modular. Now assume that a and & are elements of
T.(L,), and that a<b. If both @ A x=0,and b A x=0o0rifbothan x=x
and b A x=x, then it is clear that T,(/)(@)< T.(f)(&). The only other
possibility is that a A x=0 and » A x=x. In this case we see, from the
modularity of x, that fla)=f(a v x})— f(x). But a v x<b v x =4, so that
fla) < flbv x)—f(x). Now T.(f)(a) = fla), and T.(f)(b) = f{b)—
fix)+ 1. Therefore T.(fNa)< T.(f)(), and we conclude that T.(/f)
is increasing. The result then follows after finally observing that
T(L)©®)=0. | ,

For submodular weighted lattices we can be stronger.

ProrosiTION 7.2. If L, is a submodular weighted lattice, and x is any
element of L, with f(x)2 1, then T, (L,)} is a submodular weighted lattice.

Proof. The proof that T (L,) is a weighted lattice is almost identical to
the proof of Proposition 7.1. We now show that T.(L) is submodular. Let
a and b be elements of T, (L;). The only non-trivial case is covered by
assuming that a A x=0 and b A x=x. In this case, (¢ A b} A x=0 and
(av b) A x=x Therefore T.(f)(a)+ T, (f}b)=/[la)+ f(b)—fx}+1,
and T.(ffand)+T.(fHavb)=flanb)+flavb)-fix}+1. The
submodularity of T_(f) then follows from the submodularity of /. §
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Of course, the complete principal truncation as described here coincides
with the usual definition in the class of geometric lattices weighted by their
rank functions.

THEOREM 7.3. If x is a modular element of the weighted lattice L, and
J{x)=1, then P(Lp;A)=P{L,| x, ) AT (L,); A)/(A—1).

Proof. First observe that x is a modular element of T.(L,). (Note that
while this is easily seen to be so in this case, there exist highly structured
weighted lattices whose atoms are not modular; as the example at the end
of Section 4 shows.) Let p and u' denote the Mdbius function of L, and
T.(L;), respectively, and, for simplicity, set f'= T.(f). Using the
modularity of x in 7,(L,), and Crapo’s complementation theorem [6,
Theorem 27, we see that if z is an element of T, (L;), and 22 x, then

w0, z)= Y (0, a) y'(a, 2).
gianx=0avx=z

But, by Proposition 52, if a A x= 0 and avx=z then T (L) |x=
(T (L) | z)/a, so that y'(a, z)=w'(0, x) = — 1. Therefore,

w0, z)=— Zﬁ u(0, a).
It also follows that if a A x=0 and a v x=2z, then f'(z)=1+/"(a). But
f@)=fla), so f(z)=1+f(a). Therefore f'(1)—f'(z)=/{1)~flx})—
fla)+ 1. Hence,
Z ]_L'(ﬁ, z) A= 1@

zeTelly)izmx

- e z H(G, a) JHA) S =S+
aeTullytanx=0

=2 Y o a) OIS0,

aeLf:an:O
We now see that

PT Lk = § p@a) /s

agLrianx=0

+ E 'uf((“), z) Af’(i)—f'(z')

selrizaN=x

= z 'u(@’ a) A= st —fla)

aeL;:unx:ﬁ

+4 z w(0, a) 2 = Jix) = fia)

aelpranx=0

=(A-1). 3 (0, a) pUBEHOEND)

aely:a Ax=0

and-the résult follows by Theorem 5.1. §



148 GEOFF WHITTLE

{a,b,e,x}, 4 {ab.c,x}, D

{ a,x},3) {a,x},2)
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FiGure §

So far, the complete principal truncation appears as a somewhat
contrived construction tailor made for Theorem 7.3. The point is that this
construction has a natural and appealing geometric interpretation for
matroids. If F is a flat of the matroid M, then T (M) is obtained by first
putting a set X of r(F)—1 points freely on the flat F and then contracting
X from the extended matroid. It is straightforward to verify that this
interpretation extends, at least, to submodular weighted lattices. For
illustration, consider the following example.

Let 2 and & denote planes in rank-4 space meeting at the line x, and let
¢ be a line skew to a, b, and x. There is a natural polymatroid f which can
be associated with this situation. The weighted lattice of flats, L., of / is
illustrated in Fig. 5(a). Clearly x is a modular element of L,. Consider
T.(L;). Geometrically, this corresponds to placing a point freely on x and
contracting it from the extended configuration. The result is that x becomes
a point, a and b become lnes meeting at x, and ¢ becomes a line skew
to a,b, and x in rank-3 space. It is casily seen that the weighted
lattice T' (L), illustrated in Fig. 5(b) corresponds to this configuration.
It is readily verified that P(L;;1)=(A*—1)* P(L,|x,A)=A*>—1, and
P(T (Lp); A)={A~1)A*—1), so that all is as it should be according to
Theorems 5.1 and 7.3.

8. SEPARATORS
Recall that the direct product Ax B of lattices 4 and B is the set

{{a,b):ac 4, be B} of ordered pairs together with the order relation
(a,b)<(c,d) in Ax B if and only if a<c and b<d in 4 and B, respec-
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tively. For the set-function-theoretic counterpart of this construction we
have that if £, and f, are normalised integer-valued set functions on the
disjoint sets S; and S,, respectively, then the direct sum f, +f, of f,
and f, is the function defined for all subsets X of S,uS, by
(A+IX)=A(XnS)+ (X~ S,). This definition accords .with the
usual one for matroids when f; and f, are rank functions. It also agrees
with the implied definition of direct sum for submodular functions in [9].
As usual, for weighted lattices we combine both approaches. The direct sum
L+ L, of the weighted lattices L, and L, has as its underlying lattice
L;x L,: the underlying function f+ g of L, x L, is defined for all elements
(a,8) of LyxL,, by (f+g)la, b)=/f(a)+ g(b). The element x of the
weighted lattice L, is a separator of L, if there exists an element x' of L,
with the property that L, =L | x+ L, | x".

We seek to characterise separators of weighted lattices. To this end
we define an element x of L, to be neutral if, for all a and b in L., the
following properties hold:

(i) (xaa)viaablvibax)=(xva)alavbd)a(bvx)

(i) f(x)+fla)=f(xva)+[f(xna)

This definition extends that of Gritzer [10, Chap. III, Sect.2] to
weighted lattices. A distributive element x of a lattice L is one with the
property that, for all @ and & in L, av (xap)=(avx)a(av y) In
general, néutrality is a stronger condition than distributivity, but in
relatively complemented lattices—in particular, in geometric lattices—the
two concepts coincide (Gritzer [ 10, Chap, ITT, Sect. 2, Theorem 6]; also an
easy consequence of results in Crapo and Rota [8, Chap. 12]). Conse-
quently no distinction need be made between the two types of element in
these lattices—the term “distributive” being frequently used. We need the
distinction, and we need the stronger condition of neutrality.

It is also worth noting [10, Chap. ITI, Sect.2, Theorem 5] that an
element x of a lattice L is neutral if and only if, for all g and b in L,
xAalavbl={xana)v(xab) and an{xvb)={anx)vianab) and
dually.

THEOREM 8.1. Let x be an element of the weighted lattice L;. Then x is
a separator of Ly if and only if x is a complemented neutral element of L.

Before proving the theorem we first prove a lemma, Evidently a neutral
element has at most one complement.

LemMma 82, Ifxisa neutral element of L, with complement x', then for
all a in Ly, f(a)=fla »n x)+ fla A X'). ' '
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Proof. Since x s meutral in L., fla A x)=f{a)+/(x)-f(avx),
and flaa x')+flx) = fleax’' A x)+fllanx)vx) = = flanx' Ax)+
flav x)A(x' v x).Butx’ A x=0, and x' v x = 1. Therefore f{a A x')=

flav x)—f(x), so that flan x)+ flav x)=F(a). |

Proof of Theorem8.1. It is easily seen that any separator of L, is
a complemented peutral element of L,. For the converse, assume that x’
is a complement of the neutral element x. It is a consequence of the
discussion following [10, Chap.II, Sect. 4, Theorem 1] that the function
¢:L;| xxL;| x' = L; defined, for all a<x and b<x/, by ¢, b)=av b,
is a lattice isomorphism between the underlying lattice of L, |xx L, | x'
and the underlying lattice of L,. Now if a is in L, then it is easily seen that
¢~ Ya)=(a rx,anx’). Hence, by Lemma82, f(¢ '(a))=flarx)+
flanx)=fla}) and we conclude that ¢ is a weighted lattice
isomorphism. |

Since every clement of a Boolean latice is neutral, Theorem 8.1 implies
that the separators of a normalised, increasing set function are just the
subsets which are modular in the Boolean weighted lattice of the
function—essentially a well-known fact.

A weighted lattice is indecomposable if it has no separators apart from 0§
and 1. The proof of the following theorem is straightforward and is
omitted.

THEOREM 8.3. Let L, be a weighted lattice. Then the set of separators of
L, with the induced order is a sublattice of Ly If {ay, .., a,} is the set of
atoms of this sublattice, then T]}_, Ly/a; is the unigue decomposition of L,
into indecomposable sublattices.

For characteristic polynomials we have:

THEOREM B4, [f x is a separator of the weighted lattice L;, and the
complement of x is x', then P(Lp; A)=P(L; | x; 1) P(L] x'; A).

Proof. Obviously, separators are modular, so by Theorem 5.1,

P(Lf§7~)=P(Lfix;xl)[ Y u(ﬁ,a)zftf)—f[x}—f(a):l_

araAx=0
Assume that a A x=0. Consider av x". Then x A (avx)=(xArd)v
(x Ax)=0,and x v (a v x')=1, so that 4 v x" is a complement of x. We
conclude that a A x =0 if and only if e < x". Therefore,

z u(®, a) M= flx) = fla) Z u(0, @) A @

a;anx=0 asx’
=P(L,[x"; 4),

and the theorem is proved. [
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